proxmark3/client/cmdhficlass.c
2017-01-23 23:12:41 +01:00

1725 lines
51 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>, Hagen Fritsch
// Copyright (C) 2011 Gerhard de Koning Gans
// Copyright (C) 2014 Midnitesnake & Andy Davies & Martin Holst Swende
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency iClass commands
//-----------------------------------------------------------------------------
#include "cmdhficlass.h"
static int CmdHelp(const char *Cmd);
#define NUM_CSNS 15
#define ICLASS_KEYS_MAX 8
static uint8_t iClass_Key_Table[ICLASS_KEYS_MAX][8] = {
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }
};
typedef struct iclass_block {
uint8_t d[8];
} iclass_block_t;
int usage_hf_iclass_sim(void) {
PrintAndLog("Usage: hf iclass sim <option> [CSN]");
PrintAndLog(" options");
PrintAndLog(" 0 <CSN> simulate the given CSN");
PrintAndLog(" 1 simulate default CSN");
PrintAndLog(" 2 Reader-attack, gather reader responses to extract elite key");
PrintAndLog(" 3 Full simulation using emulator memory (see 'hf iclass eload')");
PrintAndLog(" example: hf iclass sim 0 031FEC8AF7FF12E0");
PrintAndLog(" example: hf iclass sim 2");
PrintAndLog(" example: hf iclass eload 'tagdump.bin'");
PrintAndLog(" hf iclass sim 3");
return 0;
}
int usage_hf_iclass_eload(void) {
PrintAndLog("Loads iclass tag-dump into emulator memory on device");
PrintAndLog("Usage: hf iclass eload f <filename>");
PrintAndLog("");
PrintAndLog("Example: hf iclass eload f iclass_tagdump-aa162d30f8ff12f1.bin");
return 0;
}
int usage_hf_iclass_decrypt(void) {
PrintAndLog("Usage: hf iclass decrypt f <tagdump>");
PrintAndLog("");
PrintAndLog("OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside");
PrintAndLog("in the working directory. The file should be 16 bytes binary data");
PrintAndLog("");
PrintAndLog("example: hf iclass decrypt f tagdump_12312342343.bin");
PrintAndLog("");
PrintAndLog("OBS! This is pretty stupid implementation, it tries to decrypt every block after block 6. ");
PrintAndLog("Correct behaviour would be to decrypt only the application areas where the key is valid,");
PrintAndLog("which is defined by the configuration block.");
return 1;
}
int usage_hf_iclass_encrypt(void) {
PrintAndLog("Usage: hf iclass encrypt <BlockData>");
PrintAndLog("");
PrintAndLog("OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside");
PrintAndLog("in the working directory. The file should be 16 bytes binary data");
PrintAndLog("");
PrintAndLog("example: hf iclass encrypt 0102030405060708");
PrintAndLog("");
return 0;
}
int usage_hf_iclass_dump(void) {
PrintAndLog("Usage: hf iclass dump f <fileName> k <Key> c <CreditKey> e|r\n");
PrintAndLog("Options:");
PrintAndLog(" f <filename> : specify a filename to save dump to");
PrintAndLog(" k <Key> : *Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLog(" c <CreditKey>: Credit Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLog(" e : If 'e' is specified, the key is interpreted as the 16 byte");
PrintAndLog(" Custom Key (KCus), which can be obtained via reader-attack");
PrintAndLog(" See 'hf iclass sim 2'. This key should be on iclass-format");
PrintAndLog(" r : If 'r' is specified, the key is interpreted as raw block 3/4");
PrintAndLog(" NOTE: * = required");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass dump k 001122334455667B");
PrintAndLog(" hf iclass dump k AAAAAAAAAAAAAAAA c 001122334455667B");
PrintAndLog(" hf iclass dump k AAAAAAAAAAAAAAAA e");
return 0;
}
int usage_hf_iclass_clone(void) {
PrintAndLog("Usage: hf iclass clone f <tagfile.bin> b <first block> l <last block> k <KEY> c e|r");
PrintAndLog("Options:");
PrintAndLog(" f <filename>: specify a filename to clone from");
PrintAndLog(" b <Block> : The first block to clone as 2 hex symbols");
PrintAndLog(" l <Last Blk>: Set the Data to write as 16 hex symbols");
PrintAndLog(" k <Key> : Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLog(" c : If 'c' is specified, the key set is assumed to be the credit key\n");
PrintAndLog(" e : If 'e' is specified, elite computations applied to key");
PrintAndLog(" r : If 'r' is specified, no computations applied to key");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass clone f iclass_tagdump-121345.bin b 06 l 1A k 1122334455667788 e");
PrintAndLog(" hf iclass clone f iclass_tagdump-121345.bin b 05 l 19 k 0");
PrintAndLog(" hf iclass clone f iclass_tagdump-121345.bin b 06 l 19 k 0 e");
return -1;
}
int usage_hf_iclass_writeblock(void) {
PrintAndLog("Options:");
PrintAndLog(" b <Block> : The block number as 2 hex symbols");
PrintAndLog(" d <data> : Set the Data to write as 16 hex symbols");
PrintAndLog(" k <Key> : Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLog(" c : If 'c' is specified, the key set is assumed to be the credit key\n");
PrintAndLog(" e : If 'e' is specified, elite computations applied to key");
PrintAndLog(" r : If 'r' is specified, no computations applied to key");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass writeblk b 0A d AAAAAAAAAAAAAAAA k 001122334455667B");
PrintAndLog(" hf iclass writeblk b 1B d AAAAAAAAAAAAAAAA k 001122334455667B c");
PrintAndLog(" hf iclass writeblk b 0A d AAAAAAAAAAAAAAAA n 0");
return 0;
}
int usage_hf_iclass_readblock(void) {
PrintAndLog("Usage: hf iclass readblk b <Block> k <Key> c e|r\n");
PrintAndLog("Options:");
PrintAndLog(" b <Block> : The block number as 2 hex symbols");
PrintAndLog(" k <Key> : Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLog(" c : If 'c' is specified, the key set is assumed to be the credit key\n");
PrintAndLog(" e : If 'e' is specified, elite computations applied to key");
