mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-11-10 17:49:32 +08:00
102 lines
2.5 KiB
Verilog
102 lines
2.5 KiB
Verilog
//-----------------------------------------------------------------------------
|
|
// The way that we connect things when transmitting a command to an ISO
|
|
// 15693 tag, using 100% modulation only for now.
|
|
//
|
|
// Jonathan Westhues, April 2006
|
|
//-----------------------------------------------------------------------------
|
|
|
|
module hi_read_tx(
|
|
pck0, ck_1356meg, ck_1356megb,
|
|
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
|
|
adc_d, adc_clk,
|
|
ssp_frame, ssp_din, ssp_dout, ssp_clk,
|
|
cross_hi, cross_lo,
|
|
dbg,
|
|
shallow_modulation, speed, power
|
|
);
|
|
input pck0, ck_1356meg, ck_1356megb;
|
|
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
|
|
input [7:0] adc_d;
|
|
output adc_clk;
|
|
input ssp_dout;
|
|
output ssp_frame, ssp_din, ssp_clk;
|
|
input cross_hi, cross_lo;
|
|
output dbg;
|
|
input shallow_modulation;
|
|
input [1:0] speed;
|
|
input power;
|
|
|
|
// The high-frequency stuff. For now, for testing, just bring out the carrier,
|
|
// and allow the ARM to modulate it over the SSP.
|
|
reg pwr_hi;
|
|
reg pwr_oe1;
|
|
reg pwr_oe2;
|
|
reg pwr_oe3;
|
|
reg pwr_oe4;
|
|
always @(ck_1356megb or ssp_dout or shallow_modulation)
|
|
begin
|
|
if (power)
|
|
begin
|
|
if(shallow_modulation)
|
|
begin
|
|
pwr_hi <= ck_1356megb;
|
|
pwr_oe1 <= ~ssp_dout;
|
|
pwr_oe2 <= ~ssp_dout;
|
|
pwr_oe3 <= ~ssp_dout;
|
|
pwr_oe4 <= 1'b0;
|
|
end
|
|
else
|
|
begin
|
|
pwr_hi <= ck_1356megb & ssp_dout;
|
|
pwr_oe1 <= 1'b0;
|
|
pwr_oe2 <= 1'b0;
|
|
pwr_oe3 <= 1'b0;
|
|
pwr_oe4 <= 1'b0;
|
|
end
|
|
end
|
|
else
|
|
begin
|
|
pwr_hi <= 1'b0;
|
|
pwr_oe1 <= 1'b0;
|
|
pwr_oe2 <= 1'b0;
|
|
pwr_oe3 <= 1'b0;
|
|
pwr_oe4 <= ~ssp_dout;
|
|
end
|
|
end
|
|
|
|
// Then just divide the 13.56 MHz clock down to produce appropriate clocks
|
|
// for the synchronous serial port.
|
|
|
|
reg [6:0] hi_div_by_128;
|
|
|
|
always @(posedge ck_1356meg)
|
|
hi_div_by_128 <= hi_div_by_128 + 1;
|
|
|
|
assign ssp_clk = speed[1]? (speed[0]? hi_div_by_128[3]: hi_div_by_128[4]) : (speed[0]? hi_div_by_128[5]: hi_div_by_128[6]);
|
|
|
|
reg [2:0] hi_byte_div;
|
|
|
|
always @(negedge ssp_clk)
|
|
hi_byte_div <= hi_byte_div + 1;
|
|
|
|
assign ssp_frame = (hi_byte_div == 3'b000);
|
|
|
|
// Implement a hysteresis to give out the received signal on
|
|
// ssp_din. Sample at fc.
|
|
assign adc_clk = ck_1356meg;
|
|
|
|
// ADC data appears on the rising edge, so sample it on the falling edge
|
|
reg after_hysteresis;
|
|
always @(negedge adc_clk)
|
|
begin
|
|
if(& adc_d[7:4]) after_hysteresis <= 1'b1;
|
|
else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
|
|
end
|
|
|
|
|
|
assign ssp_din = after_hysteresis;
|
|
|
|
assign pwr_lo = 1'b0;
|
|
assign dbg = ssp_din;
|
|
|
|
endmodule
|