proxmark3/armsrc/fpgaloader.c

629 lines
24 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Jonathan Westhues, April 2006
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Routines to load the FPGA image, and then to configure the FPGA's major
// mode once it is configured.
//-----------------------------------------------------------------------------
#include "fpgaloader.h"
#include "proxmark3_arm.h"
#include "appmain.h"
#include "BigBuf.h"
#include "ticks.h"
#include "dbprint.h"
#include "util.h"
#include "fpga.h"
#include "string.h"
#include "lz4.h" // uncompress
typedef struct {
LZ4_streamDecode_t *lz4StreamDecode;
char *next_in;
int avail_in;
} lz4_stream_t;
typedef lz4_stream_t *lz4_streamp_t;
// remember which version of the bitstream we have already downloaded to the FPGA
static int downloaded_bitstream = 0;
// this is where the bitstreams are located in memory:
extern uint32_t _binary_obj_fpga_all_bit_z_start[], _binary_obj_fpga_all_bit_z_end[];
static uint8_t *fpga_image_ptr = NULL;
static uint32_t uncompressed_bytes_cnt;
//-----------------------------------------------------------------------------
// Set up the Serial Peripheral Interface as master
// Used to write the FPGA config word
// May also be used to write to other SPI attached devices like an LCD
//-----------------------------------------------------------------------------
static void DisableSpi(void) {
//* Reset all the Chip Select register
AT91C_BASE_SPI->SPI_CSR[0] = 0;
AT91C_BASE_SPI->SPI_CSR[1] = 0;
AT91C_BASE_SPI->SPI_CSR[2] = 0;
AT91C_BASE_SPI->SPI_CSR[3] = 0;
// Reset the SPI mode
AT91C_BASE_SPI->SPI_MR = 0;
// Disable all interrupts
AT91C_BASE_SPI->SPI_IDR = 0xFFFFFFFF;
// SPI disable
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS;
}
void SetupSpi(int mode) {
// PA1 -> SPI_NCS3 chip select (MEM)
// PA10 -> SPI_NCS2 chip select (LCD)
// PA11 -> SPI_NCS0 chip select (FPGA)
// PA12 -> SPI_MISO Master-In Slave-Out
// PA13 -> SPI_MOSI Master-Out Slave-In
// PA14 -> SPI_SPCK Serial Clock
// Disable PIO control of the following pins, allows use by the SPI peripheral
AT91C_BASE_PIOA->PIO_PDR = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK;
// Peripheral A
AT91C_BASE_PIOA->PIO_ASR = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK;
// Peripheral B
//AT91C_BASE_PIOA->PIO_BSR |= GPIO_NCS2;
//enable the SPI Peripheral clock
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SPI);
// Enable SPI
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIEN;
switch (mode) {
case SPI_FPGA_MODE:
AT91C_BASE_SPI->SPI_MR =
(0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
(0xE << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)
(0 << 7) | // Local Loopback Disabled
AT91C_SPI_MODFDIS | // Mode Fault Detection disabled
(0 << 2) | // Chip selects connected directly to peripheral
AT91C_SPI_PS_FIXED | // Fixed Peripheral Select
AT91C_SPI_MSTR; // Master Mode
AT91C_BASE_SPI->SPI_CSR[0] =
(1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
(1 << 16) | // Delay Before SPCK (1 MCK period)
(6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24MHz/6 = 4M baud
AT91C_SPI_BITS_16 | // Bits per Transfer (16 bits)
(0 << 3) | // Chip Select inactive after transfer
AT91C_SPI_NCPHA | // Clock Phase data captured on leading edge, changes on following edge
(0 << 0); // Clock Polarity inactive state is logic 0
break;
/*
case SPI_LCD_MODE:
AT91C_BASE_SPI->SPI_MR =
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
(0xB << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)
( 0 << 7) | // Local Loopback Disabled
( 1 << 4) | // Mode Fault Detection disabled
( 0 << 2) | // Chip selects connected directly to peripheral
( 0 << 1) | // Fixed Peripheral Select
( 1 << 0); // Master Mode
AT91C_BASE_SPI->SPI_CSR[2] =
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
( 1 << 16) | // Delay Before SPCK (1 MCK period)
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24MHz/6 = 4M baud
AT91C_SPI_BITS_9 | // Bits per Transfer (9 bits)
( 0 << 3) | // Chip Select inactive after transfer
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
( 0 << 0); // Clock Polarity inactive state is logic 0
break;
*/
default:
DisableSpi();
break;
}
}
//-----------------------------------------------------------------------------
// Set up the synchronous serial port with the set of options that fits
// the FPGA mode. Both RX and TX are always enabled.