PrintAndLog(" r : If 'r' is specified, no computations applied to key");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass readblk b 06 k 0011223344556677");
PrintAndLog(" hf iclass readblk b 1B k 0011223344556677 c");
PrintAndLog(" hf iclass readblk b 0A k 0");
return 0;
}
int usage_hf_iclass_readtagfile() {
PrintAndLog("Usage: hf iclass readtagfile <filename> [startblock] [endblock]");
return 1;
}
int usage_hf_iclass_calc_newkey(void) {
PrintAndLog("HELP : Manage iClass Keys in client memory:\n");
PrintAndLog("Usage: hf iclass calc_newkey o <Old key> n <New key> s [csn] e");
PrintAndLog(" Options:");
PrintAndLog(" o <oldkey> : *specify a key as 16 hex symbols or a key number as 1 symbol");
PrintAndLog(" n <newkey> : *specify a key as 16 hex symbols or a key number as 1 symbol");
PrintAndLog(" s <csn> : specify a card Serial number to diversify the key (if omitted will attempt to read a csn)");
PrintAndLog(" e : specify new key as elite calc");
PrintAndLog(" ee : specify old and new key as elite calc");
PrintAndLog("Samples:");
PrintAndLog(" e key to e key given csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899 s deadbeafdeadbeaf ee");
PrintAndLog(" std key to e key read csn: hf iclass calcnewkey o 1122334455667788 n 2233445566778899 e");
PrintAndLog(" std to std read csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899");
PrintAndLog("NOTE: * = required\n");
return 1;
}
int usage_hf_iclass_managekeys(void) {
PrintAndLog("HELP : Manage iClass Keys in client memory:\n");
PrintAndLog("Usage: hf iclass managekeys n [keynbr] k [key] f [filename] s l p\n");
PrintAndLog(" Options:");
PrintAndLog(" n <keynbr> : specify the keyNbr to set in memory");
PrintAndLog(" k <key> : set a key in memory");
PrintAndLog(" f <filename>: specify a filename to use with load or save operations");
PrintAndLog(" s : save keys in memory to file specified by filename");
PrintAndLog(" l : load keys to memory from file specified by filename");
PrintAndLog(" p : print keys loaded into memory\n");
PrintAndLog("Samples:");
PrintAndLog(" set key : hf iclass managekeys n 0 k 1122334455667788");
PrintAndLog(" save key file: hf iclass managekeys f mykeys.bin s");
PrintAndLog(" load key file: hf iclass managekeys f mykeys.bin l");
PrintAndLog(" print keys : hf iclass managekeys p\n");
return 0;
}
int usage_hf_iclass_reader(void) {
PrintAndLog("HELP : Act as a Iclass reader:\n");
PrintAndLog("Usage: hf iclass reader [h] [1]\n");
PrintAndLog("Options:");
PrintAndLog(" h This help text");
PrintAndLog(" 1 read only 1 tag");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass reader 1");
return 0;
}
int usage_hf_iclass_replay(void){
PrintAndLog("HELP: Replay a collected mac message");
PrintAndLog("Usage: hf iclass replay [h] <mac>");
PrintAndLog("Options:");
PrintAndLog(" h This help text");
PrintAndLog(" <mac> Mac bytes to replay (8 hexsymbols)");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass replay 00112233");
return 0;
}
int usage_hf_iclass_snoop(void){
PrintAndLog("HELP: Snoops the communication between reader and tag");
PrintAndLog("Usage: hf iclass snoop [h]");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass snoop");
return 0;
}
int xorbits_8(uint8_t val) {
uint8_t res = val ^ (val >> 1); //1st pass
res = res ^ (res >> 1); // 2nd pass
res = res ^ (res >> 2); // 3rd pass
res = res ^ (res >> 4); // 4th pass
return res & 1;
}
int CmdHFiClassList(const char *Cmd) {
//PrintAndLog("Deprecated command, use 'hf list iclass' instead");
CmdHFList("iclass");
return 0;
}
int CmdHFiClassSnoop(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') return usage_hf_iclass_snoop();
UsbCommand c = {CMD_SNOOP_ICLASS};
SendCommand(&c);
return 0;
}
int CmdHFiClassSim(const char *Cmd) {
uint8_t simType = 0;
uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0};
if (strlen(Cmd)<1) return usage_hf_iclass_sim();
simType = param_get8ex(Cmd, 0, 0, 10);
if(simType == 0)
{
if (param_gethex(Cmd, 1, CSN, 16)) {
PrintAndLog("A CSN should consist of 16 HEX symbols");
return usage_hf_iclass_sim();
}
PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
}
if(simType > 3)
{
PrintAndLog("Undefined simptype %d", simType);
return usage_hf_iclass_sim();
}
uint8_t numberOfCSNs=0;
if(simType == 2)
{
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,NUM_CSNS}};
UsbCommand resp = {0};
uint8_t csns[8*NUM_CSNS] = {
0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x09, 0x0D, 0x05, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0A, 0x0C, 0x06, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0F, 0x0B, 0x03, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x08, 0x0A, 0x0C, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0D, 0x09, 0x09, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0E, 0x08, 0x0A, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x03, 0x07, 0x17, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x3C, 0x06, 0xE0, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x01, 0x05, 0x1D, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x02, 0x04, 0x1E, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x07, 0x03, 0x1B, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x00, 0x02, 0x24, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x05, 0x01, 0x21, 0xF7, 0xFF, 0x12, 0xE0 };
memcpy(c.d.asBytes, csns, 8*NUM_CSNS);
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, -1)) {
PrintAndLog("Command timed out");
return 0;
}
uint8_t num_mac_responses = resp.arg[1];
PrintAndLog("Mac responses: %d MACs obtained (should be %d)", num_mac_responses,NUM_CSNS);
size_t datalen = NUM_CSNS*24;
/*
* Now, time to dump to file. We'll use this format:
* <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>....
