mirror of
				https://github.com/RfidResearchGroup/proxmark3.git
				synced 2025-10-31 00:17:02 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1641 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1641 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| //-----------------------------------------------------------------------------
 | |
| // Jonathan Westhues, split Nov 2006
 | |
| //
 | |
| // This code is licensed to you under the terms of the GNU GPL, version 2 or,
 | |
| // at your option, any later version. See the LICENSE.txt file for the text of
 | |
| // the license.
 | |
| //-----------------------------------------------------------------------------
 | |
| // Routines to support ISO 14443B. This includes both the reader software and
 | |
| // the `fake tag' modes.
 | |
| //-----------------------------------------------------------------------------
 | |
| #include "iso14443b.h"
 | |
| 
 | |
| #ifndef FWT_TIMEOUT_14B
 | |
| // defaults to 2000ms
 | |
| # define FWT_TIMEOUT_14B 35312
 | |
| #endif
 | |
| #ifndef ISO14443B_DMA_BUFFER_SIZE
 | |
| # define ISO14443B_DMA_BUFFER_SIZE 256
 | |
| #endif
 | |
| #ifndef RECEIVE_MASK
 | |
| # define RECEIVE_MASK  (ISO14443B_DMA_BUFFER_SIZE-1)
 | |
| #endif
 | |
| 
 | |
| // Guard Time (per 14443-2)
 | |
| #ifndef TR0
 | |
| # define TR0 0
 | |
| #endif
 | |
| 
 | |
| // Synchronization time (per 14443-2)
 | |
| #ifndef TR1
 | |
| # define TR1 0
 | |
| #endif
 | |
| // Frame Delay Time PICC to PCD  (per 14443-3 Amendment 1)
 | |
| #ifndef TR2
 | |
| # define TR2 0
 | |
| #endif
 | |
| 
 | |
| // 4sample
 | |
| #define SEND4STUFFBIT(x) ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x);
 | |
| //#define SEND4STUFFBIT(x) ToSendStuffBit(x);
 | |
| // iceman, this threshold value,  what makes 8 a good amplitude for this IQ values?
 | |
| #ifndef SUBCARRIER_DETECT_THRESHOLD
 | |
| # define SUBCARRIER_DETECT_THRESHOLD 8
 | |
| #endif
 | |
| 
 | |
| static void iso14b_set_timeout(uint32_t timeout);
 | |
| static void iso14b_set_maxframesize(uint16_t size);
 | |
| 
 | |
| // the block number for the ISO14443-4 PCB  (used with APDUs)
 | |
| static uint8_t pcb_blocknum = 0;
 | |
| static uint32_t iso14b_timeout = FWT_TIMEOUT_14B;
 | |
| 
 | |
| //=============================================================================
 | |
| // An ISO 14443 Type B tag. We listen for commands from the reader, using
 | |
| // a UART kind of thing that's implemented in software. When we get a
 | |
| // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
 | |
| // If it's good, then we can do something appropriate with it, and send
 | |
| // a response.
 | |
| //=============================================================================
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // The software UART that receives commands from the reader, and its state variables.
 | |
| //-----------------------------------------------------------------------------
 | |
| static struct {
 | |
|     enum {
 | |
|         STATE_UNSYNCD,
 | |
|         STATE_GOT_FALLING_EDGE_OF_SOF,
 | |
|         STATE_AWAITING_START_BIT,
 | |
|         STATE_RECEIVING_DATA
 | |
|     }       state;
 | |
|     uint16_t shiftReg;
 | |
|     int      bitCnt;
 | |
|     int      byteCnt;
 | |
|     int      byteCntMax;
 | |
|     int      posCnt;
 | |
|     uint8_t  *output;
 | |
| } Uart;
 | |
| 
 | |
| static void UartReset() {
 | |
|     Uart.state = STATE_UNSYNCD;
 | |
|     Uart.shiftReg = 0;
 | |
|     Uart.bitCnt = 0;
 | |
|     Uart.byteCnt = 0;
 | |
|     Uart.byteCntMax = MAX_FRAME_SIZE;
 | |
|     Uart.posCnt = 0;
 | |
| }
 | |
| 
 | |
| static void UartInit(uint8_t *data) {
 | |
|     Uart.output = data;
 | |
|     UartReset();
 | |
| // memset(Uart.output, 0x00, MAX_FRAME_SIZE);
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // The software Demod that receives commands from the tag, and its state variables.
 | |
| //-----------------------------------------------------------------------------
 | |
| static struct {
 | |
|     enum {
 | |
|         DEMOD_UNSYNCD,
 | |
|         DEMOD_PHASE_REF_TRAINING,
 | |
|         DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
 | |
|         DEMOD_GOT_FALLING_EDGE_OF_SOF,
 | |
|         DEMOD_AWAITING_START_BIT,
 | |
|         DEMOD_RECEIVING_DATA
 | |
|     }       state;
 | |
|     uint16_t bitCount;
 | |
|     int      posCount;
 | |
|     int      thisBit;
 | |
|     /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
 | |
|         int     metric;
 | |
|         int     metricN;
 | |
|     */
 | |
|     uint16_t shiftReg;
 | |
|     uint8_t  *output;
 | |
|     uint16_t len;
 | |
|     int      sumI;
 | |
|     int      sumQ;
 | |
|     uint32_t startTime, endTime;
 | |
| } Demod;
 | |
| 
 | |
| // Clear out the state of the "UART" that receives from the tag.
 | |
| static void DemodReset() {
 | |
|     Demod.state = DEMOD_UNSYNCD;
 | |
|     Demod.bitCount = 0;
 | |
|     Demod.posCount = 0;
 | |
|     Demod.thisBit = 0;
 | |
|     Demod.shiftReg = 0;
 | |
|     Demod.len = 0;
 | |
|     Demod.sumI = 0;
 | |
|     Demod.sumQ = 0;
 | |
|     Demod.startTime = 0;
 | |
|     Demod.endTime = 0;
 | |
| }
 | |
| 
 | |
| static void DemodInit(uint8_t *data) {
 | |
|     Demod.output = data;
 | |
|     DemodReset();
 | |
|     // memset(Demod.output, 0x00, MAX_FRAME_SIZE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| * 9.4395 us = 1 ETU  and clock is about 1.5 us
 | |
| * 13560000Hz
 | |
| * 1000ms/s
 | |
| * timeout in ETUs (time to transfer 1 bit, 9.4395 us)
 | |
| *
 | |
| * Formula to calculate FWT (in ETUs) by timeout (in ms):
 | |
| * fwt = 13560000 * 1000 / (8*16) * timeout;
 | |
| * Sample:  3sec == 3000ms
 | |
| *  13560000 * 1000 / (8*16) * 3000  ==
 | |
| *    13560000000 / 384000 = 35312 FWT
 | |
| * @param timeout is in frame wait time, fwt, measured in ETUs
 | |
| */
 | |
| static void iso14b_set_timeout(uint32_t timeout) {
 | |
| #define MAX_TIMEOUT 40542464  // 13560000Hz * 1000ms / (2^32-1) * (8*16)
 | |
|     if (timeout > MAX_TIMEOUT)
 | |
|         timeout = MAX_TIMEOUT;
 | |
| 
 | |
|     iso14b_timeout = timeout;
 | |
|     if (MF_DBGLEVEL >= 3) Dbprintf("ISO14443B Timeout set to %ld fwt", iso14b_timeout);
 | |
| }
 | |
| static void iso14b_set_maxframesize(uint16_t size) {
 | |
|     if (size > 256)
 | |
|         size = MAX_FRAME_SIZE;
 | |
| 
 | |
|     Uart.byteCntMax = size;
 | |
|     if (MF_DBGLEVEL >= 3) Dbprintf("ISO14443B Max frame size set to %d bytes", Uart.byteCntMax);
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Code up a string of octets at layer 2 (including CRC, we don't generate
 | |
| // that here) so that they can be transmitted to the reader. Doesn't transmit
 | |
| // them yet, just leaves them ready to send in ToSend[].
