mirror of
				https://github.com/RfidResearchGroup/proxmark3.git
				synced 2025-10-31 00:17:02 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			288 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** $Id: lopcodes.h,v 1.142 2011/07/15 12:50:29 roberto Exp $
 | |
| ** Opcodes for Lua virtual machine
 | |
| ** See Copyright Notice in lua.h
 | |
| */
 | |
| 
 | |
| #ifndef lopcodes_h
 | |
| #define lopcodes_h
 | |
| 
 | |
| #include "llimits.h"
 | |
| 
 | |
| 
 | |
| /*===========================================================================
 | |
|   We assume that instructions are unsigned numbers.
 | |
|   All instructions have an opcode in the first 6 bits.
 | |
|   Instructions can have the following fields:
 | |
|     `A' : 8 bits
 | |
|     `B' : 9 bits
 | |
|     `C' : 9 bits
 | |
|     'Ax' : 26 bits ('A', 'B', and 'C' together)
 | |
|     `Bx' : 18 bits (`B' and `C' together)
 | |
|     `sBx' : signed Bx
 | |
| 
 | |
|   A signed argument is represented in excess K; that is, the number
 | |
|   value is the unsigned value minus K. K is exactly the maximum value
 | |
|   for that argument (so that -max is represented by 0, and +max is
 | |
|   represented by 2*max), which is half the maximum for the corresponding
 | |
|   unsigned argument.
 | |
| ===========================================================================*/
 | |
| 
 | |
| 
 | |
| enum OpMode {iABC, iABx, iAsBx, iAx};  /* basic instruction format */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** size and position of opcode arguments.
 | |
| */
 | |
| #define SIZE_C  9
 | |
| #define SIZE_B  9
 | |
| #define SIZE_Bx (SIZE_C + SIZE_B)
 | |
| #define SIZE_A  8
 | |
| #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
 | |
| 
 | |
| #define SIZE_OP 6
 | |
| 
 | |
| #define POS_OP  0
 | |
| #define POS_A   (POS_OP + SIZE_OP)
 | |
| #define POS_C   (POS_A + SIZE_A)
 | |
| #define POS_B   (POS_C + SIZE_C)
 | |
| #define POS_Bx  POS_C
 | |
| #define POS_Ax  POS_A
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** limits for opcode arguments.
 | |
| ** we use (signed) int to manipulate most arguments,
 | |
| ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
 | |
| */
 | |
| #if SIZE_Bx < LUAI_BITSINT-1
 | |
| #define MAXARG_Bx       ((1<<SIZE_Bx)-1)
 | |
| #define MAXARG_sBx      (MAXARG_Bx>>1)         /* `sBx' is signed */
 | |
| #else
 | |
| #define MAXARG_Bx       MAX_INT
 | |
| #define MAXARG_sBx      MAX_INT
 | |
| #endif
 | |
| 
 | |
| #if SIZE_Ax < LUAI_BITSINT-1
 | |
| #define MAXARG_Ax       ((1<<SIZE_Ax)-1)
 | |
| #else
 | |
| #define MAXARG_Ax       MAX_INT
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define MAXARG_A        ((1<<SIZE_A)-1)
 | |
| #define MAXARG_B        ((1<<SIZE_B)-1)
 | |
| #define MAXARG_C        ((1<<SIZE_C)-1)
 | |
| 
 | |
| 
 | |
| /* creates a mask with `n' 1 bits at position `p' */
 | |
| #define MASK1(n,p)      ((~((~(Instruction)0)<<(n)))<<(p))
 | |
| 
 | |
| /* creates a mask with `n' 0 bits at position `p' */
 | |
| #define MASK0(n,p)      (~MASK1(n,p))
 | |
| 
 | |
| /*
 | |
| ** the following macros help to manipulate instructions
 | |
| */
 | |
| 
 | |
| #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
 | |
| #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
 | |
|                                 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
 | |
| 
 | |
| #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0)))
 | |
| #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
 | |
|                                      ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
 | |
| 
 | |
| #define GETARG_A(i)     getarg(i, POS_A, SIZE_A)
 | |
| #define SETARG_A(i,v)   setarg(i, v, POS_A, SIZE_A)
 | |
| 
 | |
| #define GETARG_B(i)     getarg(i, POS_B, SIZE_B)
 | |
| #define SETARG_B(i,v)   setarg(i, v, POS_B, SIZE_B)
 | |
| 
 | |
| #define GETARG_C(i)     getarg(i, POS_C, SIZE_C)
 | |
| #define SETARG_C(i,v)   setarg(i, v, POS_C, SIZE_C)
 | |
| 
 | |
| #define GETARG_Bx(i)    getarg(i, POS_Bx, SIZE_Bx)
 | |
| #define SETARG_Bx(i,v)  setarg(i, v, POS_Bx, SIZE_Bx)
