proxmark3/armsrc/Standalone/hf_colin.c

1063 lines
38 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Colin Brigato, 2016
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// main code for HF Mifare aka ColinRun by Colin Brigato
//-----------------------------------------------------------------------------
#include "standalone.h" // standalone definitions
#include "hf_colin.h"
#include "proxmark3_arm.h"
#include "appmain.h"
#include "fpgaloader.h"
#include "dbprint.h"
#include "ticks.h"
#include "util.h"
#include "commonutil.h"
#include "BigBuf.h"
#include "iso14443a.h"
#include "mifareutil.h"
#include "mifaresim.h"
#include "vtsend.h"
#include "spiffs.h"
#include "frozen.h"
#define MF1KSZ 1024
#define MF1KSZSIZE 64
#define AUTHENTICATION_TIMEOUT 848
#define HFCOLIN_LASTTAG_SYMLINK "hf_colin/lasttag.bin"
#define HFCOLIN_SCHEMAS_JSON "hf_colin/schemas.json"
/* Example jsonconfig file schemas.json : (array !)
[{
"name": "UrmetCaptive",
"trigger": "0x8829da9daf76",
"keysA": [
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76"
],
"keysB": [
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76",
"0x8829da9daf76"
]
},{
"name": "Noralsy",
...
]
*/
static uint8_t colin_cjuid[10];
static uint32_t colin_cjcuid;
static iso14a_card_select_t colin_p_card;
static int colin_currline;
static int colin_currfline;
static int colin_curlline;
// TODO : Implement fast read of KEYS like in RFIdea
// also http://ext.delaat.net/rp/2015-2016/p04/report.pdf
// Colin's VIGIKPWN sniff/simulate/clone repeat routine for HF Mifare
static const uint8_t colin_is_hex[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0, 0, 0, 0, 0,
0, 11, 12, 13, 14, 15, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 11, 12, 13, 14, 15, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static uint64_t hex2i(const char *s) {
uint64_t val = 0;
if (s == NULL || s[0] == 0)
return 0;
if (s[1] == 'x')
s += 2;
else if (*s == 'x')
s++;
while (colin_is_hex[(uint8_t)*s])
val = (val << 4) | (colin_is_hex[(uint8_t) * (s++)] - 1);
return val;
}
/*char *noralsy2test =
"{\"name\":\"noralsy2\",\"trigger\":\"0x414C41524F4E\",\"keysA\":[\"0x414C41524F4E\",\"0x414C41524F4E\","
"\"0x414C41524F4E\","
"\"0x414C41524F4E\",\"0x414C41524F4E\",\"0x414C41524F4E\",\"0x414C41524F4E\",\"0x414C41524F4E\","
"\"0x414C41524F4E\",\"0x414C41524F4E\","
"\"0x414C41524F4E\",\"0x414C41524F4E\",\"0x414C41524F4E\",\"0x414C41524F4E\",\"0x414C41524F4E\","
"\"0x414C41524F4E\"],\"keysB\":["
"\"0x424C41524F4E\",\"0x424C41524F4E\",\"0x424C41524F4E\",\"0x424C41524F4E\",\"0x424C41524F4E\","
"\"0x424C41524F4E\",\"0x424C41524F4E\","
"\"0x424C41524F4E\",\"0x424C41524F4E\",\"0x424C41524F4E\",\"0x424C41524F4E\",\"0x424C41524F4E\","
"\"0x424C41524F4E\",\"0x424C41524F4E\","
"\"0x424C41524F4E\",\"0x424C41524F4E\"]}";*/
/*char *urmetcaptive2test =
"{\"name\":\"urmetcaptive2\",\"trigger\":\"0x8829da9daf76\",\"keysA\":[\"0x8829da9daf76\",\"0x8829da9daf76\","
"\"0x8829da9daf76\","
"\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\","
"\"0x8829da9daf76\",\"0x8829da9daf76\","
"\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\","
"\"0x8829da9daf76\"],\"keysB\":["
"\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\","
"\"0x8829da9daf76\",\"0x8829da9daf76\","