* So, it should wind up as
* 8 * 24 bytes.
*
* The returndata from the pm3 is on the following format
* <4 byte NR><4 byte MAC>
* CC are all zeroes, CSN is the same as was sent in
**/
void* dump = malloc(datalen);
memset(dump,0,datalen);//<-- Need zeroes for the CC-field
uint8_t i = 0;
for(i = 0 ; i < NUM_CSNS ; i++) {
memcpy(dump+i*24, csns+i*8, 8); //CSN
//8 zero bytes here...
//Then comes NR_MAC (eight bytes from the response)
memcpy(dump+i*24+16, resp.d.asBytes+i*8, 8);
}
/** Now, save to dumpfile **/
saveFile("iclass_mac_attack", "bin", dump, datalen);
free(dump);
} else {
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,numberOfCSNs}};
memcpy(c.d.asBytes, CSN, 8);
clearCommandBuffer();
SendCommand(&c);
}
return 0;
}
int HFiClassReader(const char *Cmd, bool loop, bool verbose) {
bool tagFound = false;
UsbCommand c = {CMD_READER_ICLASS, {FLAG_ICLASS_READER_CSN |
FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_AA}};
// loop in client not device - else on windows have a communication error
c.arg[0] |= FLAG_ICLASS_READER_ONLY_ONCE | FLAG_ICLASS_READER_ONE_TRY;
UsbCommand resp;
while(!ukbhit()){
clearCommandBuffer();
SendCommand(&c);
if (WaitForResponseTimeout(CMD_ACK,&resp, 4500)) {
uint8_t readStatus = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (verbose) PrintAndLog("Readstatus:%02x", readStatus);
if( readStatus == 0){
//Aborted
if (verbose) PrintAndLog("Quitting...");
return 0;
}
if( readStatus & FLAG_ICLASS_READER_CSN){
PrintAndLog("CSN: %s",sprint_hex(data,8));
tagFound = true;
}
if( readStatus & FLAG_ICLASS_READER_CC) PrintAndLog("CC: %s", sprint_hex(data+16, 8));
if( readStatus & FLAG_ICLASS_READER_CONF) printIclassDumpInfo(data);
if (tagFound && !loop) return 1;
} else {
if (verbose) PrintAndLog("Command execute timeout");
}
if (!loop) break;
}
return 0;
}
int CmdHFiClassReader(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') return usage_hf_iclass_reader();
bool findone = (cmdp == '1') ? FALSE : TRUE;
return HFiClassReader(Cmd, findone, true);
}
int CmdHFiClassReader_Replay(const char *Cmd) {
uint8_t readerType = 0;
uint8_t MAC[4]={0x00, 0x00, 0x00, 0x00};
if (strlen(Cmd)<1) return usage_hf_iclass_replay();
if (param_gethex(Cmd, 0, MAC, 8)) {
PrintAndLog("MAC must include 8 HEX symbols");
return 1;
}
UsbCommand c = {CMD_READER_ICLASS_REPLAY, {readerType}};
memcpy(c.d.asBytes, MAC, 4);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int iclassEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
memcpy(c.d.asBytes, data, blocksCount * 16);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdHFiClassELoad(const char *Cmd) {
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h' || opt == 'H') return usage_hf_iclass_eload();
//File handling and reading
FILE *f;
char filename[FILE_PATH_SIZE];
if(opt == 'f' && param_getstr(Cmd, 1, filename) > 0) {
f = fopen(filename, "rb");
} else {
return usage_hf_iclass_eload();
}
if(!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if (fsize < 0) {
prnlog("Error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = malloc(fsize);
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
printIclassDumpInfo(dump);
//Validate
if (bytes_read < fsize) {
prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize );
free(dump);
return 1;
}
//Send to device
uint32_t bytes_sent = 0;
uint32_t bytes_remaining = bytes_read;
while(bytes_remaining > 0){
uint32_t bytes_in_packet = MIN(USB_CMD_DATA_SIZE, bytes_remaining);
UsbCommand c = {CMD_ICLASS_EML_MEMSET, {bytes_sent,bytes_in_packet,0}};
memcpy(c.d.asBytes, dump, bytes_in_packet);
clearCommandBuffer();
SendCommand(&c);
bytes_remaining -= bytes_in_packet;
bytes_sent += bytes_in_packet;
}
free(dump);
PrintAndLog("Sent %d bytes of data to device emulator memory", bytes_sent);
return 0;
}
static int readKeyfile(const char *filename, size_t len, uint8_t* buffer) {
FILE *f = fopen(filename, "rb");
if(!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
size_t bytes_read = fread(buffer, 1, len, f);
fclose(f);
if(fsize != len) {
PrintAndLog("Warning, file size is %d, expected %d", fsize, len);
return 1;
}
if(bytes_read != len) {
PrintAndLog("Warning, could only read %d bytes, expected %d" ,bytes_read, len);
return 1;
}
return 0;
}
int CmdHFiClassDecrypt(const char *Cmd) {
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h' || opt == 'H') return usage_hf_iclass_decrypt();
uint8_t key[16] = { 0 };
if(readKeyfile("iclass_decryptionkey.bin", 16, key)) return usage_hf_iclass_decrypt();
PrintAndLog("Decryption key loaded from file [ok]");
//Open the tagdump-file
FILE *f;
char filename[FILE_PATH_SIZE];
if(opt == 'f' && param_getstr(Cmd, 1, filename) > 0) {
f = fopen(filename, "rb");
if (!f) {
PrintAndLog("Could not find file %s", filename);
return 1;
}
} else {
return usage_hf_iclass_decrypt();
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if ( fsize < 0 ) {
PrintAndLog("Error, when getting filesize");
fclose(f);
return 2;
}
uint8_t *decrypted = malloc(fsize);
size_t bytes_read = fread(decrypted, 1, fsize, f);
fclose(f);
if ( bytes_read == 0) {
PrintAndLog("File reading error");
free(decrypted);
return 3;
}
picopass_hdr *hdr = (picopass_hdr *)decrypted;
uint8_t mem = hdr->conf.mem_config;
uint8_t chip = hdr->conf.chip_config;
uint8_t applimit = hdr->conf.app_limit;
uint8_t kb = 2;
uint8_t app_areas = 2;
uint8_t max_blk = 31;
getMemConfig(mem, chip, &max_blk, &app_areas, &kb);
//Use the first block (CSN) for filename
char outfilename[FILE_PATH_SIZE] = {0};
snprintf(outfilename, FILE_PATH_SIZE, "iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x-decrypted",
hdr->csn[0],hdr->csn[1],hdr->csn[2],hdr->csn[3],
hdr->csn[4],hdr->csn[5],hdr->csn[6],hdr->csn[7]);
