proxmark3/client/flash.c

492 lines
13 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 Hector Martin "marcan" <marcan@marcansoft.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// ELF file flasher
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "proxmark3.h"
#include "sleep.h"
#include "flash.h"
#include "elf.h"
#include "proxendian.h"
#include "usb_cmd.h"
#include "at91sam7s512.h"
void SendCommand(UsbCommand* txcmd);
void ReceiveCommand(UsbCommand* rxcmd);
void CloseProxmark();
int OpenProxmark(size_t i);
// FIXME: what the fuckity fuck
unsigned int current_command = CMD_UNKNOWN;
#define FLASH_START 0x100000
#ifdef HAS_512_FLASH
# define FLASH_SIZE (512*1024)
#else
# define FLASH_SIZE (256*1024)
#endif
#define FLASH_END (FLASH_START + FLASH_SIZE)
#define BOOTLOADER_SIZE 0x2000
#define BOOTLOADER_END (FLASH_START + BOOTLOADER_SIZE)
#define BLOCK_SIZE 0x200
static const uint8_t elf_ident[] = {
0x7f, 'E', 'L', 'F',
ELFCLASS32,
ELFDATA2LSB,
EV_CURRENT
};
// Turn PHDRs into flasher segments, checking for PHDR sanity and merging adjacent
// unaligned segments if needed
static int build_segs_from_phdrs(flash_file_t *ctx, FILE *fd, Elf32_Phdr *phdrs, int num_phdrs)
{
Elf32_Phdr *phdr = phdrs;
flash_seg_t *seg;
uint32_t last_end = 0;
ctx->segments = malloc(sizeof(flash_seg_t) * num_phdrs);
if (!ctx->segments) {
fprintf(stderr, "Out of memory\n");
return -1;
}
ctx->num_segs = 0;
seg = ctx->segments;
fprintf(stderr, "Loading usable ELF segments:\n");
for (int i = 0; i < num_phdrs; i++) {
if (le32(phdr->p_type) != PT_LOAD) {
phdr++;
continue;
}
uint32_t vaddr = le32(phdr->p_vaddr);
uint32_t paddr = le32(phdr->p_paddr);
uint32_t filesz = le32(phdr->p_filesz);
uint32_t memsz = le32(phdr->p_memsz);
uint32_t offset = le32(phdr->p_offset);
uint32_t flags = le32(phdr->p_flags);
if (!filesz) {
phdr++;
continue;
}
fprintf(stderr, "%d: V 0x%08x P 0x%08x (0x%08x->0x%08x) [%c%c%c] @0x%x\n",
i, vaddr, paddr, filesz, memsz,
flags & PF_R ? 'R' : ' ',
flags & PF_W ? 'W' : ' ',
flags & PF_X ? 'X' : ' ',
offset);
if (filesz != memsz) {
fprintf(stderr, "Error: PHDR file size does not equal memory size\n"
"(DATA+BSS PHDRs do not make sense on ROM platforms!)\n");
return -1;
}
if (paddr < last_end) {
fprintf(stderr, "Error: PHDRs not sorted or overlap\n");
return -1;
}
if (paddr < FLASH_START || (paddr+filesz) > FLASH_END) {
fprintf(stderr, "Error: PHDR is not contained in Flash\n");
return -1;
}
if (vaddr >= FLASH_START && vaddr < FLASH_END && (flags & PF_W)) {
fprintf(stderr, "Error: Flash VMA segment is writable\n");
return -1;
}
uint8_t *data;
// make extra space if we need to move the data forward
data = malloc(filesz + BLOCK_SIZE);
if (!data) {
fprintf(stderr, "Out of memory\n");
return -1;
}
if (fseek(fd, offset, SEEK_SET) < 0 || fread(data, 1, filesz, fd) != filesz) {
fprintf(stderr, "Error while reading PHDR payload\n");
free(data);
return -1;
}
uint32_t block_offset = paddr & (BLOCK_SIZE-1);
if (block_offset) {
if (ctx->num_segs) {