//-----------------------------------------------------------------------------
void FpgaSetupSsc(uint16_t fpga_mode) {
// First configure the GPIOs, and get ourselves a clock.
AT91C_BASE_PIOA->PIO_ASR =
GPIO_SSC_FRAME |
GPIO_SSC_DIN |
GPIO_SSC_DOUT |
GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SSC);
// Now set up the SSC proper, starting from a known state.
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
// RX clock comes from TX clock, RX starts on Transmit Start,
// data and frame signal is sampled on falling edge of RK
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);
// 8, 16 or 32 bits per transfer, no loopback, MSB first, 1 transfer per sync
// pulse, no output sync
if (((fpga_mode & FPGA_MAJOR_MODE_MASK) == FPGA_MAJOR_MODE_HF_READER ) &&
(FpgaGetCurrent() == FPGA_BITSTREAM_HF || FpgaGetCurrent() == FPGA_BITSTREAM_HF_15)) {
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(16) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
} else {
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
}
// TX clock comes from TK pin, no clock output, outputs change on rising edge of TK,
// TF (frame sync) is sampled on falling edge of TK, start TX on rising edge of TF
AT91C_BASE_SSC->SSC_TCMR = SSC_CLOCK_MODE_SELECT(2) | SSC_CLOCK_MODE_START(5);
// tx framing is the same as the rx framing
AT91C_BASE_SSC->SSC_TFMR = AT91C_BASE_SSC->SSC_RFMR;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
}
//-----------------------------------------------------------------------------
// Set up DMA to receive samples from the FPGA. We will use the PDC, with
// a single buffer as a circular buffer (so that we just chain back to
// ourselves, not to another buffer).
//-----------------------------------------------------------------------------
bool FpgaSetupSscDma(uint8_t *buf, uint16_t len) {
if (buf == NULL) return false;
FpgaDisableSscDma();
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) buf; // transfer to this memory address
AT91C_BASE_PDC_SSC->PDC_RCR = len; // transfer this many bytes
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) buf; // next transfer to same memory address
AT91C_BASE_PDC_SSC->PDC_RNCR = len; // ... with same number of bytes
FpgaEnableSscDma();
return true;
}
//----------------------------------------------------------------------------
// Uncompress (inflate) the FPGA data. Returns one decompressed byte with each call.
//----------------------------------------------------------------------------
static int get_from_fpga_combined_stream(lz4_streamp_t compressed_fpga_stream, uint8_t *output_buffer) {
if (fpga_image_ptr == output_buffer + FPGA_RING_BUFFER_BYTES) { // need more data
fpga_image_ptr = output_buffer;
int cmp_bytes;
memcpy(&cmp_bytes, compressed_fpga_stream->next_in, sizeof(int));
compressed_fpga_stream->next_in += 4;
compressed_fpga_stream->avail_in -= cmp_bytes + 4;
int res = LZ4_decompress_safe_continue(compressed_fpga_stream->lz4StreamDecode,
compressed_fpga_stream->next_in,
(char *)output_buffer,
cmp_bytes,
FPGA_RING_BUFFER_BYTES);
if (res <= 0) {
Dbprintf("inflate returned: %d", res);
return res;
}
compressed_fpga_stream->next_in += cmp_bytes;
}
uncompressed_bytes_cnt++;
return *fpga_image_ptr++;
}
//----------------------------------------------------------------------------
// Undo the interleaving of several FPGA config files. FPGA config files
// are combined into one big file:
// 288 bytes from FPGA file 1, followed by 288 bytes from FGPA file 2, etc.