// tripledes
des3_context ctx = { DES_DECRYPT ,{ 0 } };
des3_set2key_dec( &ctx, key);
uint8_t enc_dump[8] = {0};
uint8_t empty[8] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
for(uint16_t blocknum=0; blocknum < applimit; ++blocknum) {
uint8_t idx = blocknum*8;
memcpy(enc_dump, decrypted + idx, 8);
// block 7 or higher, and not empty 0xFF
if(blocknum > 6 && memcmp(enc_dump, empty, 8) != 0 ) {
des3_crypt_ecb(&ctx, enc_dump, decrypted + idx );
}
//printvar("decrypted block", decrypted + idx, 8);
}
saveFile(outfilename, "bin", decrypted, fsize);
free(decrypted);
printIclassDumpContents(decrypted, 1, (fsize/8), fsize);
return 0;
}
static int iClassEncryptBlkData(uint8_t *blkData) {
uint8_t key[16] = { 0 };
if(readKeyfile("iclass_decryptionkey.bin", 16, key)) {
usage_hf_iclass_encrypt();
return 1;
}
PrintAndLog("Decryption file found... ");
uint8_t encryptedData[16];
uint8_t *encrypted = encryptedData;
des3_context ctx = { DES_DECRYPT ,{ 0 } };
des3_set2key_enc( &ctx, key);
des3_crypt_ecb(&ctx, blkData,encrypted);
//printvar("decrypted block", decrypted, 8);
memcpy(blkData,encrypted,8);
return 1;
}
int CmdHFiClassEncryptBlk(const char *Cmd) {
uint8_t blkData[8] = {0};
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h' || opt == 'H') return usage_hf_iclass_encrypt();
//get the bytes to encrypt
if (param_gethex(Cmd, 0, blkData, 16)) {
PrintAndLog("BlockData must include 16 HEX symbols");
return 0;
}
if (!iClassEncryptBlkData(blkData)) return 0;
printvar("encrypted block", blkData, 8);
return 1;
}
void Calc_wb_mac(uint8_t blockno, uint8_t *data, uint8_t *div_key, uint8_t MAC[4]) {
uint8_t WB[9];
WB[0] = blockno;
memcpy(WB + 1,data,8);
doMAC_N(WB,sizeof(WB),div_key,MAC);
//printf("Cal wb mac block [%02x][%02x%02x%02x%02x%02x%02x%02x%02x] : MAC [%02x%02x%02x%02x]",WB[0],WB[1],WB[2],WB[3],WB[4],WB[5],WB[6],WB[7],WB[8],MAC[0],MAC[1],MAC[2],MAC[3]);
}
static bool select_only(uint8_t *CSN, uint8_t *CCNR, bool use_credit_key, bool verbose) {
UsbCommand resp;
UsbCommand c = {CMD_READER_ICLASS, {0}};
c.arg[0] = FLAG_ICLASS_READER_ONLY_ONCE | FLAG_ICLASS_READER_CC | FLAG_ICLASS_READER_ONE_TRY;
if (use_credit_key)
c.arg[0] |= FLAG_ICLASS_READER_CEDITKEY;
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
PrintAndLog("Command execute timeout");
return false;
}
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
memcpy(CSN,data,8);
if (CCNR!=NULL)
memcpy(CCNR,data+16,8);
if(isOK > 0) {
if (verbose) PrintAndLog("CSN: %s",sprint_hex(CSN,8));
}
if(isOK <= 1){
PrintAndLog("Failed to obtain CC! Aborting");
return false;
}
return true;
}
static bool select_and_auth(uint8_t *KEY, uint8_t *MAC, uint8_t *div_key, bool use_credit_key, bool elite, bool rawkey, bool verbose) {
uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
if (!select_only(CSN, CCNR, use_credit_key, verbose))
return false;
//get div_key
if(rawkey)
memcpy(div_key, KEY, 8);
else
HFiClassCalcDivKey(CSN, KEY, div_key, elite);
PrintAndLog("Authing with %s: %02x%02x%02x%02x%02x%02x%02x%02x", rawkey ? "raw key" : "diversified key", div_key[0],div_key[1],div_key[2],div_key[3],div_key[4],div_key[5],div_key[6],div_key[7]);
doMAC(CCNR, div_key, MAC);
UsbCommand resp;
UsbCommand d = {CMD_ICLASS_AUTHENTICATION, {0}};
memcpy(d.d.asBytes, MAC, 4);
clearCommandBuffer();
SendCommand(&d);
if (!WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
PrintAndLog("Auth Command execute timeout");
return false;
}
uint8_t isOK = resp.arg[0] & 0xff;
if (!isOK) {
PrintAndLog("Authentication error");
return false;
}
return true;
}
int CmdHFiClassReader_Dump(const char *Cmd) {
uint8_t MAC[4] = {0x00,0x00,0x00,0x00};
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t c_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t blockno = 0;
uint8_t numblks = 0;
uint8_t maxBlk = 31;
uint8_t app_areas = 1;
uint8_t kb = 2;
uint8_t KEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CreditKEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
uint8_t fileNameLen = 0;
char filename[FILE_PATH_SIZE]={0};
char tempStr[50] = {0};
bool have_debit_key = false;
bool have_credit_key = false;
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool errors = false;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_hf_iclass_dump();
case 'c':
case 'C':
have_credit_key = true;
dataLen = param_getstr(Cmd, cmdp+1, tempStr);
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, CreditKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(CreditKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename);
if (fileNameLen < 1) {
PrintAndLog("No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'k':
case 'K':
have_debit_key = true;
dataLen = param_getstr(Cmd, cmdp+1, tempStr);
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) return usage_hf_iclass_dump();
}
if (cmdp < 2) return usage_hf_iclass_dump();
// if no debit key given try credit key on AA1 (not for iclass but for some picopass this will work)
if (!have_debit_key && have_credit_key) use_credit_key = true;
//get config and first 3 blocks
UsbCommand c = {CMD_READER_ICLASS, {FLAG_ICLASS_READER_CSN |
FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_ONLY_ONCE | FLAG_ICLASS_READER_ONE_TRY}};
UsbCommand resp;
uint8_t tag_data[255*8];
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Command execute timeout");
ul_switch_off_field();
return 0;
}
uint8_t readStatus = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
if(readStatus == 0){
PrintAndLog("No tag found...");
ul_switch_off_field();
return 0;
}
if( readStatus & (FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_CC)){
memcpy(tag_data, data, 8*3);
blockno += 2; // 2 to force re-read of block 2 later. (seems to respond differently..)