 | |
| //-----------------------------------------------------------------------------
 | |
| static void CodeIso14443bAsTag(const uint8_t *cmd, int len) {
 | |
|     /* ISO 14443 B
 | |
|     *
 | |
|     * Reader to card | ASK  - Amplitude Shift Keying Modulation (PCD to PICC for Type B) (NRZ-L encodig)
 | |
|     * Card to reader | BPSK - Binary Phase Shift Keying Modulation, (PICC to PCD for Type B)
 | |
|     *
 | |
|     * fc - carrier frequency 13.56mHz
 | |
|     * TR0 - Guard Time per 14443-2
 | |
|     * TR1 - Synchronization Time per 14443-2
 | |
|     * TR2 - PICC to PCD Frame Delay Time (per 14443-3 Amendment 1)
 | |
|     *
 | |
|     * Elementary Time Unit (ETU) is
 | |
|     * - 128 Carrier Cycles (9.4395 µS) = 8 Subcarrier Units
 | |
|     * - 1 ETU = 1 bit
 | |
|     * - 10 ETU = 1 startbit, 8 databits, 1 stopbit (10bits length)
 | |
|     * - startbit is a 0
 | |
|     * - stopbit is a 1
 | |
|     *
 | |
|     * Start of frame (SOF) is
 | |
|     * - [10-11] ETU of ZEROS, unmodulated time
 | |
|     * - [2-3] ETU of ONES,
 | |
|     *
 | |
|     * End of frame (EOF) is
 | |
|     * - [10-11] ETU of ZEROS, unmodulated time
 | |
|     *
 | |
|     *  -TO VERIFY THIS BELOW-
 | |
|     * The mode FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK which we use to simulate tag
 | |
|     * works like this:
 | |
|     * - A 1-bit input to the FPGA becomes 8 pulses at 847.5kHz (1.18µS / pulse) == 9.44us
 | |
|     * - A 0-bit input to the FPGA becomes an unmodulated time of 1.18µS  or does it become 8 nonpulses for 9.44us
 | |
|     *
 | |
|     * FPGA doesn't seem to work with ETU.  It seems to work with pulse / duration instead.
 | |
|     *
 | |
|     * Card sends data ub 847.e kHz subcarrier
 | |
|     * subcar |duration| FC division
 | |
|     * -------+--------+------------
 | |
|     * 106kHz | 9.44µS | FC/128
 | |
|     * 212kHz | 4.72µS | FC/64
 | |
|     * 424kHz | 2.36µS | FC/32
 | |
|     * 848kHz | 1.18µS | FC/16
 | |
|     * -------+--------+------------
 | |
|     *
 | |
|     *  Reader data transmission:
 | |
|     *   - no modulation ONES
 | |
|     *   - SOF
 | |
|     *   - Command, data and CRC_B
 | |
|     *   - EOF
 | |
|     *   - no modulation ONES
 | |
|     *
 | |
|     *  Card data transmission
 | |
|     *   - TR1
 | |
|     *   - SOF
 | |
|     *   - data  (each bytes is:  1startbit, 8bits, 1stopbit)
 | |
|     *   - CRC_B
 | |
|     *   - EOF
 | |
|     *
 | |
|     * FPGA implementation :
 | |
|     * At this point only Type A is implemented. This means that we are using a
 | |
|     * bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
 | |
|     * things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
 | |
|     *
 | |
|     */
 | |
| 
 | |
|     int i, j;
 | |
|     uint8_t b;
 | |
| 
 | |
|     ToSendReset();
 | |
| 
 | |
|     // Transmit a burst of ones, as the initial thing that lets the
 | |
|     // reader get phase sync.
 | |
|     // This loop is TR1, per specification
 | |
|     // TR1 minimum must be > 80/fs
 | |
|     // TR1 maximum 200/fs
 | |
|     // 80/fs < TR1 < 200/fs
 | |
|     // 10 ETU < TR1 < 24 ETU
 | |
| 
 | |
|     // Send SOF.
 | |
|     // 10-11 ETU * 4times samples ZEROS
 | |
|     for (i = 0; i < 10; i++) { SEND4STUFFBIT(0); }
 | |
|     //for(i = 0; i < 10; i++) { ToSendStuffBit(0); }
 | |
| 
 | |
|     // 2-3 ETU * 4times samples ONES
 | |
|     for (i = 0; i < 3; i++)  { SEND4STUFFBIT(1); }
 | |
|     //for(i = 0; i < 3; i++)  { ToSendStuffBit(1); }
 | |
| 
 | |
|     // data
 | |
|     for (i = 0; i < len; ++i) {
 | |
| 
 | |
|         // Start bit
 | |
|         SEND4STUFFBIT(0);
 | |
|         //ToSendStuffBit(0);
 | |
| 
 | |
|         // Data bits
 | |
|         b = cmd[i];
 | |
|         for (j = 0; j < 8; ++j) {
 | |
|             // if(b & 1) {
 | |
|             // SEND4STUFFBIT(1);
 | |
|             // //ToSendStuffBit(1);
 | |
|             // } else {
 | |
|             // SEND4STUFFBIT(0);
 | |
|             // //ToSendStuffBit(0);
 | |
|             // }
 | |
|             SEND4STUFFBIT(b & 1);
 | |
|             b >>= 1;
 | |
|         }
 | |
| 
 | |
|         // Stop bit
 | |
|         SEND4STUFFBIT(1);
 | |
|         //ToSendStuffBit(1);
 | |
| 
 | |
|         // Extra Guard bit
 | |
|         // For PICC it ranges 0-18us (1etu = 9us)
 | |
|         SEND4STUFFBIT(1);
 | |
|         //ToSendStuffBit(1);
 | |
|     }
 | |
| 
 | |
|     // Send EOF.
 | |
|     // 10-11 ETU * 4 sample rate = ZEROS
 | |
|     for (i = 0; i < 10; i++) { SEND4STUFFBIT(0); }
 | |
|     //for(i = 0; i < 10; i++) { ToSendStuffBit(0); }
 | |
| 
 | |
|     // why this?
 | |
|     for (i = 0; i < 40; i++) { SEND4STUFFBIT(1); }
 | |
|     //for(i = 0; i < 40; i++) { ToSendStuffBit(1); }
 | |
| 
 | |
|     // Convert from last byte pos to length
 | |
|     ++ToSendMax;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Receive & handle a bit coming from the reader.
 | |
|  *
 | |
|  * This function is called 4 times per bit (every 2 subcarrier cycles).
 | |
|  * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
 | |
|  *
 | |
|  * LED handling:
 | |
|  * LED A -> ON once we have received the SOF and are expecting the rest.
 | |
|  * LED A -> OFF once we have received EOF or are in error state or unsynced
 | |
|  *
 | |
|  * Returns: true if we received a EOF
 | |
|  *          false if we are still waiting for some more
 | |
|  */
 | |
| static RAMFUNC int Handle14443bReaderUartBit(uint8_t bit) {
 | |
|     switch (Uart.state) {
 | |
|         case STATE_UNSYNCD:
 | |
|             if (!bit) {
 | |
|                 // we went low, so this could be the beginning of an SOF
 | |
|                 Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
 | |
|                 Uart.posCnt = 0;
 | |
|                 Uart.bitCnt = 0;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case STATE_GOT_FALLING_EDGE_OF_SOF:
 | |
|             Uart.posCnt++;
 | |
|             if (Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
 | |
|                 if (bit) {
 | |
|                     if (Uart.bitCnt > 9) {
 | |
|                         // we've seen enough consecutive
 | |
|                         // zeros that it's a valid SOF
 | |
|                         Uart.posCnt = 0;
 | |
|                         Uart.byteCnt = 0;
 | |
|                         Uart.state = STATE_AWAITING_START_BIT;
 | |
|                         LED_A_ON(); // Indicate we got a valid SOF
 | |
|                     } else {
 | |
|                         // didn't stay down long enough before going high, error
 | |
|                         Uart.state = STATE_UNSYNCD;
 | |
|                     }
 | |
|                 } else {
 | |
|                     // do nothing, keep waiting
 | |
|                 }
 | |
|                 Uart.bitCnt++;
 | |
|             }
 | |
|             if (Uart.posCnt >= 4) Uart.posCnt = 0;
 | |
|             if (Uart.bitCnt > 12) {
 | |
|                 // Give up if we see too many zeros without a one, too.