"\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\",\"0x8829da9daf76\","
"\"0x8829da9daf76\",\"0x8829da9daf76\","
"\"0x8829da9daf76\",\"0x8829da9daf76\"]}";*/
typedef struct {
uint8_t name[32];
uint64_t trigger;
uint64_t keysA[16];
uint64_t keysB[16];
} MFC1KSchema_t;
#define MAX_SCHEMAS 4
static void scan_keys(const char *str, int len, uint64_t *user_data) {
struct json_token t;
int i;
char ks[32];
for (i = 0; json_scanf_array_elem(str, len, "", i, &t) > 0; i++) {
sprintf(ks, "%.*s", t.len, t.ptr);
user_data[i] = hex2i(ks);
}
}
static MFC1KSchema_t colin_Schemas[MAX_SCHEMAS];
/*MFC1KSchema_t Noralsy = {
.name = "Noralsy",
.trigger = 0x414c41524f4e,
.keysA = {0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e,
0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e,
0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e, 0x414c41524f4e},
.keysB = {0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e,
0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e,
0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e, 0x424c41524f4e}};
MFC1KSchema_t InfiHexact = {.name = "Infineon/Hexact",
.trigger = 0x484558414354,
.keysA = {0x484558414354, 0x484558414354, 0x484558414354, 0x484558414354, 0x484558414354,
0x484558414354, 0x484558414354, 0x484558414354, 0x484558414354, 0x484558414354,
0x484558414354, 0x484558414354, 0x484558414354, 0x484558414354, 0x484558414354,
0x484558414354},
.keysB = {0xa22ae129c013, 0x49fae4e3849f, 0x38fcf33072e0, 0x8ad5517b4b18, 0x509359f131b1,
0x6c78928e1317, 0xaa0720018738, 0xa6cac2886412, 0x62d0c424ed8e, 0xe64a986a5d94,
0x8fa1d601d0a2, 0x89347350bd36, 0x66d2b7dc39ef, 0x6bc1e1ae547d, 0x22729a9bd40f}};
*/
/*MFC1KSchema_t UrmetCaptive = {
.name = "Urmet Captive",
.trigger = 0x8829da9daf76,
.keysA = {0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76,
0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76,
0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76},
.keysB = {0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76,
0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76,
0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76, 0x8829da9daf76}};
*/
static int colin_total_schemas = 0;
static void add_schema(MFC1KSchema_t *p, MFC1KSchema_t a, int *schemas_counter) {
if (*schemas_counter < MAX_SCHEMAS) {
p[*schemas_counter] = a;
*schemas_counter += 1;
}
}
/*
static void delete_schema(MFC1KSchema_t *p, int *schemas_counter, int index) {
if (*schemas_counter > 0 && index < *schemas_counter && index > -1) {
int last_index = *schemas_counter - 1;
for (int i = index; i < last_index; i++) {
p[i] = p[i + 1];
}
*schemas_counter -= 1;
}
}
*/
static void cjSetCursFRight(void) {
vtsend_cursor_position(NULL, 98, (colin_currfline));
colin_currfline++;
}
static void cjSetCursRight(void) {
vtsend_cursor_position(NULL, 59, (colin_currline));
colin_currline++;
}
static void cjSetCursLeft(void) {
vtsend_cursor_position(NULL, 0, (colin_curlline));
colin_curlline++;
}
static void cjTabulize(void) { DbprintfEx(FLAG_RAWPRINT, "\t\t\t"); }
static char *ReadSchemasFromSPIFFS(char *filename) {
SpinOff(0);
int changed = rdv40_spiffs_lazy_mount();
uint32_t size = size_in_spiffs((char *)filename);
uint8_t *mem = BigBuf_malloc(size);
rdv40_spiffs_read_as_filetype((char *)filename, (uint8_t *)mem, size, RDV40_SPIFFS_SAFETY_SAFE);