 | |
| 
 | |
| #define GETARG_Ax(i)    getarg(i, POS_Ax, SIZE_Ax)
 | |
| #define SETARG_Ax(i,v)  setarg(i, v, POS_Ax, SIZE_Ax)
 | |
| 
 | |
| #define GETARG_sBx(i)   (GETARG_Bx(i)-MAXARG_sBx)
 | |
| #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
 | |
| 
 | |
| 
 | |
| #define CREATE_ABC(o,a,b,c)    ((cast(Instruction, o)<<POS_OP) \
 | |
|                                 | (cast(Instruction, a)<<POS_A) \
 | |
|                                 | (cast(Instruction, b)<<POS_B) \
 | |
|                                 | (cast(Instruction, c)<<POS_C))
 | |
| 
 | |
| #define CREATE_ABx(o,a,bc)     ((cast(Instruction, o)<<POS_OP) \
 | |
|                                 | (cast(Instruction, a)<<POS_A) \
 | |
|                                 | (cast(Instruction, bc)<<POS_Bx))
 | |
| 
 | |
| #define CREATE_Ax(o,a)         ((cast(Instruction, o)<<POS_OP) \
 | |
|                                 | (cast(Instruction, a)<<POS_Ax))
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Macros to operate RK indices
 | |
| */
 | |
| 
 | |
| /* this bit 1 means constant (0 means register) */
 | |
| #define BITRK      (1 << (SIZE_B - 1))
 | |
| 
 | |
| /* test whether value is a constant */
 | |
| #define ISK(x)     ((x) & BITRK)
 | |
| 
 | |
| /* gets the index of the constant */
 | |
| #define INDEXK(r)  ((int)(r) & ~BITRK)
 | |
| 
 | |
| #define MAXINDEXRK (BITRK - 1)
 | |
| 
 | |
| /* code a constant index as a RK value */
 | |
| #define RKASK(x)   ((x) | BITRK)
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** invalid register that fits in 8 bits
 | |
| */
 | |
| #define NO_REG     MAXARG_A
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** R(x) - register
 | |
| ** Kst(x) - constant (in constant table)
 | |
| ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
 | |
| */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** grep "ORDER OP" if you change these enums
 | |
| */
 | |
| 
 | |
| typedef enum {
 | |
|     /*----------------------------------------------------------------------
 | |
|     name            args    description
 | |
|     ------------------------------------------------------------------------*/
 | |
|     OP_MOVE,/*      A B     R(A) := R(B)                                    */
 | |
|     OP_LOADK,/*     A Bx    R(A) := Kst(Bx)                                 */
 | |
|     OP_LOADKX,/*    A       R(A) := Kst(extra arg)                          */
 | |
|     OP_LOADBOOL,/*  A B C   R(A) := (Bool)B; if (C) pc++                    */
 | |
|     OP_LOADNIL,/*   A B     R(A), R(A+1), ..., R(A+B) := nil                */
 | |
|     OP_GETUPVAL,/*  A B     R(A) := UpValue[B]                              */
 | |
| 
 | |
|     OP_GETTABUP,/*  A B C   R(A) := UpValue[B][RK(C)]                       */
 | |
|     OP_GETTABLE,/*  A B C   R(A) := R(B)[RK(C)]                             */
 | |
| 
 | |
|     OP_SETTABUP,/*  A B C   UpValue[A][RK(B)] := RK(C)                      */
 | |
|     OP_SETUPVAL,/*  A B     UpValue[B] := R(A)                              */
 | |
|     OP_SETTABLE,/*  A B C   R(A)[RK(B)] := RK(C)                            */
 | |
| 
 | |
|     OP_NEWTABLE,/*  A B C   R(A) := {} (size = B,C)                         */
 | |
| 
 | |
|     OP_SELF,/*      A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]             */
 | |
| 
 | |
|     OP_ADD,/*       A B C   R(A) := RK(B) + RK(C)                           */
 | |
|     OP_SUB,/*       A B C   R(A) := RK(B) - RK(C)                           */
 | |
|     OP_MUL,/*       A B C   R(A) := RK(B) * RK(C)                           */
 | |
|     OP_DIV,/*       A B C   R(A) := RK(B) / RK(C)                           */
 | |
|     OP_MOD,/*       A B C   R(A) := RK(B) % RK(C)                           */
 | |
|     OP_POW,/*       A B C   R(A) := RK(B) ^ RK(C)                           */
 | |
|     OP_UNM,/*       A B     R(A) := -R(B)                                   */
 | |
|     OP_NOT,/*       A B     R(A) := not R(B)                                */
 | |