 | |
|                 LED_A_OFF();
 | |
|                 Uart.state = STATE_UNSYNCD;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case STATE_AWAITING_START_BIT:
 | |
|             Uart.posCnt++;
 | |
|             if (bit) {
 | |
|                 if (Uart.posCnt > 50 / 2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
 | |
|                     // stayed high for too long between characters, error
 | |
|                     Uart.state = STATE_UNSYNCD;
 | |
|                 }
 | |
|             } else {
 | |
|                 // falling edge, this starts the data byte
 | |
|                 Uart.posCnt = 0;
 | |
|                 Uart.bitCnt = 0;
 | |
|                 Uart.shiftReg = 0;
 | |
|                 Uart.state = STATE_RECEIVING_DATA;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case STATE_RECEIVING_DATA:
 | |
|             Uart.posCnt++;
 | |
|             if (Uart.posCnt == 2) {
 | |
|                 // time to sample a bit
 | |
|                 Uart.shiftReg >>= 1;
 | |
|                 if (bit) {
 | |
|                     Uart.shiftReg |= 0x200;
 | |
|                 }
 | |
|                 Uart.bitCnt++;
 | |
|             }
 | |
|             if (Uart.posCnt >= 4) {
 | |
|                 Uart.posCnt = 0;
 | |
|             }
 | |
|             if (Uart.bitCnt == 10) {
 | |
|                 if ((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) {
 | |
|                     // this is a data byte, with correct
 | |
|                     // start and stop bits
 | |
|                     Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
 | |
|                     Uart.byteCnt++;
 | |
| 
 | |
|                     if (Uart.byteCnt >= Uart.byteCntMax) {
 | |
|                         // Buffer overflowed, give up
 | |
|                         LED_A_OFF();
 | |
|                         Uart.state = STATE_UNSYNCD;
 | |
|                     } else {
 | |
|                         // so get the next byte now
 | |
|                         Uart.posCnt = 0;
 | |
|                         Uart.state = STATE_AWAITING_START_BIT;
 | |
|                     }
 | |
|                 } else if (Uart.shiftReg == 0x000) {
 | |
|                     // this is an EOF byte
 | |
|                     LED_A_OFF(); // Finished receiving
 | |
|                     Uart.state = STATE_UNSYNCD;
 | |
|                     if (Uart.byteCnt != 0)
 | |
|                         return true;
 | |
| 
 | |
|                 } else {
 | |
|                     // this is an error
 | |
|                     LED_A_OFF();
 | |
|                     Uart.state = STATE_UNSYNCD;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             LED_A_OFF();
 | |
|             Uart.state = STATE_UNSYNCD;
 | |
|             break;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Receive a command (from the reader to us, where we are the simulated tag),
 | |
| // and store it in the given buffer, up to the given maximum length. Keeps
 | |
| // spinning, waiting for a well-framed command, until either we get one
 | |
| // (returns true) or someone presses the pushbutton on the board (false).
 | |
| //
 | |
| // Assume that we're called with the SSC (to the FPGA) and ADC path set
 | |
| // correctly.
 | |
| //-----------------------------------------------------------------------------
 | |
| static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) {
 | |
|     // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
 | |
|     // only, since we are receiving, not transmitting).
 | |
|     // Signal field is off with the appropriate LED
 | |
|     LED_D_OFF();
 | |
|     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
 | |
| 
 | |
|     StartCountSspClk();
 | |
| 
 | |
|     volatile uint8_t b = 0;
 | |
| 
 | |
|     // clear receiving shift register and holding register
 | |
|     // What does this loop do? Is it TR1?
 | |
|     // loop is a wait/delay  ?
 | |
|     /*
 | |
|         for(uint8_t c = 0; c < 10;) {
 | |
| 
 | |
|             // keep tx buffer in a defined state anyway.
 | |
|             if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 | |
|                 AT91C_BASE_SSC->SSC_THR = 0xFF;
 | |
|                 ++c;
 | |
|             }
 | |
|         }
 | |
|         */
 | |
|     // Now run a `software UART' on the stream of incoming samples.
 | |
|     UartInit(received);
 | |
| 
 | |
|     uint8_t mask;
 | |
|     while (!BUTTON_PRESS()) {
 | |
|         WDT_HIT();
 | |
| 
 | |
|         // keep tx buffer in a defined state anyway.
 | |
|         if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 | |
|             AT91C_BASE_SSC->SSC_THR = 0x00;
 | |
|         }
 | |
| 
 | |
|         // Wait for byte be become available in rx holding register
 | |
|         if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
 | |
| 
 | |
|             b = (uint8_t) AT91C_BASE_SSC->SSC_RHR;
 | |
| 
 | |
|             for (mask = 0x80; mask != 0; mask >>= 1) {
 | |
|                 if (Handle14443bReaderUartBit(b & mask)) {
 | |
|                     *len = Uart.byteCnt;
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void ClearFpgaShiftingRegisters(void) {
 | |
| 
 | |
|     volatile uint8_t b;
 | |
| 
 | |
|     // clear receiving shift register and holding register
 | |
|     while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) {};
 | |
| 
 | |
|     b = AT91C_BASE_SSC->SSC_RHR;
 | |
|     (void) b;
 | |
| 
 | |
|     while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) {};
 | |
| 
 | |
|     b = AT91C_BASE_SSC->SSC_RHR;
 | |
|     (void) b;
 | |
| 
 | |
|     // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
 | |
|     for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never
 | |
|         while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) {};
 | |
|         if (AT91C_BASE_SSC->SSC_RHR) break;
 | |
|     }
 | |
| 
 | |
|     // Clear TXRDY:
 | |
|     //AT91C_BASE_SSC->SSC_THR = 0xFF;
 | |
| }
 | |
| 
 | |
| void WaitForFpgaDelayQueueIsEmpty(uint16_t delay) {
 | |
|     // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
 | |
|     uint8_t fpga_queued_bits = delay >> 3;  // twich /8 ??   >>3,
 | |
|     for (uint8_t i = 0; i <= fpga_queued_bits / 8 + 1;) {
 | |
|         if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 | |
|             AT91C_BASE_SSC->SSC_THR = 0xFF;
 | |
|             i++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void TransmitFor14443b_AsTag(uint8_t *response, uint16_t len) {
 | |
| 
 | |
|     volatile uint32_t b;
 | |
| 
 | |
|     // Signal field is off with the appropriate LED
 | |
|     LED_D_OFF();
 | |
|     //uint16_t fpgasendQueueDelay = 0;
 | |
| 
 | |
|     // Modulate BPSK
 | |
|     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
 | |
|     SpinDelay(40);
 | |
| 
 | |
|     ClearFpgaShiftingRegisters();
 | |
| 
 | |
|     FpgaSetupSsc();
 | |
| 
 | |
|     // Transmit the response.
 | |
|     for (uint16_t i = 0; i < len;) {
 | |
| 
 | |
|         // Put byte into tx holding register as soon as it is ready
 | |
|         if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
 | |
|             AT91C_BASE_SSC->SSC_THR = response[++i];
 | |
|         }
 | |
| 
 | |
|         // Prevent rx holding register from overflowing
 | |
|         if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
 | |
|             b = AT91C_BASE_SSC->SSC_RHR;
 | |
|             (void)b;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //WaitForFpgaDelayQueueIsEmpty(fpgasendQueueDelay);
 | |
|     AT91C_BASE_SSC->SSC_THR = 0xFF;
 | |
| }
 | |
| //-----------------------------------------------------------------------------
 | |
| // Main loop of simulated tag: receive commands from reader, decide what
 | |
| // response to send, and send it.
 | |
| //-----------------------------------------------------------------------------
 | |
| void SimulateIso14443bTag(uint32_t pupi) {
 | |
| 
 | |
|     // setup device.
 | |
|     FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
 | |
|     // connect Demodulated Signal to ADC:
 | |
|     SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 | |
|     // Set up the synchronous serial port
 | |
|     FpgaSetupSsc();
 | |
| 
 | |
|     // allocate command receive buffer
 | |
|     BigBuf_free();
 | |
|     BigBuf_Clear_ext(false);
 | |
| 
 | |
|     clear_trace(); //sim
 | |
|     set_tracing(true);
 | |
| 
 | |
|     uint16_t len, cmdsReceived = 0;
 | |
|     int cardSTATE = SIM_NOFIELD;
 | |
|     int vHf = 0; // in mV
 | |
|     // uint32_t time_0 = 0;
 | |
|     // uint32_t t2r_time = 0;
 | |
|     // uint32_t r2t_time = 0;
 | |
|     uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
 | |
| 
 | |
|     // the only commands we understand is WUPB, AFI=0, Select All, N=1:
 | |
| // static const uint8_t cmdWUPB[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 }; // WUPB
 | |
|     // ... and REQB, AFI=0, Normal Request, N=1:
 | |
| // static const uint8_t cmdREQB[] = { ISO14443B_REQB, 0x00, 0x00, 0x71, 0xFF }; // REQB
 | |
|     // ... and ATTRIB
 | |
| // static const uint8_t cmdATTRIB[] = { ISO14443B_ATTRIB, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
 | |
| 
 | |
|     // ... if not PUPI/UID is supplied we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
 | |
|     // supports only 106kBit/s in both directions, max frame size = 32Bytes,
 | |
|     // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
 | |
|     uint8_t respATQB[] = {  0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19,
 | |
|                             0x22, 0x00, 0x21, 0x85, 0x5e, 0xd7
 | |
|                          };
 | |
| 
 | |
|     // response to HLTB and ATTRIB
 | |
|     static const uint8_t respOK[] = {0x00, 0x78, 0xF0};
 | |
| 
 | |
|     // ...PUPI/UID supplied from user. Adjust ATQB response accordingly
 | |
|     if (pupi > 0) {
 | |
|         num_to_bytes(pupi, 4, respATQB + 1);
 | |
|         AddCrc14B(respATQB, 12);
 | |
|     }
 | |
| 
 | |
|     // prepare "ATQB" tag answer (encoded):
 | |
|     CodeIso14443bAsTag(respATQB, sizeof(respATQB));
 | |
|     uint8_t *encodedATQB = BigBuf_malloc(ToSendMax);
 | |
|     uint16_t encodedATQBLen = ToSendMax;
 | |
|     memcpy(encodedATQB, ToSend, ToSendMax);
 | |
| 
 | |
| 
 | |
|     // prepare "OK" tag answer (encoded):
 | |
|     CodeIso14443bAsTag(respOK, sizeof(respOK));
 | |
|     uint8_t *encodedOK = BigBuf_malloc(ToSendMax);
 | |
|     uint16_t encodedOKLen = ToSendMax;
 | |
|     memcpy(encodedOK, ToSend, ToSendMax);
 | |
| 
 | |
|     // Simulation loop
 | |
|     while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
 | |
|         WDT_HIT();
 | |
| 
 | |
|         // find reader field
 | |
|         if (cardSTATE == SIM_NOFIELD) {
 | |
|             vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
 | |
|             if (vHf > MF_MINFIELDV) {
 | |
|                 cardSTATE = SIM_IDLE;
 | |
|                 LED_A_ON();
 | |
|             }
 | |
|         }
 | |
|         if (cardSTATE == SIM_NOFIELD) continue;
 | |
| 
 | |
|         // Get reader command
 | |
|         if (!GetIso14443bCommandFromReader(receivedCmd, &len)) {
 | |
|             Dbprintf("button pressed, received %d commands", cmdsReceived);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // ISO14443-B protocol states:
 | |
|         // REQ or WUP request in ANY state
 | |
|         // WUP in HALTED state
 | |
|         if (len == 5) {
 | |
|             if ((receivedCmd[0] == ISO14443B_REQB && (receivedCmd[2] & 0x8) == 0x8 && cardSTATE == SIM_HALTED) ||
 | |
|                     receivedCmd[0] == ISO14443B_REQB) {
 | |
|                 LogTrace(receivedCmd, len, 0, 0, NULL, true);
 | |
|                 cardSTATE = SIM_SELECTING;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|         * How should this flow go?
