proxmark3/armsrc/util.c
2019-03-10 11:20:22 +01:00

382 lines
9.4 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, Sept 2005
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Utility functions used in many places, not specific to any piece of code.
//-----------------------------------------------------------------------------
#include "util.h"
size_t nbytes(size_t nbits) {
return (nbits >> 3) + ((nbits % 8) > 0);
}
/*
ref http://www.csm.ornl.gov/~dunigan/crc.html
Returns the value v with the bottom b [0,32] bits reflected.
Example: reflect(0x3e23L,3) == 0x3e26
*/
uint32_t reflect(uint32_t v, int b) {
uint32_t t = v;
for (int i = 0; i < b; ++i) {
if (t & 1)
v |= BITMASK((b - 1) - i);
else
v &= ~BITMASK((b - 1) - i);
t >>= 1;
}
return v;
}
uint8_t reflect8(uint8_t b) {
return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
}
uint16_t reflect16(uint16_t b) {
uint16_t v = 0;
v |= (b & 0x8000) >> 15;
v |= (b & 0x4000) >> 13;
v |= (b & 0x2000) >> 11;
v |= (b & 0x1000) >> 9;
v |= (b & 0x0800) >> 7;
v |= (b & 0x0400) >> 5;
v |= (b & 0x0200) >> 3;
v |= (b & 0x0100) >> 1;
v |= (b & 0x0080) << 1;
v |= (b & 0x0040) << 3;
v |= (b & 0x0020) << 5;
v |= (b & 0x0010) << 7;
v |= (b & 0x0008) << 9;
v |= (b & 0x0004) << 11;
v |= (b & 0x0002) << 13;
v |= (b & 0x0001) << 15;
return v;
}
void num_to_bytes(uint64_t n, size_t len, uint8_t *dest) {
while (len--) {
dest[len] = (uint8_t) n;
n >>= 8;
}
}
uint64_t bytes_to_num(uint8_t *src, size_t len) {
uint64_t num = 0;
while (len--) {
num = (num << 8) | (*src);
src++;
}
return num;
}
// RotateLeft - Ultralight, Desfire
void rol(uint8_t *data, const size_t len) {
uint8_t first = data[0];
for (size_t i = 0; i < len - 1; i++) {
data[i] = data[i + 1];
}
data[len - 1] = first;
}
void lsl(uint8_t *data, size_t len) {
for (size_t n = 0; n < len - 1; n++) {
data[n] = (data[n] << 1) | (data[n + 1] >> 7);
}
data[len - 1] <<= 1;
}
int32_t le24toh(uint8_t data[3]) {
return (data[2] << 16) | (data[1] << 8) | data[0];
}
//convert hex digit to integer
uint8_t hex2int(char hexchar) {
switch (hexchar) {
case '0':
return 0;
break;
case '1':
return 1;
break;
case '2':
return 2;
break;
case '3':
return 3;
break;
case '4':
return 4;
break;
case '5':
return 5;
break;
case '6':
return 6;
break;
case '7':
return 7;
break;
case '8':
return 8;
break;
case '9':
return 9;
break;
case 'a':
case 'A':
return 10;
break;
case 'b':
case 'B':
return 11;
break;
case 'c':
case 'C':
return 12;
break;
case 'd':
case 'D':
return 13;
break;
case 'e':
case 'E':
return 14;
break;
case 'f':
case 'F':
return 15;
break;
default:
return 0;
}
}
void LEDsoff() {
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
// LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
void LED(int led, int ms) {
if (led & LED_RED)
LED_C_ON();
if (led & LED_ORANGE)
LED_A_ON();
if (led & LED_GREEN)
LED_B_ON();
if (led & LED_RED2)
LED_D_ON();
if (!ms)
return;
SpinDelay(ms);
if (led & LED_RED)
LED_C_OFF();
if (led & LED_ORANGE)
LED_A_OFF();
if (led & LED_GREEN)
LED_B_OFF();
if (led & LED_RED2)
LED_D_OFF();
}
void SpinOff(uint32_t pause) {
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
SpinDelay(pause);
}
// 0=A, 1=B, 2=C, 3=D
void SpinErr(uint8_t led, uint32_t speed, uint8_t times) {
SpinOff(speed);
NTIME(times) {
switch (led) {
case 0:
LED_A_INV();
break;
case 1:
LED_B_INV();
break;
case 2:
LED_C_INV();
break;
case 3:
LED_D_INV();
break;
}
SpinDelay(speed);
}
}