|     OP_LEN,/*       A B     R(A) := length of R(B)                          */
 | |
| 
 | |
|     OP_CONCAT,/*    A B C   R(A) := R(B).. ... ..R(C)                       */
 | |
| 
 | |
|     OP_JMP,/*       A sBx   pc+=sBx; if (A) close all upvalues >= R(A) + 1  */
 | |
|     OP_EQ,/*        A B C   if ((RK(B) == RK(C)) ~= A) then pc++            */
 | |
|     OP_LT,/*        A B C   if ((RK(B) <  RK(C)) ~= A) then pc++            */
 | |
|     OP_LE,/*        A B C   if ((RK(B) <= RK(C)) ~= A) then pc++            */
 | |
| 
 | |
|     OP_TEST,/*      A C     if not (R(A) <=> C) then pc++                   */
 | |
|     OP_TESTSET,/*   A B C   if (R(B) <=> C) then R(A) := R(B) else pc++     */
 | |
| 
 | |
|     OP_CALL,/*      A B C   R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
 | |
|     OP_TAILCALL,/*  A B C   return R(A)(R(A+1), ... ,R(A+B-1))              */
 | |
|     OP_RETURN,/*    A B     return R(A), ... ,R(A+B-2)        (see note)    */
 | |
| 
 | |
|     OP_FORLOOP,/*   A sBx   R(A)+=R(A+2);
 | |
|             if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
 | |
|     OP_FORPREP,/*   A sBx   R(A)-=R(A+2); pc+=sBx                           */
 | |
| 
 | |
|     OP_TFORCALL,/*  A C     R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));  */
 | |
|     OP_TFORLOOP,/*  A sBx   if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
 | |
| 
 | |
|     OP_SETLIST,/*   A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B        */
 | |
| 
 | |
|     OP_CLOSURE,/*   A Bx    R(A) := closure(KPROTO[Bx])                      */
 | |
| 
 | |
|     OP_VARARG,/*    A B     R(A), R(A+1), ..., R(A+B-2) = vararg            */
 | |
| 
 | |
|     OP_EXTRAARG/*   Ax      extra (larger) argument for previous opcode     */
 | |
| } OpCode;
 | |
| 
 | |
| 
 | |
| #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
 | |
| 
 | |
| 
 | |
| 
 | |
| /*===========================================================================
 | |
|   Notes:
 | |
|   (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
 | |
|   set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
 | |
|   OP_SETLIST) may use `top'.
 | |
| 
 | |
|   (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
 | |
|   set top (like in OP_CALL with C == 0).
 | |
| 
 | |
|   (*) In OP_RETURN, if (B == 0) then return up to `top'.
 | |
| 
 | |
|   (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
 | |
|   'instruction' is EXTRAARG(real C).
 | |
| 
 | |
|   (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
 | |
| 
 | |
|   (*) For comparisons, A specifies what condition the test should accept
 | |
|   (true or false).
 | |
| 
 | |
|   (*) All `skips' (pc++) assume that next instruction is a jump.
 | |
| 
 | |
| ===========================================================================*/
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** masks for instruction properties. The format is:
 | |
| ** bits 0-1: op mode
 | |
| ** bits 2-3: C arg mode
 | |
| ** bits 4-5: B arg mode
 | |
| ** bit 6: instruction set register A
 | |
| ** bit 7: operator is a test (next instruction must be a jump)
 | |
| */
 | |
| 
 | |
| enum OpArgMask {
 | |
|     OpArgN,  /* argument is not used */
 | |
|     OpArgU,  /* argument is used */
 | |
|     OpArgR,  /* argument is a register or a jump offset */
 | |
|     OpArgK   /* argument is a constant or register/constant */
 | |
| };
 | |
| 
 | |
| LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
 | |
| 
 | |
| #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
 | |
| #define getBMode(m)  (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
 | |
| #define getCMode(m)  (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
 | |
| #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
 | |
| #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
 | |
| 
 | |
| 
 | |
| LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES + 1]; /* opcode names */
 | |
| 
 | |
| 
 | |
| /* number of list items to accumulate before a SETLIST instruction */
 | |
| #define LFIELDS_PER_FLUSH 50
 | |
| 
 | |
| 
 | |
| #endif
 |