 | |
|         *  REQB or WUPB
 | |
|         *   send response  ( waiting for Attrib)
 | |
|         *  ATTRIB
 | |
|         *   send response  ( waiting for commands 7816)
 | |
|         *  HALT
 | |
|             send halt response ( waiting for wupb )
 | |
|         */
 | |
| 
 | |
|         switch (cardSTATE) {
 | |
|             //case SIM_NOFIELD:
 | |
|             case SIM_HALTED:
 | |
|             case SIM_IDLE: {
 | |
|                 LogTrace(receivedCmd, len, 0, 0, NULL, true);
 | |
|                 break;
 | |
|             }
 | |
|             case SIM_SELECTING: {
 | |
|                 TransmitFor14443b_AsTag(encodedATQB, encodedATQBLen);
 | |
|                 LogTrace(respATQB, sizeof(respATQB), 0, 0, NULL, false);
 | |
|                 cardSTATE = SIM_WORK;
 | |
|                 break;
 | |
|             }
 | |
|             case SIM_HALTING: {
 | |
|                 TransmitFor14443b_AsTag(encodedOK, encodedOKLen);
 | |
|                 LogTrace(respOK, sizeof(respOK), 0, 0, NULL, false);
 | |
|                 cardSTATE = SIM_HALTED;
 | |
|                 break;
 | |
|             }
 | |
|             case SIM_ACKNOWLEDGE: {
 | |
|                 TransmitFor14443b_AsTag(encodedOK, encodedOKLen);
 | |
|                 LogTrace(respOK, sizeof(respOK), 0, 0, NULL, false);
 | |
|                 cardSTATE = SIM_IDLE;
 | |
|                 break;
 | |
|             }
 | |
|             case SIM_WORK: {
 | |
|                 if (len == 7 && receivedCmd[0] == ISO14443B_HALT) {
 | |
|                     cardSTATE = SIM_HALTED;
 | |
|                 } else if (len == 11 && receivedCmd[0] == ISO14443B_ATTRIB) {
 | |
|                     cardSTATE = SIM_ACKNOWLEDGE;
 | |
|                 } else {
 | |
|                     // Todo:
 | |
|                     // - SLOT MARKER
 | |
|                     // - ISO7816
 | |
|                     // - emulate with a memory dump
 | |
|                     Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsReceived);
 | |
| 
 | |
|                     // CRC Check
 | |
|                     if (len >= 3) { // if crc exists
 | |
| 
 | |
|                         if (!check_crc(CRC_14443_B, receivedCmd, len))
 | |
|                             DbpString("+++CRC fail");
 | |
|                         else
 | |
|                             DbpString("CRC passes");
 | |
|                     }
 | |
|                     cardSTATE = SIM_IDLE;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|             default:
 | |
|                 break;
 | |
|         }
 | |
| 
 | |
|         ++cmdsReceived;
 | |
|     }
 | |
|     if (MF_DBGLEVEL >= 2)
 | |
|         Dbprintf("Emulator stopped. Trace length: %d ", BigBuf_get_traceLen());
 | |
|     switch_off(); //simulate
 | |
| }
 | |
| 
 | |
| //=============================================================================
 | |
| // An ISO 14443 Type B reader. We take layer two commands, code them
 | |
| // appropriately, and then send them to the tag. We then listen for the
 | |
| // tag's response, which we leave in the buffer to be demodulated on the
 | |
| // PC side.
 | |
| //=============================================================================
 | |
| 
 | |
| /*
 | |
|  * Handles reception of a bit from the tag
 | |
|  *
 | |
|  * This function is called 2 times per bit (every 4 subcarrier cycles).
 | |
|  * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
 | |
|  *
 | |
|  * LED handling:
 | |
|  * LED C -> ON once we have received the SOF and are expecting the rest.
 | |
|  * LED C -> OFF once we have received EOF or are unsynced
 | |
|  *
 | |
|  * Returns: true if we received a EOF
 | |
|  *          false if we are still waiting for some more
 | |
|  *
 | |
|  */
 | |
| static RAMFUNC int Handle14443bTagSamplesDemod(int ci, int cq) {
 | |
|     int v = 0, myI = ABS(ci), myQ = ABS(cq);
 | |
| 
 | |
| // The soft decision on the bit uses an estimate of just the
 | |
| // quadrant of the reference angle, not the exact angle.