numblks = data[8];
getMemConfig(data[13], data[12], &maxBlk, &app_areas, &kb);
// large memory - not able to dump pages currently
if (numblks > maxBlk) numblks = maxBlk;
}
ul_switch_off_field();
// authenticate debit key and get div_key - later store in dump block 3
if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, false)){
//try twice - for some reason it sometimes fails the first time...
if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, false)){
ul_switch_off_field();
return 0;
}
}
// begin dump
UsbCommand w = {CMD_ICLASS_DUMP, {blockno, numblks-blockno+1}};
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Command execute time-out 1");
ul_switch_off_field();
return 1;
}
uint32_t blocksRead = resp.arg[1];
uint8_t isOK = resp.arg[0] & 0xff;
if (!isOK && !blocksRead) {
PrintAndLog("Read Block Failed");
ul_switch_off_field();
return 0;
}
uint32_t startindex = resp.arg[2];
if (blocksRead*8 > sizeof(tag_data)-(blockno*8)) {
PrintAndLog("Data exceeded Buffer size!");
blocksRead = (sizeof(tag_data)/8) - blockno;
}
// response ok - now get bigbuf content of the dump
GetFromBigBuf(tag_data+(blockno*8), blocksRead*8, startindex);
WaitForResponse(CMD_ACK,NULL);
size_t gotBytes = blocksRead*8 + blockno*8;
// try AA2
if (have_credit_key) {
//turn off hf field before authenticating with different key
ul_switch_off_field();
memset(MAC,0,4);
// AA2 authenticate credit key and git c_div_key - later store in dump block 4
if (!select_and_auth(CreditKEY, MAC, c_div_key, true, false, false, false)){
//try twice - for some reason it sometimes fails the first time...
if (!select_and_auth(CreditKEY, MAC, c_div_key, true, false, false, false)){
ul_switch_off_field();
return 0;
}
}
// do we still need to read more block? (aa2 enabled?)
if (maxBlk > blockno+numblks+1) {
// setup dump and start
w.arg[0] = blockno + blocksRead;
w.arg[1] = maxBlk - (blockno + blocksRead);
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Command execute timeout 2");
ul_switch_off_field();
return 0;
}
uint8_t isOK = resp.arg[0] & 0xff;
blocksRead = resp.arg[1];
if (!isOK && !blocksRead) {
PrintAndLog("Read Block Failed 2");
ul_switch_off_field();
return 0;
}
startindex = resp.arg[2];
if (blocksRead*8 > sizeof(tag_data)-gotBytes) {
PrintAndLog("Data exceeded Buffer size!");
blocksRead = (sizeof(tag_data) - gotBytes)/8;
}
// get dumped data from bigbuf
GetFromBigBuf(tag_data+gotBytes, blocksRead*8, startindex);
WaitForResponse(CMD_ACK,NULL);
gotBytes += blocksRead*8;
} else { //field is still on - turn it off...