if (changed) {
rdv40_spiffs_lazy_unmount();
}
SpinOff(0);
return (char *)mem;
}
static void add_schemas_from_json_in_spiffs(char *filename) {
char *jsonfile = ReadSchemasFromSPIFFS((char *)filename);
int i, len = strlen(jsonfile);
struct json_token t;
for (i = 0; json_scanf_array_elem(jsonfile, len, "", i, &t) > 0; i++) {
char *tmpname;
char *tmptrigger;
MFC1KSchema_t tmpscheme;
json_scanf(t.ptr, t.len, "{ name:%Q, trigger:%Q, keysA:%M, keysB:%M}", &tmpname, &tmptrigger, scan_keys,
&tmpscheme.keysA, scan_keys, &tmpscheme.keysB);
memcpy(tmpscheme.name, tmpname, 32);
tmpscheme.trigger = hex2i(tmptrigger);
add_schema(colin_Schemas, tmpscheme, &colin_total_schemas);
DbprintfEx(FLAG_NEWLINE, "Schema loaded : %s", tmpname);
cjSetCursLeft();
}
}
static void ReadLastTagFromFlash(void) {
SpinOff(0);
LED_A_ON();
LED_B_ON();
LED_C_ON();
LED_D_ON();
uint16_t len = 1024;
size_t size = len;
DbprintfEx(FLAG_NEWLINE, "Button HELD ! Using LAST Known TAG for Simulation...");
cjSetCursLeft();
uint8_t *mem = BigBuf_malloc(size);
// this one will handle filetype (symlink or not) and resolving by itself
rdv40_spiffs_read_as_filetype((char *)HFCOLIN_LASTTAG_SYMLINK, (uint8_t *)mem, len, RDV40_SPIFFS_SAFETY_SAFE);
// copy 64blocks (16bytes) starting w block0, to emulator mem.
emlSetMem_xt(mem, 0, 64, 16);
DbprintfEx(FLAG_NEWLINE, "[OK] Last tag recovered from FLASHMEM set to emulator");
cjSetCursLeft();
SpinOff(0);
return;
}
void WriteTagToFlash(uint32_t uid, size_t size) {
SpinOff(0);
LED_A_ON();
LED_B_ON();
LED_C_ON();
LED_D_ON();
uint32_t len = size;
uint8_t data[(size * (16 * 64)) / 1024];
emlGetMem(data, 0, (size * 64) / 1024);
char dest[SPIFFS_OBJ_NAME_LEN];
uint8_t buid[4];
num_to_bytes(uid, 4, buid);
sprintf(dest, "hf_colin/mf_%02x%02x%02x%02x.bin", buid[0], buid[1], buid[2], buid[3]);
// TODO : by using safe function for multiple writes we are both breaking cache mechanisms and making useless and
// unoptimized mount operations we should manage at out level the mount status before and after the whole
// standalone mode
rdv40_spiffs_write((char *)dest, (uint8_t *)data, len, RDV40_SPIFFS_SAFETY_SAFE);
// lastag will only contain filename/path to last written tag file so we don't loose time or space.
rdv40_spiffs_make_symlink((char *)dest, (char *)HFCOLIN_LASTTAG_SYMLINK, RDV40_SPIFFS_SAFETY_SAFE);
DbprintfEx(FLAG_NEWLINE, "[OK] TAG WRITTEN TO FLASH !");
cjSetCursLeft();
SpinOff(0);
return;
}
void ModInfo(void) {
DbpString(" HF Mifare ultra fast sniff/sim/clone - aka VIGIKPWN (Colin Brigato)");
}
void RunMod(void) {
StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
Dbprintf(">> HF Mifare ultra fast sniff/sim/clone a.k.a VIGIKPWN Started <<");
// turn off all debugging.
g_dbglevel = DBG_NONE;
// add_schema(colin_Schemas, Noralsy, &colin_total_schemas);
// add_schema(colin_Schemas, InfiHexact, &colin_total_schemas);
// add_schema_from_json_in_spiffs((char *)HFCOLIN_URMETCAPTIVE_JSON);
// add_schema(colin_Schemas, UrmetCaptive, &colin_total_schemas);
colin_currline = 20;
colin_curlline = 20;
colin_currfline = 24;
memset(colin_cjuid, 0, sizeof(colin_cjuid));
colin_cjcuid = 0;
uint8_t sectorsCnt = (MF1KSZ / MF1KSZSIZE);
uint64_t key64; // Defines current key
uint8_t *keyBlock; // Where the keys will be held in memory.