 | |
| #define MAKE_SOFT_DECISION() { \
 | |
|         if (Demod.sumI > 0) { \
 | |
|             v = ci; \
 | |
|         } else { \
 | |
|             v = -ci; \
 | |
|         } \
 | |
|         if (Demod.sumQ > 0) { \
 | |
|             v += cq; \
 | |
|         } else { \
 | |
|             v -= cq; \
 | |
|         } \
 | |
|     }
 | |
| 
 | |
| // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
 | |
| // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
 | |
| #define CHECK_FOR_SUBCARRIER_old() { \
 | |
|         if (ci < 0) { \
 | |
|             if (cq < 0) { /* ci < 0, cq < 0 */ \
 | |
|                 if (cq < ci) { \
 | |
|                     v = -cq - (ci >> 1); \
 | |
|                 } else { \
 | |
|                     v = -ci - (cq >> 1); \
 | |
|                 } \
 | |
|             } else { /* ci < 0, cq >= 0 */ \
 | |
|                 if (cq < -ci) { \
 | |
|                     v = -ci + (cq >> 1); \
 | |
|                 } else { \
 | |
|                     v = cq - (ci >> 1); \
 | |
|                 } \
 | |
|             } \
 | |
|         } else { \
 | |
|             if (cq < 0) { /* ci >= 0, cq < 0 */ \
 | |
|                 if (-cq < ci) { \
 | |
|                     v = ci - (cq >> 1); \
 | |
|                 } else { \
 | |
|                     v = -cq + (ci >> 1); \
 | |
|                 } \
 | |
|             } else { /* ci >= 0, cq >= 0 */ \
 | |
|                 if (cq < ci) { \
 | |
|                     v = ci + (cq >> 1); \
 | |
|                 } else { \
 | |
|                     v = cq + (ci >> 1); \
 | |
|                 } \
 | |
|             } \
 | |
|         } \
 | |
|     }
 | |
| 
 | |
| //note: couldn't we just use MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2) from common.h - marshmellow
 | |
| #define CHECK_FOR_SUBCARRIER() { v = MAX(myI, myQ) + (MIN(myI, myQ) >> 1); }
 | |
| 
 | |
|     switch (Demod.state) {
 | |
|         case DEMOD_UNSYNCD:
 | |
| 
 | |
|             CHECK_FOR_SUBCARRIER();
 | |
| 
 | |
|             // subcarrier detected
 | |
| 
 | |
|             if (v > SUBCARRIER_DETECT_THRESHOLD) {
 | |
|                 Demod.state = DEMOD_PHASE_REF_TRAINING;
 | |
|                 Demod.sumI = ci;
 | |
|                 Demod.sumQ = cq;
 | |
|                 Demod.posCount = 1;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case DEMOD_PHASE_REF_TRAINING:
 | |
|             if (Demod.posCount < 8) {
 | |
| 
 | |
|                 CHECK_FOR_SUBCARRIER();
 | |
| 
 | |
|                 if (v > SUBCARRIER_DETECT_THRESHOLD) {
 | |
|                     // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
 | |
|                     // note: synchronization time > 80 1/fs
 | |
|                     Demod.sumI += ci;
 | |
|                     Demod.sumQ += cq;
 | |
|                     Demod.posCount++;
 | |
|                 } else {
 | |
|                     // subcarrier lost
 | |
|                     Demod.state = DEMOD_UNSYNCD;
 | |
|                 }
 | |
|             } else {
 | |
|                 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
 | |
| 
 | |
|             MAKE_SOFT_DECISION();
 | |
| 
 | |
|             if (v < 0) { // logic '0' detected
 | |
|                 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
 | |
|                 Demod.posCount = 0; // start of SOF sequence
 | |
|             } else {
 | |
|                 // maximum length of TR1 = 200 1/fs
 | |
|                 if (Demod.posCount > 200 / 4) Demod.state = DEMOD_UNSYNCD;
 | |
|             }
 | |
|             Demod.posCount++;
 | |
|             break;
 | |
| 
 | |
|         case DEMOD_GOT_FALLING_EDGE_OF_SOF:
 | |
|             Demod.posCount++;
 | |
| 
 | |
|             MAKE_SOFT_DECISION();
 | |
| 
 | |
|             if (v > 0) {
 | |
|                 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
 | |
|                 if (Demod.posCount < 9 * 2) {
 | |
|                     Demod.state = DEMOD_UNSYNCD;
 | |
|                 } else {
 | |
|                     LED_C_ON(); // Got SOF
 | |
|                     Demod.state = DEMOD_AWAITING_START_BIT;
 | |
|                     Demod.posCount = 0;
 | |
|                     Demod.len = 0;
 | |
|                 }
 | |
|             } else {
 | |
|                 // low phase of SOF too long (> 12 etu)
 | |
|                 if (Demod.posCount > 14 * 2) {
 | |
|                     Demod.state = DEMOD_UNSYNCD;
 | |
|                     LED_C_OFF();
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case DEMOD_AWAITING_START_BIT:
 | |
|             Demod.posCount++;
 | |
| 
 | |
|             MAKE_SOFT_DECISION();
 | |
| 
 | |
|             if (v > 0) {
 | |
|                 if (Demod.posCount > 6 * 2) {   // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
 | |
|                     Demod.state = DEMOD_UNSYNCD;
 | |
|                     LED_C_OFF();
 | |
|                 }
 | |
|             } else {                            // start bit detected
 | |
|                 Demod.bitCount = 0;
 | |
|                 Demod.posCount = 1;             // this was the first half
 | |
|                 Demod.thisBit = v;
 | |
|                 Demod.shiftReg = 0;
 | |
|                 Demod.state = DEMOD_RECEIVING_DATA;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case DEMOD_RECEIVING_DATA:
 | |
| 
 | |
|             MAKE_SOFT_DECISION();
 | |
| 
 | |
|             if (Demod.posCount == 0) {
 | |
|                 // first half of bit
 | |
|                 Demod.thisBit = v;
 | |
|                 Demod.posCount = 1;
 | |
|             } else {
 | |
|                 // second half of bit
 | |
|                 Demod.thisBit += v;
 | |
|                 Demod.shiftReg >>= 1;
 | |
| 
 | |
|                 // OR in a logic '1'
 | |
|                 if (Demod.thisBit > 0)
 | |
|                     Demod.shiftReg |= 0x200;
 | |
| 
 | |
|                 Demod.bitCount++;
 | |
| 
 | |
|                 // 1 start 8 data 1 stop = 10
 | |
|                 if (Demod.bitCount == 10) {
 | |
| 
 | |
|                     uint16_t s = Demod.shiftReg;
 | |
| 
 | |
|                     // stop bit == '1', start bit == '0'
 | |
|                     if ((s & 0x200) && (s & 0x001) == 0) {
 | |
|                         // left shift to drop the startbit
 | |
|                         uint8_t b = (s >> 1);
 | |
|                         Demod.output[Demod.len] = b;
 | |
|                         ++Demod.len;
 | |
|                         Demod.state = DEMOD_AWAITING_START_BIT;
 | |
|                     } else {
 | |
|                         // this one is a bit hard,  either its a correc byte or its unsynced.
 | |
|                         Demod.state = DEMOD_UNSYNCD;
 | |
|                         LED_C_OFF();
 | |
| 
 | |
|                         // This is EOF (start, stop and all data bits == '0'
 | |
|                         if (s == 0) return true;
 | |
|                     }
 | |
|                 }
 | |
|                 Demod.posCount = 0;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             Demod.state = DEMOD_UNSYNCD;
 | |
|             LED_C_OFF();
 | |
|             break;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  Demodulate the samples we received from the tag, also log to tracebuffer
 | |
|  *  quiet: set to 'TRUE' to disable debug output
 | |
|  */
 | |
| static void GetTagSamplesFor14443bDemod() {
 | |
|     bool gotFrame = false, finished = false;
 | |
|     int lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
 | |
|     int ci = 0, cq = 0;
 | |
|     uint32_t time_0 = 0, time_stop = 0;
 | |
| 
 | |
|     BigBuf_free();
 | |
| 
 | |
|     // Set up the demodulator for tag -> reader responses.
 | |
|     DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
 | |
| 
 | |
|     // The DMA buffer, used to stream samples from the FPGA
 | |
|     int8_t *dmaBuf = (int8_t *) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
 | |
|     int8_t *upTo = dmaBuf;
 | |
| 
 | |
|     // Setup and start DMA.
 | |
|     if (!FpgaSetupSscDma((uint8_t *) dmaBuf, ISO14443B_DMA_BUFFER_SIZE)) {
 | |
|         if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // And put the FPGA in the appropriate mode
 | |
|     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
 | |
| 
 | |
|     // get current clock
 | |
|     time_0 = GetCountSspClk();
 | |
| 
 | |
|     // rx counter - dma counter? (how much?) & (mod) mask > 2. (since 2bytes at the time is read)
 | |
|     while (!finished) {
 | |
| 
 | |
|         LED_A_INV();
 | |
|         WDT_HIT();
 | |
| 
 | |
|         // LSB is a fpga signal bit.
 | |
|         ci = upTo[0];
 | |
|         cq = upTo[1];
 | |
|         upTo += 2;
 | |
|         lastRxCounter -= 2;
 | |
| 
 | |
|         // restart DMA buffer to receive again.
 | |
|         if (upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
 | |
|             upTo = dmaBuf;
 | |
|             lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
 | |
|             AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
 | |
|             AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
 | |
|         }
 | |
| 
 | |
|         // https://github.com/Proxmark/proxmark3/issues/103
 | |
|         gotFrame =  Handle14443bTagSamplesDemod(ci, cq);
 | |
|         time_stop = GetCountSspClk() - time_0;
 | |
| 
 | |
|         finished = (time_stop > iso14b_timeout || gotFrame);
 | |
|     }
 | |
| 
 | |
|     FpgaDisableSscDma();
 | |
| 
 | |
|     if (upTo)
 | |
|         upTo = NULL;
 | |
| 
 | |
|     if (Demod.len > 0)
 | |
|         LogTrace(Demod.output, Demod.len, time_0, time_stop, NULL, false);
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Transmit the command (to the tag) that was placed in ToSend[].
 | |
| //-----------------------------------------------------------------------------
 | |
| static void TransmitFor14443b_AsReader(void) {
 | |
|     int c;
 | |
| 
 | |
|     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
 | |
|     SpinDelay(60);
 | |
| 
 | |
|     // What does this loop do? Is it TR1?
 | |
|     // 0xFF = 8 bits of 1.    1 bit == 1Etu,..
 | |
|     // loop 10 * 8 = 80 ETU of delay, with a non modulated signal.  why?
 | |
|     // 80*9 = 720us.