ul_switch_off_field();
}
}
// add diversified keys to dump
if (have_debit_key) memcpy(tag_data+(3*8),div_key,8);
if (have_credit_key) memcpy(tag_data+(4*8),c_div_key,8);
printf("Num of bytes: %zu\n", gotBytes);
// print the dump
printf("------+--+-------------------------+\n");
printf("CSN |00| %s|\n", sprint_hex(tag_data, 8));
//printIclassDumpContents(tag_data, 1, (gotBytes/8)-1, gotBytes-8);
printIclassDumpContents(tag_data, 1, (gotBytes/8), gotBytes);
if (filename[0] == 0){
snprintf(filename, FILE_PATH_SIZE,"iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x",
tag_data[0],tag_data[1],tag_data[2],tag_data[3],
tag_data[4],tag_data[5],tag_data[6],tag_data[7]);
}
// save the dump to .bin file
PrintAndLog("Saving dump file - %d blocks read", gotBytes/8);
saveFile(filename, "bin", tag_data, gotBytes);
return 1;
}
static int WriteBlock(uint8_t blockno, uint8_t *bldata, uint8_t *KEY, bool use_credit_key, bool elite, bool rawkey, bool verbose) {
uint8_t MAC[4]={0x00,0x00,0x00,0x00};
uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose))
return 0;
UsbCommand resp;
Calc_wb_mac(blockno,bldata,div_key,MAC);
UsbCommand w = {CMD_ICLASS_WRITEBLOCK, {blockno}};
memcpy(w.d.asBytes, bldata, 8);
memcpy(w.d.asBytes + 8, MAC, 4);
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
PrintAndLog("Write Command execute timeout");
return 0;
}
uint8_t isOK = resp.arg[0] & 0xff;
if (!isOK) {
PrintAndLog("Write Block Failed");
return 0;
}
PrintAndLog("Write Block Successful");
return 1;
}
int CmdHFiClass_WriteBlock(const char *Cmd) {
uint8_t blockno=0;
uint8_t bldata[8]={0,0,0,0,0,0,0,0};
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool use_credit_key = false;
bool elite = false;
bool rawkey= false;
bool errors = false;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_hf_iclass_writeblock();
case 'b':
case 'B':
if (param_gethex(Cmd, cmdp+1, &blockno, 2)) {
PrintAndLog("Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'c':
case 'C':
use_credit_key = true;
cmdp++;
break;
case 'd':
case 'D':
if (param_gethex(Cmd, cmdp+1, bldata, 16))
{
PrintAndLog("KEY must include 16 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'k':
case 'K':
dataLen = param_getstr(Cmd, cmdp+1, tempStr);
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) return usage_hf_iclass_writeblock();
}
if (cmdp < 6) return usage_hf_iclass_writeblock();
int ans = WriteBlock(blockno, bldata, KEY, use_credit_key, elite, rawkey, true);
ul_switch_off_field();
return ans;
}
int CmdHFiClassCloneTag(const char *Cmd) {
char filename[FILE_PATH_SIZE] = { 0x00 };
char tempStr[50]={0};
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t fileNameLen = 0;
uint8_t startblock = 0;
uint8_t endblock = 0;
uint8_t dataLen = 0;
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool errors = false;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_hf_iclass_clone();
case 'b':
case 'B':
if (param_gethex(Cmd, cmdp+1, &startblock, 2)) {
PrintAndLog("Start Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'c':
case 'C':
use_credit_key = true;
cmdp++;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename);
if (fileNameLen < 1) {
PrintAndLog("No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'k':
case 'K':
dataLen = param_getstr(Cmd, cmdp+1, tempStr);
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'l':
case 'L':
if (param_gethex(Cmd, cmdp+1, &endblock, 2)) {
PrintAndLog("Start Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) return usage_hf_iclass_clone();
}
if (cmdp < 8) return usage_hf_iclass_clone();
FILE *f;
iclass_block_t tag_data[USB_CMD_DATA_SIZE/12];
if ((endblock-startblock+1)*12 > USB_CMD_DATA_SIZE) {
PrintAndLog("Trying to write too many blocks at once. Max: %d", USB_CMD_DATA_SIZE/8);
}
// file handling and reading
f = fopen(filename,"rb");
if(!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 1;
}
if (startblock<5) {
PrintAndLog("You cannot write key blocks this way. yet... make your start block > 4");
fclose(f);
return 0;
}
// now read data from the file from block 6 --- 19
// ok we will use this struct [data 8 bytes][MAC 4 bytes] for each block calculate all mac number for each data
// then copy to usbcommand->asbytes; the max is 32 - 6 = 24 block 12 bytes each block 288 bytes then we can only accept to clone 21 blocks at the time,
// else we have to create a share memory
int i;
fseek(f,startblock*8,SEEK_SET);
size_t bytes_read = fread(tag_data,sizeof(iclass_block_t),endblock - startblock + 1,f);
if ( bytes_read == 0){
PrintAndLog("File reading error.");
fclose(f);
return 2;
}
uint8_t MAC[4]={0x00,0x00,0x00,0x00};
uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, true))
return 0;
UsbCommand w = {CMD_ICLASS_CLONE,{startblock,endblock}};
uint8_t *ptr;
// calculate all mac for every the block we will write
for (i = startblock; i <= endblock; i++){
Calc_wb_mac(i,tag_data[i - startblock].d,div_key,MAC);
// usb command d start pointer = d + (i - 6) * 12
// memcpy(pointer,tag_data[i - 6],8) 8 bytes
// memcpy(pointer + 8,mac,sizoof(mac) 4 bytes;
// next one
ptr = w.d.asBytes + (i - startblock) * 12;
memcpy(ptr, &(tag_data[i - startblock].d[0]), 8);
memcpy(ptr + 8,MAC, 4);
}
uint8_t p[12];
for (i = 0; i <= endblock - startblock;i++){
memcpy(p,w.d.asBytes + (i * 12),12);
printf("Block |%02x|",i + startblock);
printf(" %02x%02x%02x%02x%02x%02x%02x%02x |",p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7]);
printf(" MAC |%02x%02x%02x%02x|\n",p[8],p[9],p[10],p[11]);
}
UsbCommand resp;
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
PrintAndLog("Command execute timeout");
return 0;
}
return 1;
}
static int ReadBlock(uint8_t *KEY, uint8_t blockno, uint8_t keyType, bool elite, bool rawkey, bool verbose) {
uint8_t MAC[4]={0x00,0x00,0x00,0x00};
uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
if (!select_and_auth(KEY, MAC, div_key, (keyType==0x18), elite, rawkey, verbose))
return 0;
UsbCommand resp;
UsbCommand w = {CMD_ICLASS_READBLOCK, {blockno}};
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
PrintAndLog("Command execute timeout");
return 0;
}
uint8_t isOK = resp.arg[0] & 0xff;
if (!isOK) {
PrintAndLog("Read Block Failed");
return 0;
}
//data read is stored in: resp.d.asBytes[0-15]
if (verbose) PrintAndLog("Block %02X: %s\n",blockno, sprint_hex(resp.d.asBytes,8));
return 1;
}
int CmdHFiClass_ReadBlock(const char *Cmd) {
uint8_t blockno=0;
uint8_t keyType = 0x88; //debit key
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool elite = false;
bool rawkey = false;
bool errors = false;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_hf_iclass_readblock();
case 'b':
case 'B':
if (param_gethex(Cmd, cmdp+1, &blockno, 2)) {
PrintAndLog("Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'c':
case 'C':
keyType = 0x18;
cmdp++;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'k':
case 'K':
dataLen = param_getstr(Cmd, cmdp+1, tempStr);
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) return usage_hf_iclass_readblock();
}
if (cmdp < 4) return usage_hf_iclass_readblock();
return ReadBlock(KEY, blockno, keyType, elite, rawkey, true);
}
int CmdHFiClass_loclass(const char *Cmd) {
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h') {
PrintAndLog("Usage: hf iclass loclass [options]");
PrintAndLog("Options:");
PrintAndLog("h Show this help");
PrintAndLog("t Perform self-test");
PrintAndLog("f <filename> Bruteforce iclass dumpfile");
PrintAndLog(" An iclass dumpfile is assumed to consist of an arbitrary number of");
PrintAndLog(" malicious CSNs, and their protocol responses");
PrintAndLog(" The binary format of the file is expected to be as follows: ");
PrintAndLog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLog(" ... totalling N*24 bytes");
return 0;
}
char fileName[255] = {0};
if(opt == 'f') {
if(param_getstr(Cmd, 1, fileName) > 0) {
return bruteforceFileNoKeys(fileName);
} else {
PrintAndLog("You must specify a filename");
// no return?