flash_seg_t *prev_seg = seg - 1;
uint32_t this_end = paddr + filesz;
uint32_t this_firstblock = paddr & ~(BLOCK_SIZE-1);
uint32_t prev_lastblock = (last_end - 1) & ~(BLOCK_SIZE-1);
if (this_firstblock == prev_lastblock) {
uint32_t new_length = this_end - prev_seg->start;
uint32_t this_offset = paddr - prev_seg->start;
uint32_t hole = this_offset - prev_seg->length;
uint8_t *new_data = malloc(new_length);
if (!new_data) {
fprintf(stderr, "Out of memory\n");
free(data);
return -1;
}
memset(new_data, 0xff, new_length);
memcpy(new_data, prev_seg->data, prev_seg->length);
memcpy(new_data + this_offset, data, filesz);
fprintf(stderr, "Note: Extending previous segment from 0x%x to 0x%x bytes\n",
prev_seg->length, new_length);
if (hole)
fprintf(stderr, "Note: 0x%x-byte hole created\n", hole);
free(data);
free(prev_seg->data);
prev_seg->data = new_data;
prev_seg->length = new_length;
last_end = this_end;
phdr++;
continue;
}
}
fprintf(stderr, "Warning: segment does not begin on a block boundary, will pad\n");
memmove(data + block_offset, data, filesz);
memset(data, 0xFF, block_offset);
filesz += block_offset;
paddr -= block_offset;
}
seg->data = data;
seg->start = paddr;
seg->length = filesz;
seg++;
ctx->num_segs++;
last_end = paddr + filesz;
phdr++;
}
return 0;
}
// Sanity check segments and check for bootloader writes
static int check_segs(flash_file_t *ctx, int can_write_bl) {
for (int i = 0; i < ctx->num_segs; i++) {
flash_seg_t *seg = &ctx->segments[i];
if (seg->start & (BLOCK_SIZE-1)) {
fprintf(stderr, "Error: Segment is not aligned\n");
return -1;
}
if (seg->start < FLASH_START) {
fprintf(stderr, "Error: Segment is outside of flash bounds\n");
return -1;
}
if (seg->start + seg->length > FLASH_END) {
fprintf(stderr, "Error: Segment is outside of flash bounds\n");
return -1;
}
if (!can_write_bl && seg->start < BOOTLOADER_END) {
fprintf(stderr, "Attempted to write bootloader but bootloader writes are not enabled\n");
return -1;
}
}
return 0;
}
// Load an ELF file and prepare it for flashing
int flash_load(flash_file_t *ctx, const char *name, int can_write_bl)
{
FILE *fd = NULL;
Elf32_Ehdr ehdr;
Elf32_Phdr *phdrs = NULL;
int num_phdrs;
int res;
fd = fopen(name, "rb");
if (!fd) {
fprintf(stderr, "Could not open file '%s': ", name);
perror(NULL);
goto fail;
}
fprintf(stderr, "Loading ELF file '%s'...\n", name);
if (fread(&ehdr, sizeof(ehdr), 1, fd) != 1) {
fprintf(stderr, "Error while reading ELF file header\n");
goto fail;
}
if (memcmp(ehdr.e_ident, elf_ident, sizeof(elf_ident))
|| le32(ehdr.e_version) != 1)
{
fprintf(stderr, "Not an ELF file or wrong ELF type\n");
goto fail;
}
if (le16(ehdr.e_type) != ET_EXEC) {
fprintf(stderr, "ELF is not executable\n");
goto fail;
}
if (le16(ehdr.e_machine) != EM_ARM) {
fprintf(stderr, "Wrong ELF architecture\n");
goto fail;
}
if (!ehdr.e_phnum || !ehdr.e_phoff) {
fprintf(stderr, "ELF has no PHDRs\n");
goto fail;
}
if (le16(ehdr.e_phentsize) != sizeof(Elf32_Phdr)) {
// could be a structure padding issue...