 | |
| 
 | |
|     for (c = 0; c < 50;) {
 | |
| 
 | |
|         if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 | |
|             AT91C_BASE_SSC->SSC_THR = 0xFF;
 | |
|             c++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Send frame loop
 | |
|     for (c = 0; c < ToSendMax;) {
 | |
| 
 | |
|         // Put byte into tx holding register as soon as it is ready
 | |
|         if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 | |
|             AT91C_BASE_SSC->SSC_THR = ToSend[c++];
 | |
|         }
 | |
|     }
 | |
|     WDT_HIT();
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Code a layer 2 command (string of octets, including CRC) into ToSend[],
 | |
| // so that it is ready to transmit to the tag using TransmitFor14443b().
 | |
| //-----------------------------------------------------------------------------
 | |
| static void CodeIso14443bAsReader(const uint8_t *cmd, int len) {
 | |
|     /*
 | |
|     *  Reader data transmission:
 | |
|     *   - no modulation ONES
 | |
|     *   - SOF
 | |
|     *   - Command, data and CRC_B
 | |
|     *   - EOF
 | |
|     *   - no modulation ONES
 | |
|     *
 | |
|     *   1 ETU == 1 BIT!
 | |
|     *   TR0 - 8 ETUS minimum.
 | |
|     *
 | |
|     *   QUESTION:  how long is a 1 or 0 in pulses in the xcorr_848 mode?
 | |
|     *              1 "stuffbit" = 1ETU (9us)
 | |
|     */
 | |
|     int i;
 | |
|     uint8_t b;
 | |
| 
 | |
|     ToSendReset();
 | |
| 
 | |
|     // Send SOF
 | |
|     // 10-11 ETUs of ZERO
 | |
|     for (i = 0; i < 10; ++i) ToSendStuffBit(0);
 | |
| 
 | |
|     // 2-3 ETUs of ONE
 | |
|     ToSendStuffBit(1);
 | |
|     ToSendStuffBit(1);
 | |
| //  ToSendStuffBit(1);
 | |
| 
 | |
|     // Sending cmd, LSB
 | |
|     // from here we add BITS
 | |
|     for (i = 0; i < len; ++i) {
 | |
|         // Start bit
 | |
|         ToSendStuffBit(0);
 | |
|         // Data bits
 | |
|         b = cmd[i];
 | |
|         // if (  b & 1 )    ToSendStuffBit(1); else ToSendStuffBit(0);
 | |
|         // if ( (b>>1) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
 | |
|         // if ( (b>>2) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
 | |
|         // if ( (b>>3) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
 | |
|         // if ( (b>>4) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
 | |
|         // if ( (b>>5) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
 | |
|         // if ( (b>>6) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
 | |
|         // if ( (b>>7) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
 | |
| 
 | |
|         ToSendStuffBit(b & 1);
 | |
|         ToSendStuffBit((b >> 1) & 1);
 | |
|         ToSendStuffBit((b >> 2) & 1);
 | |
|         ToSendStuffBit((b >> 3) & 1);
 | |
|         ToSendStuffBit((b >> 4) & 1);
 | |
|         ToSendStuffBit((b >> 5) & 1);
 | |
|         ToSendStuffBit((b >> 6) & 1);
 | |
|         ToSendStuffBit((b >> 7) & 1);
 | |
| 
 | |
|         // Stop bit
 | |
|         ToSendStuffBit(1);
 | |
|         // EGT extra guard time
 | |
|         // For PCD it ranges 0-57us (1etu = 9us)
 | |
|         ToSendStuffBit(1);
 | |
|         ToSendStuffBit(1);
 | |
|         ToSendStuffBit(1);
 | |
|     }
 | |
| 
 | |
|     // Send EOF
 | |
|     // 10-11 ETUs of ZERO
 | |
|     for (i = 0; i < 10; ++i) ToSendStuffBit(0);
 | |
| 
 | |
|     // Transition time. TR0 - guard time
 | |
|     // 8ETUS minum?
 | |
|     // Per specification, Subcarrier must be stopped no later than 2 ETUs after EOF.
 | |
|     // I'm guessing this is for the FPGA to be able to send all bits before we switch to listening mode
 | |
|     for (i = 0; i < 24 ; ++i) ToSendStuffBit(1);
 | |
| 
 | |
|     // TR1 - Synchronization time
 | |
|     // Convert from last character reference to length
 | |
|     ToSendMax++;
 | |
| }
 | |
| 
 | |
| /*
 | |
| *  Convenience function to encode, transmit and trace iso 14443b comms
 | |
| */
 | |
| static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) {
 | |
| 
 | |
|     uint32_t time_start = GetCountSspClk();
 | |
| 
 | |
|     CodeIso14443bAsReader(cmd, len);
 | |
| 
 | |
|     TransmitFor14443b_AsReader();
 | |
| 
 | |
|     if (trigger) LED_A_ON();
 | |
| 
 | |
|     LogTrace(cmd, len, time_start, GetCountSspClk() - time_start, NULL, true);
 | |
| }
 | |
| 
 | |
| /* Sends an APDU to the tag
 | |
|  * TODO: check CRC and preamble
 | |
|  */
 | |
| uint8_t iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response) {
 | |
| 
 | |
|     uint8_t message_frame[message_length + 4];
 | |
|     // PCB
 | |
|     message_frame[0] = 0x0A | pcb_blocknum;
 | |
|     pcb_blocknum ^= 1;
 | |
|     // CID
 | |
|     message_frame[1] = 0;
 | |
|     // INF
 | |
|     memcpy(message_frame + 2, message, message_length);
 | |
|     // EDC (CRC)
 | |
|     AddCrc14B(message_frame, message_length + 2);
 | |
|     // send
 | |
|     CodeAndTransmit14443bAsReader(message_frame, message_length + 4); //no
 | |
|     // get response
 | |
|     GetTagSamplesFor14443bDemod(); //no
 | |
|     if (Demod.len < 3)
 | |
|         return 0;
 | |
| 
 | |
|     // VALIDATE CRC
 | |
|     if (!check_crc(CRC_14443_B, Demod.output, Demod.len)) {
 | |
|         if (MF_DBGLEVEL > 3) Dbprintf("crc fail ICE");
 | |
|         return 0;
 | |
|     }
 | |
|     // copy response contents
 | |
|     if (response != NULL)
 | |
|         memcpy(response, Demod.output, Demod.len);
 | |
| 
 | |
|     return Demod.len;
 | |
| }
 | |
| 
 | |
| /**
 | |
| * SRx Initialise.
 | |
| */
 | |
| uint8_t iso14443b_select_srx_card(iso14b_card_select_t *card) {
 | |
|     // INITIATE command: wake up the tag using the INITIATE
 | |
|     static const uint8_t init_srx[] = { ISO14443B_INITIATE, 0x00, 0x97, 0x5b };
 | |
|     // SELECT command (with space for CRC)
 | |
|     uint8_t select_srx[] = { ISO14443B_SELECT, 0x00, 0x00, 0x00};
 | |
| 
 | |
|     CodeAndTransmit14443bAsReader(init_srx, sizeof(init_srx));
 | |
|     GetTagSamplesFor14443bDemod(); //no
 | |
| 
 | |
|     if (Demod.len == 0)
 | |
|         return 2;
 | |
| 
 | |
|     // Randomly generated Chip ID
 | |
|     if (card) card->chipid = Demod.output[0];
 | |
| 
 | |
|     select_srx[1] = Demod.output[0];
 | |
| 
 | |
|     AddCrc14B(select_srx, 2);
 | |
| 
 | |
|     CodeAndTransmit14443bAsReader(select_srx, sizeof(select_srx));
 | |
|     GetTagSamplesFor14443bDemod(); //no
 | |
| 
 | |
|     if (Demod.len != 3)
 | |
|         return 2;
 | |
| 
 | |
|     // Check the CRC of the answer:
 | |
|     if (!check_crc(CRC_14443_B, Demod.output, Demod.len))
 | |
|         return 3;
 | |
| 
 | |
|     // Check response from the tag: should be the same UID as the command we just sent:
 | |
|     if (select_srx[1] != Demod.output[0])
 | |
|         return 1;
 | |
| 
 | |
|     // First get the tag's UID:
 | |
|     select_srx[0] = ISO14443B_GET_UID;
 | |
| 
 | |
|     AddCrc14B(select_srx, 1);
 | |
|     CodeAndTransmit14443bAsReader(select_srx, 3); // Only first three bytes for this one
 | |
|     GetTagSamplesFor14443bDemod(); //no
 | |
| 
 | |
|     if (Demod.len != 10)
 | |
|         return 2;
 | |
| 
 | |
|     // The check the CRC of the answer
 | |
|     if (!check_crc(CRC_14443_B, Demod.output, Demod.len))
 | |
|         return 3;
 | |
| 
 | |
|     if (card) {
 | |
|         card->uidlen = 8;
 | |
|         memcpy(card->uid, Demod.output, 8);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| /* Perform the ISO 14443 B Card Selection procedure
 | |
|  * Currently does NOT do any collision handling.