}
}
else if(opt == 't') {
int errors = testCipherUtils();
errors += testMAC();
errors += doKeyTests(0);
errors += testElite();
if(errors) prnlog("OBS! There were errors!!!");
return errors;
}
return 0;
}
void printIclassDumpContents(uint8_t *iclass_dump, uint8_t startblock, uint8_t endblock, size_t filesize) {
uint8_t mem_config;
memcpy(&mem_config, iclass_dump + 13,1);
uint8_t maxmemcount;
uint8_t filemaxblock = filesize / 8;
if (mem_config & 0x80)
maxmemcount = 255;
else
maxmemcount = 31;
if (startblock == 0)
startblock = 6;
if ((endblock > maxmemcount) || (endblock == 0))
endblock = maxmemcount;
// remember endblock needs to relate to zero-index arrays.
if (endblock > filemaxblock-1)
endblock = filemaxblock-1;
//PrintAndLog ("startblock: %d, endblock: %d, filesize: %d, maxmemcount: %d, filemaxblock: %d",startblock, endblock,filesize, maxmemcount, filemaxblock);
int i = startblock;
printf("------+--+-------------------------+\n");
while (i <= endblock){
uint8_t *blk = iclass_dump + (i * 8);
printf("Block |%02X| %s\n", i, sprint_hex_ascii(blk, 8) );
i++;
}
printf("------+--+-------------------------+\n");
}
int CmdHFiClassReadTagFile(const char *Cmd) {
int startblock = 0;
int endblock = 0;
char tempnum[5];
FILE *f;
char filename[FILE_PATH_SIZE];
if (param_getstr(Cmd, 0, filename) < 1)
return usage_hf_iclass_readtagfile();
if (param_getstr(Cmd,1,(char *)&tempnum) < 1)
startblock = 0;
else
sscanf(tempnum,"%d",&startblock);
if (param_getstr(Cmd,2,(char *)&tempnum) < 1)
endblock = 0;
else
sscanf(tempnum,"%d",&endblock);
// file handling and reading
f = fopen(filename,"rb");
if(!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if ( fsize < 0 ) {
PrintAndLog("Error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = malloc(fsize);
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
uint8_t *csn = dump;
printf("------+--+-------------------------+\n");
printf("CSN |00| %s|\n", sprint_hex(csn, 8) );
printIclassDumpContents(dump, startblock, endblock, bytes_read);
free(dump);
return 0;
}
/*
uint64_t xorcheck(uint64_t sdiv,uint64_t hdiv) {
uint64_t new_div = 0x00;
new_div ^= sdiv;
new_div ^= hdiv;
return new_div;
}
uint64_t hexarray_to_uint64(uint8_t *key) {
char temp[17];
uint64_t uint_key;
for (int i = 0;i < 8;i++)
sprintf(&temp[(i *2)],"%02X",key[i]);
temp[16] = '\0';
if (sscanf(temp,"%016"llX,&uint_key) < 1)
return 0;
return uint_key;
}
*/
void HFiClassCalcDivKey(uint8_t *CSN, uint8_t *KEY, uint8_t *div_key, bool elite){
uint8_t keytable[128] = {0};
uint8_t key_index[8] = {0};
if (elite) {
uint8_t key_sel[8] = { 0 };
uint8_t key_sel_p[8] = { 0 };
hash2(KEY, keytable);
hash1(CSN, key_index);
for(uint8_t i = 0; i < 8 ; i++)
key_sel[i] = keytable[key_index[i]] & 0xFF;
//Permute from iclass format to standard format
permutekey_rev(key_sel, key_sel_p);
diversifyKey(CSN, key_sel_p, div_key);
} else {
diversifyKey(CSN, KEY, div_key);
}
}
//when told CSN, oldkey, newkey, if new key is elite (elite), and if old key was elite (oldElite)
//calculate and return xor_div_key (ready for a key write command)
//print all div_keys if verbose
static void HFiClassCalcNewKey(uint8_t *CSN, uint8_t *OLDKEY, uint8_t *NEWKEY, uint8_t *xor_div_key, bool elite, bool oldElite, bool verbose){
uint8_t old_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t new_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
//get old div key
HFiClassCalcDivKey(CSN, OLDKEY, old_div_key, oldElite);
//get new div key
HFiClassCalcDivKey(CSN, NEWKEY, new_div_key, elite);
for (uint8_t i = 0; i < sizeof(old_div_key); i++){
xor_div_key[i] = old_div_key[i] ^ new_div_key[i];
}
if (verbose) {
printf("Old div key : %s\n",sprint_hex(old_div_key,8));
printf("New div key : %s\n",sprint_hex(new_div_key,8));
printf("Xor div key : %s\n",sprint_hex(xor_div_key,8));
}
}
int CmdHFiClassCalcNewKey(const char *Cmd) {
uint8_t OLDKEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t NEWKEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t xor_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool givenCSN = false;
bool oldElite = false;
bool elite = false;
bool errors = false;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_hf_iclass_calc_newkey();
case 'e':
case 'E':
dataLen = param_getstr(Cmd, cmdp, tempStr);
if (dataLen==2)
oldElite = true;
elite = true;
cmdp++;
break;
case 'n':
case 'N':
dataLen = param_getstr(Cmd, cmdp+1, tempStr);
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, NEWKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(NEWKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: NewKey Nbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: NewKey is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'o':
case 'O':
dataLen = param_getstr(Cmd, cmdp+1, tempStr);
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, OLDKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(OLDKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 's':