//----------------------------------------------------------------------------
static int get_from_fpga_stream(int bitstream_version, lz4_streamp_t compressed_fpga_stream, uint8_t *output_buffer) {
while ((uncompressed_bytes_cnt / FPGA_INTERLEAVE_SIZE) % g_fpga_bitstream_num != (bitstream_version - 1)) {
// skip undesired data belonging to other bitstream_versions
get_from_fpga_combined_stream(compressed_fpga_stream, output_buffer);
}
return get_from_fpga_combined_stream(compressed_fpga_stream, output_buffer);
}
//----------------------------------------------------------------------------
// Initialize decompression of the respective (HF or LF) FPGA stream
//----------------------------------------------------------------------------
static bool reset_fpga_stream(int bitstream_version, lz4_streamp_t compressed_fpga_stream, uint8_t *output_buffer) {
uint8_t header[FPGA_BITSTREAM_FIXED_HEADER_SIZE];
uncompressed_bytes_cnt = 0;
// initialize z_stream structure for inflate:
compressed_fpga_stream->next_in = (char *)_binary_obj_fpga_all_bit_z_start;
compressed_fpga_stream->avail_in = (uint32_t)_binary_obj_fpga_all_bit_z_end - (uint32_t)_binary_obj_fpga_all_bit_z_start;
int res = LZ4_setStreamDecode(compressed_fpga_stream->lz4StreamDecode, NULL, 0);
if (res == 0)
return false;
fpga_image_ptr = output_buffer + FPGA_RING_BUFFER_BYTES;
for (uint16_t i = 0; i < FPGA_BITSTREAM_FIXED_HEADER_SIZE; i++)
header[i] = get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer);
// Check for a valid .bit file (starts with bitparse_fixed_header)
if (memcmp(bitparse_fixed_header, header, FPGA_BITSTREAM_FIXED_HEADER_SIZE) == 0)
return true;
return false;
}
static void DownloadFPGA_byte(uint8_t w) {
#define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }
SEND_BIT(7);
SEND_BIT(6);
SEND_BIT(5);
SEND_BIT(4);
SEND_BIT(3);
SEND_BIT(2);
SEND_BIT(1);
SEND_BIT(0);
}
// Download the fpga image starting at current stream position with length FpgaImageLen bytes
static void DownloadFPGA(int bitstream_version, int FpgaImageLen, lz4_streamp_t compressed_fpga_stream, uint8_t *output_buffer) {
int i = 0;
#if !defined XC3
AT91C_BASE_PIOA->PIO_OER = GPIO_FPGA_ON;
AT91C_BASE_PIOA->PIO_PER = GPIO_FPGA_ON;
HIGH(GPIO_FPGA_ON); // ensure everything is powered on
#endif
SpinDelay(50);
LED_D_ON();
// These pins are inputs
AT91C_BASE_PIOA->PIO_ODR =
GPIO_FPGA_NINIT |
GPIO_FPGA_DONE;
// PIO controls the following pins
AT91C_BASE_PIOA->PIO_PER =
GPIO_FPGA_NINIT |
#if defined XC3
//3S100E M2 & M3 PIO ENA
GPIO_SPCK |
GPIO_MOSI |
#endif
GPIO_FPGA_DONE;
// Enable pull-ups
AT91C_BASE_PIOA->PIO_PPUER =
GPIO_FPGA_NINIT |
GPIO_FPGA_DONE;
// setup initial logic state
HIGH(GPIO_FPGA_NPROGRAM);
LOW(GPIO_FPGA_CCLK);
LOW(GPIO_FPGA_DIN);
// These pins are outputs
AT91C_BASE_PIOA->PIO_OER =
GPIO_FPGA_NPROGRAM |
GPIO_FPGA_CCLK |
#if defined XC3
//3S100E M2 & M3 OUTPUT ENA
GPIO_SPCK |
GPIO_MOSI |
#endif
GPIO_FPGA_DIN;
#if defined XC3
//3S100E M2 & M3 OUTPUT HIGH
HIGH(GPIO_SPCK);
HIGH(GPIO_MOSI);
#endif
// enter FPGA configuration mode
LOW(GPIO_FPGA_NPROGRAM);
SpinDelay(50);
HIGH(GPIO_FPGA_NPROGRAM);
i = 100000;
// wait for FPGA ready to accept data signal
while ((i) && (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_NINIT))) {
i--;
}
// crude error indicator, leave both red LEDs on and return
if (i == 0) {
LED_C_ON();
LED_D_ON();
return;
}
#if defined XC3
//3S100E M2 & M3 RETURN TO NORMAL
LOW(GPIO_SPCK);
LOW(GPIO_MOSI);
AT91C_BASE_PIOA->PIO_PDR = GPIO_SPCK | GPIO_MOSI;
#endif
for (i = 0; i < FpgaImageLen; i++) {
int b = get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer);
if (b < 0) {
Dbprintf("Error %d during FpgaDownload", b);
break;
}
DownloadFPGA_byte(b);
}
// continue to clock FPGA until ready signal goes high
i = 100000;
while ((i--) && (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_DONE))) {
HIGH(GPIO_FPGA_CCLK);
LOW(GPIO_FPGA_CCLK);
}
// crude error indicator, leave both red LEDs on and return
if (i == 0) {
LED_C_ON();
LED_D_ON();
return;
}
LED_D_OFF();
}
/* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence
* 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01
* After that the format is 1 byte section type (ASCII character), 2 byte length
* (big endian), <length> bytes content. Except for section 'e' which has 4 bytes
* length.