 | |
|  * It expects 0-1 cards in the device's range.
 | |
|  * TODO: Support multiple cards (perform anticollision)
 | |
|  * TODO: Verify CRC checksums
 | |
|  */
 | |
| uint8_t iso14443b_select_card(iso14b_card_select_t *card) {
 | |
|     // WUPB command (including CRC)
 | |
|     // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
 | |
|     static const uint8_t wupb[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 };
 | |
|     // ATTRIB command (with space for CRC)
 | |
|     uint8_t attrib[] = { ISO14443B_ATTRIB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
 | |
| 
 | |
|     // first, wake up the tag
 | |
|     CodeAndTransmit14443bAsReader(wupb, sizeof(wupb));
 | |
|     GetTagSamplesFor14443bDemod(); //select_card
 | |
| 
 | |
|     // ATQB too short?
 | |
|     if (Demod.len < 14)
 | |
|         return 2;
 | |
| 
 | |
|     // VALIDATE CRC
 | |
|     if (!check_crc(CRC_14443_B, Demod.output, Demod.len))
 | |
|         return 3;
 | |
| 
 | |
|     if (card) {
 | |
|         card->uidlen = 4;
 | |
|         memcpy(card->uid, Demod.output + 1, 4);
 | |
|         memcpy(card->atqb, Demod.output + 5, 7);
 | |
|     }
 | |
| 
 | |
|     // copy the PUPI to ATTRIB  ( PUPI == UID )
 | |
|     memcpy(attrib + 1, Demod.output + 1, 4);
 | |
| 
 | |
|     // copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into ATTRIB (Param 3)
 | |
|     attrib[7] = Demod.output[10] & 0x0F;
 | |
|     AddCrc14B(attrib, 9);
 | |
| 
 | |
|     CodeAndTransmit14443bAsReader(attrib, sizeof(attrib));
 | |
|     GetTagSamplesFor14443bDemod();//select_card
 | |
| 
 | |
|     // Answer to ATTRIB too short?
 | |
|     if (Demod.len < 3)
 | |
|         return 2;
 | |
| 
 | |
|     // VALIDATE CRC
 | |
|     if (!check_crc(CRC_14443_B, Demod.output, Demod.len))
 | |
|         return 3;
 | |
| 
 | |
|     if (card) {
 | |
| 
 | |
|         // CID
 | |
|         card->cid = Demod.output[0];
 | |
| 
 | |
|         // MAX FRAME
 | |
|         uint16_t maxFrame = card->atqb[5] >> 4;
 | |
|         if (maxFrame < 5)       maxFrame = 8 * maxFrame + 16;
 | |
|         else if (maxFrame == 5) maxFrame = 64;
 | |
|         else if (maxFrame == 6) maxFrame = 96;
 | |
|         else if (maxFrame == 7) maxFrame = 128;
 | |
|         else if (maxFrame == 8) maxFrame = 256;
 | |
|         else maxFrame = 257;
 | |
|         iso14b_set_maxframesize(maxFrame);
 | |
| 
 | |
|         // FWT
 | |
|         uint8_t fwt = card->atqb[6] >> 4;
 | |
|         if (fwt < 16) {
 | |
|             uint32_t fwt_time = (302 << fwt);
 | |
|             iso14b_set_timeout(fwt_time);
 | |
|         }
 | |
|     }
 | |
|     // reset PCB block number
 | |
|     pcb_blocknum = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // Set up ISO 14443 Type B communication (similar to iso14443a_setup)
 | |
| // field is setup for "Sending as Reader"
 | |
| void iso14443b_setup() {
 | |
|     LEDsoff();
 | |
|     FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
 | |
| 
 | |
|     // Initialize Demod and Uart structs
 | |
|     DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
 | |
|     UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
 | |
| 
 | |
|     // connect Demodulated Signal to ADC:
 | |
|     SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 | |
| 
 | |
|     // Set up the synchronous serial port
 | |
|     FpgaSetupSsc();
 | |
| 
 | |
|     // Signal field is on with the appropriate LED
 | |
|     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
 | |
|     SpinDelay(100);
 | |
| 
 | |
|     // Start the timer
 | |
|     StartCountSspClk();
 | |
| 
 | |
|     LED_D_ON();
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Read a SRI512 ISO 14443B tag.
 | |
| //
 | |
| // SRI512 tags are just simple memory tags, here we're looking at making a dump
 | |
| // of the contents of the memory. No anticollision algorithm is done, we assume
 | |
| // we have a single tag in the field.
 | |
| //
 | |
| // I tried to be systematic and check every answer of the tag, every CRC, etc...
 | |
| //-----------------------------------------------------------------------------
 | |
| static bool ReadSTBlock(uint8_t block) {
 | |
|     uint8_t cmd[] = {ISO14443B_READ_BLK, block, 0x00, 0x00};
 | |
|     AddCrc14B(cmd, 2);
 | |
|     CodeAndTransmit14443bAsReader(cmd, sizeof(cmd));
 | |
|     GetTagSamplesFor14443bDemod();
 | |
| 
 | |
|     // Check if we got an answer from the tag
 | |
|     if (Demod.len != 6) {
 | |
|         DbpString("[!] expected 6 bytes from tag, got less...");
 | |
|         return false;
 | |
|     }
 | |
|     // The check the CRC of the answer
 | |
|     if (!check_crc(CRC_14443_B, Demod.output, Demod.len)) {
 | |
|         DbpString("[!] CRC Error block!");
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| void ReadSTMemoryIso14443b(uint8_t numofblocks) {
 | |
|     // Make sure that we start from off, since the tags are stateful;
 | |
|     // confusing things will happen if we don't reset them between reads.
 | |
|     //switch_off();
 | |
| 
 | |
|     uint8_t i = 0x00;
 | |
|     uint8_t *buf = BigBuf_malloc(sizeof(iso14b_card_select_t));
 | |
| 
 | |
|     iso14443b_setup();
 | |
| 
 | |
|     iso14b_card_select_t *card = (iso14b_card_select_t *)buf;
 | |
|     uint8_t res = iso14443b_select_srx_card(card);
 | |
| 
 | |
|     // 0: OK 2: attrib fail, 3:crc fail,
 | |
|     if (res > 0) goto out;
 | |
| 
 | |
|     Dbprintf("[+] Tag memory dump, block 0 to %d", numofblocks);
 | |
| 
 | |
|     ++numofblocks;
 | |
| 
 | |
|     for (;;) {
 | |
|         if (i == numofblocks) {
 | |
|             DbpString("System area block (0xFF):");
 | |
|             i = 0xff;
 | |
|         }
 | |
| 
 | |
|         uint8_t retries = 3;
 | |
|         do {
 | |
|             res = ReadSTBlock(i);
 | |
|         } while (!res && --retries);
 | |
| 
 | |
|         if (!res && !retries) {
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         // Now print out the memory location:
 | |
|         Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
 | |
|                  (Demod.output[3] << 24) + (Demod.output[2] << 16) + (Demod.output[1] << 8) + Demod.output[0],
 | |
|                  (Demod.output[4] << 8) + Demod.output[5]);
 | |
| 
 | |
|         if (i == 0xff) break;
 | |
|         ++i;
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     switch_off(); // disconnect raw
 | |
|     SpinDelay(20);
 | |
| }
 | |
| 
 | |
| static void iso1444b_setup_sniff(void) {
 | |
| 
 | |
|     LEDsoff();
 | |
|     FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
 | |
|     BigBuf_free();
 | |
|     BigBuf_Clear_ext(false);
 | |
|     clear_trace();
 | |
|     set_tracing(true);
 | |
| 
 | |
|     // Initialize Demod and Uart structs
 | |
|     DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
 | |
|     UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
 | |
| 
 | |
|     if (MF_DBGLEVEL > 1) {
 | |
|         // Print debug information about the buffer sizes
 | |
|         Dbprintf("[+] Sniff buffers initialized:");
 | |
|         Dbprintf("[+]   trace: %i bytes", BigBuf_max_traceLen());
 | |
|         Dbprintf("[+]   reader -> tag: %i bytes", MAX_FRAME_SIZE);
 | |
|         Dbprintf("[+]   tag -> reader: %i bytes", MAX_FRAME_SIZE);
 | |
|         Dbprintf("[+]   DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
 | |
|     }
 | |
| 
 | |
|     // connect Demodulated Signal to ADC:
 | |
|     SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 | |
| 
 | |
|     // Setup for the DMA.
 | |
|     FpgaSetupSsc();
 | |
| 
 | |
|     // Set FPGA in the appropriate mode
 | |
|     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
 | |
|     SpinDelay(20);
 | |
| 
 | |
|     // Start the SSP timer
 | |
|     StartCountSspClk();
 | |
| }
 | |
| 
 | |
| //=============================================================================
 | |
| // Finally, the `sniffer' combines elements from both the reader and
 | |
| // simulated tag, to show both sides of the conversation.