case 'S':
givenCSN = true;
if (param_gethex(Cmd, cmdp+1, CSN, 16))
return usage_hf_iclass_calc_newkey();
cmdp += 2;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) return usage_hf_iclass_calc_newkey();
}
if (cmdp < 4) return usage_hf_iclass_calc_newkey();
if (!givenCSN)
if (!select_only(CSN, CCNR, false, true))
return 0;
HFiClassCalcNewKey(CSN, OLDKEY, NEWKEY, xor_div_key, elite, oldElite, true);
return 0;
}
static int loadKeys(char *filename) {
FILE *f;
f = fopen(filename,"rb");
if(!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 0;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if ( fsize < 0 ) {
PrintAndLog("Error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = malloc(fsize);
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
if (bytes_read > ICLASS_KEYS_MAX * 8){
PrintAndLog("File is too long to load - bytes: %u", bytes_read);
free(dump);
return 0;
}
uint8_t i = 0;
for (; i < bytes_read/8; i++)
memcpy(iClass_Key_Table[i],dump+(i*8),8);
free(dump);
PrintAndLog("%u keys loaded", i);
return 1;
}
static int saveKeys(char *filename) {
FILE *f;
f = fopen(filename,"wb");
if (!f) {
printf("error opening file %s\n",filename);
return 0;
}
for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++){
if (fwrite(iClass_Key_Table[i],8,1,f) != 1){
PrintAndLog("save key failed to write to file: %s", filename);
break;
}
}
fclose(f);
return 0;
}
static int printKeys(void) {
PrintAndLog("");
for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++)
PrintAndLog("%u: %s", i, sprint_hex(iClass_Key_Table[i],8));
PrintAndLog("");
return 0;
}
int CmdHFiClassManageKeys(const char *Cmd) {
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
uint8_t KEY[8] = {0};
char filename[FILE_PATH_SIZE];
uint8_t fileNameLen = 0;
bool errors = false;
uint8_t operation = 0;
char tempStr[20];
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_hf_iclass_managekeys();
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename);
if (fileNameLen < 1) {
PrintAndLog("No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'n':
case 'N':
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr == 0) {
PrintAndLog("Wrong block number");
errors = true;
}
cmdp += 2;
break;
case 'k':
case 'K':
operation += 3; //set key
dataLen = param_getstr(Cmd, cmdp+1, tempStr);
if (dataLen == 16) { //ul-c or ev1/ntag key length
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else {
PrintAndLog("\nERROR: Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'p':
case 'P':
operation += 4; //print keys in memory
cmdp++;
break;
case 'l':
case 'L':
operation += 5; //load keys from file
cmdp++;
break;
case 's':
case 'S':
operation += 6; //save keys to file
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) return usage_hf_iclass_managekeys();
}
if (operation == 0){
PrintAndLog("no operation specified (load, save, or print)\n");
return usage_hf_iclass_managekeys();
}
if (operation > 6){
PrintAndLog("Too many operations specified\n");
return usage_hf_iclass_managekeys();
}
if (operation > 4 && fileNameLen == 0){
PrintAndLog("You must enter a filename when loading or saving\n");
return usage_hf_iclass_managekeys();
}
switch (operation){
case 3: memcpy(iClass_Key_Table[keyNbr], KEY, 8); return 1;
case 4: return printKeys();
case 5: return loadKeys(filename);
case 6: return saveKeys(filename);
break;
}
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"calcnewkey", CmdHFiClassCalcNewKey, 1, "[options..] Calc Diversified keys (blocks 3 & 4) to write new keys"},
{"clone", CmdHFiClassCloneTag, 0, "[options..] Authenticate and Clone from iClass bin file"},
{"decrypt", CmdHFiClassDecrypt, 1, "[f <fname>] Decrypt tagdump" },
{"dump", CmdHFiClassReader_Dump, 0, "[options..] Authenticate and Dump iClass tag's AA1"},
{"eload", CmdHFiClassELoad, 0, "[f <fname>] (experimental) Load data into iClass emulator memory"},
{"encryptblk", CmdHFiClassEncryptBlk, 1, "<BlockData> Encrypt given block data"},
{"list", CmdHFiClassList, 0, " (Deprecated) List iClass history"},
{"loclass", CmdHFiClass_loclass, 1, "[options..] Use loclass to perform bruteforce of reader attack dump"},
{"managekeys", CmdHFiClassManageKeys, 1, "[options..] Manage the keys to use with iClass"},
{"readblk", CmdHFiClass_ReadBlock, 0, "[options..] Authenticate and Read iClass block"},
{"reader", CmdHFiClassReader, 0, "Read an iClass tag"},
{"readtagfile", CmdHFiClassReadTagFile, 1, "[options..] Display Content from tagfile"},
{"replay", CmdHFiClassReader_Replay, 0, "<mac> Read an iClass tag via Reply Attack"},
{"sim", CmdHFiClassSim, 0, "[options..] Simulate iClass tag"},
{"snoop", CmdHFiClassSnoop, 0, " Eavesdrop iClass communication"},
{"writeblk", CmdHFiClass_WriteBlock, 0, "[options..] Authenticate and Write iClass block"},
{NULL, NULL, 0, NULL}
};
int CmdHFiClass(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}