*/
static int bitparse_find_section(int bitstream_version, char section_name, uint32_t *section_length, lz4_streamp_t compressed_fpga_stream, uint8_t *output_buffer) {
#define MAX_FPGA_BIT_STREAM_HEADER_SEARCH 100 // maximum number of bytes to search for the requested section
int result = 0;
uint16_t numbytes = 0;
while (numbytes < MAX_FPGA_BIT_STREAM_HEADER_SEARCH) {
char current_name = get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer);
numbytes++;
uint32_t current_length = 0;
if (current_name < 'a' || current_name > 'e') {
/* Strange section name, abort */
break;
}
current_length = 0;
switch (current_name) {
case 'e':
/* Four byte length field */
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 24;
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 16;
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 8;
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 0;
numbytes += 4;
if (current_length > 300 * 1024) {
/* section e should never exceed about 300KB, if the length is too big limit it but still send the bitstream just in case */
current_length = 300 * 1024;
}
break;
default: /* Two byte length field */
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 8;
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 0;
numbytes += 2;
if (current_length > 64) {
/* if text field is too long, keep it but truncate it */
current_length = 64;
}
}
if (current_name == section_name) {
/* Found it */
*section_length = current_length;
result = 1;
break;
}
for (uint32_t i = 0; i < current_length && numbytes < MAX_FPGA_BIT_STREAM_HEADER_SEARCH; i++) {
get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer);
numbytes++;
}
}
return result;
}
//----------------------------------------------------------------------------
// Change FPGA image status, if image loaded.
// bitstream_version is your new fpga image version
// return true if can change.
// return false if image is unloaded.
//----------------------------------------------------------------------------
#if defined XC3
static bool FpgaConfCurrentMode(int bitstream_version) {
// fpga "XC3S100E" image merge
// If fpga image is no init
// We need load hf_lf_allinone.bit
if (downloaded_bitstream != 0) {
// test start
// PIO controls the following pins
AT91C_BASE_PIOA->PIO_PER = GPIO_FPGA_SWITCH;
// These pins are outputs
AT91C_BASE_PIOA->PIO_OER = GPIO_FPGA_SWITCH;
// try to turn off antenna
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
if (bitstream_version == FPGA_BITSTREAM_LF) {
LOW(GPIO_FPGA_SWITCH);
} else {
HIGH(GPIO_FPGA_SWITCH);
}
// update downloaded_bitstream
downloaded_bitstream = bitstream_version;
// turn off antenna
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
return true;
}
return false;
}
#endif
//----------------------------------------------------------------------------
// Check which FPGA image is currently loaded (if any). If necessary
// decompress and load the correct (HF or LF) image to the FPGA
//----------------------------------------------------------------------------
void FpgaDownloadAndGo(int bitstream_version) {
// check whether or not the bitstream is already loaded
if (downloaded_bitstream == bitstream_version) {
FpgaEnableTracing();
return;
}
#if defined XC3
// If we can change image version
// direct return.
if (FpgaConfCurrentMode(bitstream_version)) {
return;
}
#endif
// Send waiting time extension request as this will take a while
send_wtx(1500);
bool verbose = (g_dbglevel > 3);
// make sure that we have enough memory to decompress
BigBuf_free();
BigBuf_Clear_ext(verbose);
lz4_stream_t compressed_fpga_stream;
LZ4_streamDecode_t lz4StreamDecode_body = {{ 0 }};
compressed_fpga_stream.lz4StreamDecode = &lz4StreamDecode_body;
uint8_t *output_buffer = BigBuf_malloc(FPGA_RING_BUFFER_BYTES);
if (!reset_fpga_stream(bitstream_version, &compressed_fpga_stream, output_buffer))
return;
uint32_t bitstream_length;
if (bitparse_find_section(bitstream_version, 'e', &bitstream_length, &compressed_fpga_stream, output_buffer)) {
DownloadFPGA(bitstream_version, bitstream_length, &compressed_fpga_stream, output_buffer);
downloaded_bitstream = bitstream_version;
}
#if defined XC3
// first download fpga image to hf
// we need to change fpga status to hf
FpgaConfCurrentMode(bitstream_version);
#endif
// turn off antenna
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
}
//-----------------------------------------------------------------------------
// Send a 16 bit command/data pair to the FPGA.