fprintf(stderr, "Either the ELF file or this code is made of fail\n");
goto fail;
}
num_phdrs = le16(ehdr.e_phnum);
phdrs = malloc(le16(ehdr.e_phnum) * sizeof(Elf32_Phdr));
if (!phdrs) {
fprintf(stderr, "Out of memory\n");
goto fail;
}
if (fseek(fd, le32(ehdr.e_phoff), SEEK_SET) < 0) {
fprintf(stderr, "Error while reading ELF PHDRs\n");
goto fail;
}
if (fread(phdrs, sizeof(Elf32_Phdr), num_phdrs, fd) != num_phdrs) {
fprintf(stderr, "Error while reading ELF PHDRs\n");
goto fail;
}
res = build_segs_from_phdrs(ctx, fd, phdrs, num_phdrs);
if (res < 0)
goto fail;
res = check_segs(ctx, can_write_bl);
if (res < 0)
goto fail;
free(phdrs);
fclose(fd);
ctx->filename = name;
return 0;
fail:
if (phdrs)
free(phdrs);
if (fd)
fclose(fd);
flash_free(ctx);
return -1;
}
// Get the state of the proxmark, backwards compatible
static int get_proxmark_state(uint32_t *state)
{
UsbCommand c;
c.cmd = CMD_DEVICE_INFO;
SendCommand(&c);
UsbCommand resp;
ReceiveCommand(&resp);
// Three outcomes:
// 1. The old bootrom code will ignore CMD_DEVICE_INFO, but respond with an ACK
// 2. The old os code will respond with CMD_DEBUG_PRINT_STRING and "unknown command"
// 3. The new bootrom and os codes will respond with CMD_DEVICE_INFO and flags
switch (resp.cmd) {
case CMD_ACK:
*state = DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM;
break;
case CMD_DEBUG_PRINT_STRING:
*state = DEVICE_INFO_FLAG_CURRENT_MODE_OS;
break;
case CMD_DEVICE_INFO:
*state = resp.arg[0];
break;
default:
fprintf(stderr, "Error: Couldn't get proxmark state, bad response type: 0x%04"llx"\n", resp.cmd);
return -1;
break;
}
return 0;
}
// Enter the bootloader to be able to start flashing
static int enter_bootloader(char *serial_port_name)
{
uint32_t state;
if (get_proxmark_state(&state) < 0)
return -1;
if (state & DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM) {
/* Already in flash state, we're done. */
return 0;
}
if (state & DEVICE_INFO_FLAG_CURRENT_MODE_OS) {
fprintf(stderr,"Entering bootloader...\n");
UsbCommand c;
memset(&c, 0, sizeof (c));
if ((state & DEVICE_INFO_FLAG_BOOTROM_PRESENT)
&& (state & DEVICE_INFO_FLAG_OSIMAGE_PRESENT))
{
// New style handover: Send CMD_START_FLASH, which will reset the board
// and enter the bootrom on the next boot.
c.cmd = CMD_START_FLASH;
SendCommand(&c);
fprintf(stderr,"(Press and release the button only to abort)\n");
} else {
// Old style handover: Ask the user to press the button, then reset the board
c.cmd = CMD_HARDWARE_RESET;
SendCommand(&c);
fprintf(stderr,"Press and hold down button NOW if your bootloader requires it.\n");
}
msleep(100);
CloseProxmark();
fprintf(stderr,"Waiting for Proxmark to reappear on %s",serial_port_name);
do {
sleep(1);
fprintf(stderr, ".");
} while (!OpenProxmark(0));
fprintf(stderr," Found.\n");
return 0;
}
fprintf(stderr, "Error: Unknown Proxmark mode\n");
return -1;
}
static int wait_for_ack(UsbCommand *ack)
{
ReceiveCommand(ack);
if (ack->cmd != CMD_ACK) {
printf("Error: Unexpected reply 0x%04"llx" (expected ACK)\n", ack->cmd);
return -1;
}
return 0;
}
// Go into flashing mode
int flash_start_flashing(int enable_bl_writes,char *serial_port_name)
{
uint32_t state;
if (enter_bootloader(serial_port_name) < 0)
return -1;
if (get_proxmark_state(&state) < 0)
return -1;
if (state & DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH) {
// This command is stupid. Why the heck does it care which area we're
// flashing, as long as it's not the bootloader area? The mind boggles.