 | |
| //=============================================================================
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Record the sequence of commands sent by the reader to the tag, with
 | |
| // triggering so that we start recording at the point that the tag is moved
 | |
| // near the reader.
 | |
| //-----------------------------------------------------------------------------
 | |
| /*
 | |
|  * Memory usage for this function, (within BigBuf)
 | |
|  * Last Received command (reader->tag) - MAX_FRAME_SIZE
 | |
|  * Last Received command (tag->reader) - MAX_FRAME_SIZE
 | |
|  * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
 | |
|  * Demodulated samples received - all the rest
 | |
|  */
 | |
| void RAMFUNC SniffIso14443b(void) {
 | |
| 
 | |
|     uint32_t time_0 = 0, time_start = 0, time_stop = 0;
 | |
|     int ci = 0, cq = 0;
 | |
| 
 | |
|     // We won't start recording the frames that we acquire until we trigger;
 | |
|     // a good trigger condition to get started is probably when we see a
 | |
|     // response from the tag.
 | |
|     bool TagIsActive = false;
 | |
|     bool ReaderIsActive = false;
 | |
| 
 | |
|     iso1444b_setup_sniff();
 | |
| 
 | |
|     // The DMA buffer, used to stream samples from the FPGA
 | |
|     int8_t *dmaBuf = (int8_t *) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
 | |
|     int8_t *data = dmaBuf;
 | |
| 
 | |
|     // Setup and start DMA.
 | |
|     if (!FpgaSetupSscDma((uint8_t *) dmaBuf, ISO14443B_DMA_BUFFER_SIZE)) {
 | |
|         if (MF_DBGLEVEL > 1) Dbprintf("[!] FpgaSetupSscDma failed. Exiting");
 | |
|         BigBuf_free();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // time ZERO, the point from which it all is calculated.
 | |
|     time_0 = GetCountSspClk();
 | |
| 
 | |
|     // loop and listen
 | |
|     while (!BUTTON_PRESS()) {
 | |
|         WDT_HIT();
 | |
| 
 | |
|         ci = data[0];
 | |
|         cq = data[1];
 | |
|         data += 2;
 | |
| 
 | |
|         if (data >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
 | |
|             data = dmaBuf;
 | |
|             AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
 | |
|             AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
 | |
|         }
 | |
| 
 | |
|         // no need to try decoding reader data if the tag is sending
 | |
|         if (!TagIsActive) {
 | |
| 
 | |
|             LED_A_INV();
 | |
| 
 | |
|             if (Handle14443bReaderUartBit(ci & 0x01)) {
 | |
|                 time_stop = GetCountSspClk() - time_0;
 | |
|                 LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, true);
 | |
|                 UartReset();
 | |
|                 DemodReset();
 | |
|             } else {
 | |
|                 time_start = GetCountSspClk() - time_0;
 | |
|             }
 | |
| 
 | |
|             if (Handle14443bReaderUartBit(cq & 0x01)) {
 | |
|                 time_stop = GetCountSspClk() - time_0;
 | |
|                 LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, true);
 | |
|                 UartReset();
 | |
|                 DemodReset();
 | |
|             } else {
 | |
|                 time_start = GetCountSspClk() - time_0;
 | |
|             }
 | |
|             ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
 | |
|         }
 | |
| 
 | |
|         // no need to try decoding tag data if the reader is sending - and we cannot afford the time
 | |
|         if (!ReaderIsActive) {
 | |
| 
 | |
|             // is this | 0x01 the error?   & 0xfe  in https://github.com/Proxmark/proxmark3/issues/103
 | |
|             // LSB is a fpga signal bit.
 | |
|             if (Handle14443bTagSamplesDemod(ci, cq)) {
 | |
|                 time_stop = GetCountSspClk() - time_0;
 | |
|                 LogTrace(Demod.output, Demod.len, time_start, time_stop, NULL, false);
 | |
|                 UartReset();
 | |
|                 DemodReset();
 | |
|             } else {
 | |
|                 time_start = GetCountSspClk() - time_0;
 | |
|             }
 | |
|             TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (MF_DBGLEVEL >= 2) {
 | |
|         DbpString("[+] Sniff statistics:");
 | |
|         Dbprintf("[+]  uart State: %x  ByteCount: %i  ByteCountMax: %i", Uart.state,  Uart.byteCnt,  Uart.byteCntMax);
 | |
|         Dbprintf("[+]  trace length: %i", BigBuf_get_traceLen());
 | |
|     }
 | |
| 
 | |
|     switch_off();
 | |
| }
 | |
| 
 | |
| void iso14b_set_trigger(bool enable) {
 | |
|     trigger = enable;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send raw command to tag ISO14443B
 | |
|  * @Input
 | |
|  * param   flags enum ISO14B_COMMAND.  (mifare.h)
 | |
|  * len     len of buffer data
 | |
|  * data    buffer with bytes to send
 | |
|  *
 | |
|  * @Output
 | |
|  * none
 | |
|  *
 | |
|  */
 | |
| void SendRawCommand14443B_Ex(UsbCommand *c) {
 | |
|     iso14b_command_t param = c->arg[0];
 | |
|     size_t len = c->arg[1] & 0xffff;
 | |
|     uint32_t timeout = c->arg[2];
 | |
|     uint8_t *cmd = c->d.asBytes;
 | |
|     uint8_t status = 0;
 | |
|     uint32_t sendlen = sizeof(iso14b_card_select_t);
 | |
|     uint8_t buf[USB_CMD_DATA_SIZE] = {0x00};
 | |
| 
 | |
|     if (MF_DBGLEVEL > 3) Dbprintf("14b raw: param, %04x", param);
 | |
| 
 | |
|     // turn on trigger (LED_A)
 | |
|     if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER)
 | |
|         iso14b_set_trigger(true);
 | |
| 
 | |
|     if ((param & ISO14B_CONNECT) == ISO14B_CONNECT) {
 | |
|         iso14443b_setup();
 | |
|         clear_trace();
 | |
|     }
 | |
| 
 | |
|     if ((param & ISO14B_SET_TIMEOUT))
 | |
|         iso14b_set_timeout(timeout);
 | |
| 
 | |
|     set_tracing(true);
 | |
| 
 | |
|     if ((param & ISO14B_SELECT_STD) == ISO14B_SELECT_STD) {
 | |
|         iso14b_card_select_t *card = (iso14b_card_select_t *)buf;
 | |
|         status = iso14443b_select_card(card);
 | |
|         cmd_send(CMD_ACK, status, sendlen, 0, buf, sendlen);
 | |
|         // 0: OK 2: attrib fail, 3:crc fail,
 | |
|         if (status > 0) goto out;
 | |
|     }
 | |
| 
 | |
|     if ((param & ISO14B_SELECT_SR) == ISO14B_SELECT_SR) {
 | |
|         iso14b_card_select_t *card = (iso14b_card_select_t *)buf;
 | |
|         status = iso14443b_select_srx_card(card);
 | |
|         cmd_send(CMD_ACK, status, sendlen, 0, buf, sendlen);
 | |
|         // 0: OK 2: demod fail, 3:crc fail,
 | |
|         if (status > 0) goto out;
 | |
|     }
 | |
| 
 | |
|     if ((param & ISO14B_APDU) == ISO14B_APDU) {
 | |
|         status = iso14443b_apdu(cmd, len, buf);
 | |
|         cmd_send(CMD_ACK, status, status, 0, buf, status);
 | |
|     }
 | |
| 
 | |
|     if ((param & ISO14B_RAW) == ISO14B_RAW) {
 | |
|         if ((param & ISO14B_APPEND_CRC) == ISO14B_APPEND_CRC) {
 | |
|             AddCrc14B(cmd, len);
 | |
|             len += 2;
 | |
|         }
 | |
| 
 | |
|         CodeAndTransmit14443bAsReader(cmd, len); // raw
 | |
|         GetTagSamplesFor14443bDemod(); // raw
 | |
| 
 | |
|         sendlen = MIN(Demod.len, USB_CMD_DATA_SIZE);
 | |
|         status = (Demod.len > 0) ? 0 : 1;
 | |
|         cmd_send(CMD_ACK, status, sendlen, 0, Demod.output, sendlen);
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     // turn off trigger (LED_A)
 | |
|     if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER)
 | |
|         iso14b_set_trigger(false);
 | |
| 
 | |
|     // turn off antenna et al
 | |
|     // we don't send a HALT command.
 | |
|     if ((param & ISO14B_DISCONNECT) == ISO14B_DISCONNECT) {
 | |
|         switch_off(); // disconnect raw
 | |
|         SpinDelay(20);
 | |
|     }
 | |
| }
 |