// The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
// where C is the 4 bit command and D is the 12 bit data
//
// @params cmd and v gets OR:ED over each other. Take careful note of overlapping bits.
//-----------------------------------------------------------------------------
void FpgaSendCommand(uint16_t cmd, uint16_t v) {
SetupSpi(SPI_FPGA_MODE);
while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY) == 0); // wait for the transfer to complete
AT91C_BASE_SPI->SPI_TDR = AT91C_SPI_LASTXFER | cmd | v; // send the data
while (!(AT91C_BASE_SPI->SPI_SR & AT91C_SPI_RDRF)) {}; // wait till transfer is complete
}
//-----------------------------------------------------------------------------
// Write the FPGA setup word (that determines what mode the logic is in, read
// vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to
// avoid changing this function's occurrence everywhere in the source code.
//-----------------------------------------------------------------------------
void FpgaWriteConfWord(uint16_t v) {
FpgaSendCommand(FPGA_CMD_SET_CONFREG, v);
}
//-----------------------------------------------------------------------------
// enable/disable FPGA internal tracing
//-----------------------------------------------------------------------------
void FpgaEnableTracing(void) {
FpgaSendCommand(FPGA_CMD_TRACE_ENABLE, 1);
}
void FpgaDisableTracing(void) {
FpgaSendCommand(FPGA_CMD_TRACE_ENABLE, 0);
}
//-----------------------------------------------------------------------------
// Set up the CMOS switches that mux the ADC: four switches, independently
// closable, but should only close one at a time. Not an FPGA thing, but
// the samples from the ADC always flow through the FPGA.
//-----------------------------------------------------------------------------
void SetAdcMuxFor(uint32_t whichGpio) {
#ifndef WITH_FPC_USART
// When compiled without FPC USART support
AT91C_BASE_PIOA->PIO_OER =
GPIO_MUXSEL_HIPKD |
GPIO_MUXSEL_LOPKD |
GPIO_MUXSEL_LORAW |
GPIO_MUXSEL_HIRAW;
AT91C_BASE_PIOA->PIO_PER =
GPIO_MUXSEL_HIPKD |
GPIO_MUXSEL_LOPKD |
GPIO_MUXSEL_LORAW |
GPIO_MUXSEL_HIRAW;
LOW(GPIO_MUXSEL_HIPKD);
LOW(GPIO_MUXSEL_LOPKD);
LOW(GPIO_MUXSEL_HIRAW);
LOW(GPIO_MUXSEL_LORAW);
HIGH(whichGpio);
#else
if ((whichGpio == GPIO_MUXSEL_LORAW) || (whichGpio == GPIO_MUXSEL_HIRAW))
return;
// FPC USART uses HIRAW/LOWRAW pins, so they are excluded here.
AT91C_BASE_PIOA->PIO_OER = GPIO_MUXSEL_HIPKD | GPIO_MUXSEL_LOPKD;
AT91C_BASE_PIOA->PIO_PER = GPIO_MUXSEL_HIPKD | GPIO_MUXSEL_LOPKD;
LOW(GPIO_MUXSEL_HIPKD);
LOW(GPIO_MUXSEL_LOPKD);
HIGH(whichGpio);
#endif
}
void Fpga_print_status(void) {
DbpString(_CYAN_("Current FPGA image"));
Dbprintf(" mode....................%s", g_fpga_version_information[downloaded_bitstream - 1]);
}
int FpgaGetCurrent(void) {
return downloaded_bitstream;
}
// Turns off the antenna,
// log message
// if HF, Disable SSC DMA
// turn off trace and leds off.
void switch_off(void) {
if (g_dbglevel > 3) {
Dbprintf("switch_off");
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
if (downloaded_bitstream == FPGA_BITSTREAM_HF || downloaded_bitstream == FPGA_BITSTREAM_HF_15) {
FpgaDisableSscDma();
}
set_tracing(false);
LEDsoff();
}