UsbCommand c = {CMD_START_FLASH};
if (enable_bl_writes) {
c.arg[0] = FLASH_START;
c.arg[1] = FLASH_END;
c.arg[2] = START_FLASH_MAGIC;
} else {
c.arg[0] = BOOTLOADER_END;
c.arg[1] = FLASH_END;
c.arg[2] = 0;
}
SendCommand(&c);
return wait_for_ack(&c);
} else {
fprintf(stderr, "Note: Your bootloader does not understand the new START_FLASH command\n");
fprintf(stderr, " It is recommended that you update your bootloader\n\n");
}
return 0;
}
static int write_block(uint32_t address, uint8_t *data, uint32_t length)
{
uint8_t block_buf[BLOCK_SIZE];
memset(block_buf, 0xFF, BLOCK_SIZE);
memcpy(block_buf, data, length);
UsbCommand c;
c.cmd = CMD_FINISH_WRITE;
c.arg[0] = address;
memcpy(c.d.asBytes, block_buf, length);
SendCommand(&c);
int ret = wait_for_ack(&c);
if (ret && c.arg[0]) {
uint32_t lock_bits = c.arg[0] >> 16;
bool lock_error = c.arg[0] & AT91C_MC_LOCKE;
bool prog_error = c.arg[0] & AT91C_MC_PROGE;
bool security_bit = c.arg[0] & AT91C_MC_SECURITY;
printf("%s", lock_error?" Lock Error\n":"");
printf("%s", prog_error?" Invalid Command or bad Keyword\n":"");
printf("%s", security_bit?" Security Bit is set!\n":"");
printf(" Lock Bits: 0x%04x\n", lock_bits);
}
return ret;
}
// Write a file's segments to Flash
int flash_write(flash_file_t *ctx)
{
fprintf(stderr, "Writing segments for file: %s\n", ctx->filename);
for (int i = 0; i < ctx->num_segs; i++) {
flash_seg_t *seg = &ctx->segments[i];
uint32_t length = seg->length;
uint32_t blocks = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
uint32_t end = seg->start + length;
fprintf(stderr, " 0x%08x..0x%08x [0x%x / %d blocks]",
seg->start, end - 1, length, blocks);
int block = 0;
uint8_t *data = seg->data;
uint32_t baddr = seg->start;
while (length) {
uint32_t block_size = length;
if (block_size > BLOCK_SIZE)
block_size = BLOCK_SIZE;
if (write_block(baddr, data, block_size) < 0) {
fprintf(stderr, " ERROR\n");
fprintf(stderr, "Error writing block %d of %d\n", block, blocks);
return -1;
}
data += block_size;
baddr += block_size;
length -= block_size;
block++;
fprintf(stderr, ".");
}
fprintf(stderr, " OK\n");
}
return 0;
}
// free a file context
void flash_free(flash_file_t *ctx)
{
if (!ctx)
return;
if (ctx->segments) {
for (int i = 0; i < ctx->num_segs; i++)
free(ctx->segments[i].data);
free(ctx->segments);
ctx->segments = NULL;
ctx->num_segs = 0;
}
}
// just reset the unit
int flash_stop_flashing(void) {
UsbCommand c = {CMD_HARDWARE_RESET};
SendCommand(&c);
msleep(100);
return 0;
}