void SpinDown(uint32_t speed) {
SpinOff(speed);
LED_D_ON();
SpinDelay(speed);
LED_D_OFF();
LED_C_ON();
SpinDelay(speed);
LED_C_OFF();
LED_B_ON();
SpinDelay(speed);
LED_B_OFF();
LED_A_ON();
SpinDelay(speed);
LED_A_OFF();
}
void SpinUp(uint32_t speed) {
SpinOff(speed);
LED_A_ON();
SpinDelay(speed);
LED_A_OFF();
LED_B_ON();
SpinDelay(speed);
LED_B_OFF();
LED_C_ON();
SpinDelay(speed);
LED_C_OFF();
LED_D_ON();
SpinDelay(speed);
LED_D_OFF();
}
// Determine if a button is double clicked, single clicked,
// not clicked, or held down (for ms || 1sec)
// In general, don't use this function unless you expect a
// double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
int BUTTON_CLICKED(int ms) {
// Up to 500ms in between clicks to mean a double click
int ticks = (48000 * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (!BUTTON_PRESS())
return BUTTON_NO_CLICK;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
int letoff = 0;
for (;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// We haven't let off the button yet
if (!letoff) {
// We just let it off!
if (!BUTTON_PRESS()) {
letoff = 1;
// reset our timer for 500ms
start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
ticks = (48000 * (500)) >> 10;
}
// Still haven't let it off
else
// Have we held down a full second?
if (now == (uint16_t)(start + ticks))
return BUTTON_HOLD;
}
// We already let off, did we click again?
else
// Sweet, double click!
if (BUTTON_PRESS())
return BUTTON_DOUBLE_CLICK;
// Have we ran out of time to double click?
else if (now == (uint16_t)(start + ticks))
// At least we did a single click
return BUTTON_SINGLE_CLICK;
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
// Determine if a button is held down
int BUTTON_HELD(int ms) {
// If button is held for one second
int ticks = (48000 * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (!BUTTON_PRESS())
return BUTTON_NO_CLICK;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for (;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// As soon as our button let go, we didn't hold long enough
if (!BUTTON_PRESS())
return BUTTON_SINGLE_CLICK;
// Have we waited the full second?
else if (now == (uint16_t)(start + ticks))
return BUTTON_HOLD;
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
/* Similar to FpgaGatherVersion this formats stored version information
* into a string representation. It takes a pointer to the struct version_information,
* verifies the magic properties, then stores a formatted string, prefixed by
* prefix in dst.
*/
void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information) {
struct version_information *v = (struct version_information *)version_information;
dst[0] = 0;
strncat(dst, prefix, len - 1);
if (v->magic != VERSION_INFORMATION_MAGIC) {
strncat(dst, "Missing/Invalid version information\n", len - strlen(dst) - 1);
return;
}
if (v->versionversion != 1) {
strncat(dst, "Version information not understood\n", len - strlen(dst) - 1);
return;
}
if (!v->present) {
strncat(dst, "Version information not available\n", len - strlen(dst) - 1);
return;
}
strncat(dst, v->gitversion, len - strlen(dst) - 1);
if (v->clean == 0) {
strncat(dst, "-unclean", len - strlen(dst) - 1);
} else if (v->clean == 2) {
strncat(dst, "-suspect", len - strlen(dst) - 1);
}
strncat(dst, " ", len - strlen(dst) - 1);
strncat(dst, v->buildtime, len - strlen(dst) - 1);
strncat(dst, "\n", len - strlen(dst) - 1);
}