/* VIGIK EXPIRED DUMP FOR STUDY
Sector 0
121C7F730208040001FA33F5CB2D021D
44001049164916491649000000000000
00000000000000000000000000000000
A0A1A2A3A4A579678800010203040506
Sector 1
0F000000000000000000000000000000
AA0700002102080000740C110600AF13
000000000000000001740C1108220000
314B4947495679678800010203040506
Sector 2
24E572B923A3D243B402D60CAB576956
216D6501FC8618B6C426762511AC2DEE
25BF4CEC3618D0BAB3A6E9210D887746
314B4947495679678800010203040506
Sector 3
0FBC41A5D95398E76A1B2029E8EA9735
088BA2CE732653D0C1147596AFCF94D7
77B4D91F0442182273A29DEAF7A2D095
314B4947495679678800010203040506
Sector 4
4CEE715866E508CDBC95C640EC9D1E58
E800457CF8B079414E1B45DD3E6C9317
77B4D91F0442182273A29DEAF7A2D095
314B4947495679678800010203040506
010203040506 0
Sector 5-0F
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
FFFFFFFFFFFFFF078069FFFFFFFFFFFF
KEY A : 1KGIV ;
ACCBITS : 796788[00]+VALUE
*/
// ----------------------------
// Set of keys to be used.
// This should cover ~98% of
// French VIGIK system @2017
// ----------------------------
const uint64_t mfKeys[] = {
0xffffffffffff, // TRANSPORTS
0x000000000000, // Blankkey
0x484558414354, // INFINEONON A / 0F SEC B / INTRATONE / HEXACT...
0x414c41524f4e, // ALARON NORALSY
0x424c41524f4e, // BLARON NORALSY
0x4a6352684677, // COMELIT A General Key / 08 [2] 004
0x536653644c65, // COMELIT B General Key / 08 [2] 004
0x8829da9daf76, // URMET CAPTIV IF A => ALL A/B / BTICINO
0x314B49474956, // "1KIGIV" VIGIK'S SERVICE BADGE A KEY
0xa0a1a2a3a4a5, // PUBLIC BLOC0 BTICINO MAD ACCESS
0x021209197591, // BTCINO UNDETERMINED SPREAKD 0x01->0x13 key
0x010203040506, // VIGIK's B Derivative
0xb0b1b2b3b4b5, // NA DERIVATE B # 1
0xaabbccddeeff, // NA DERIVATE B # 1
0x4d3a99c351dd, // NA DERIVATE B # 1
0x1a982c7e459a, // NA DERIVATE B # 1
0xd3f7d3f7d3f7, // NA DERIVATE B # 1
0x714c5c886e97, // NA DERIVATE B # 1
0x587ee5f9350f, // NA DERIVATE B # 1
0xa0478cc39091, // NA DERIVATE B # 1
0x533cb6c723f6, // NA DERIVATE B # 1
0x8fd0a4f256e9, // NA DERIVATE B # 1
0xa22ae129c013, // INFINEON B 00
0x49fae4e3849f, // INFINEON B 01
0x38fcf33072e0, // INFINEON B 02
0x8ad5517b4b18, // INFINEON B 03
0x509359f131b1, // INFINEON B 04
0x6c78928e1317, // INFINEON B 05
0xaa0720018738, // INFINEON B 06
0xa6cac2886412, // INFINEON B 07
0x62d0c424ed8e, // INFINEON B 08
0xe64a986a5d94, // INFINEON B 09
0x8fa1d601d0a2, // INFINEON B 0A
0x89347350bd36, // INFINEON B 0B
0x66d2b7dc39ef, // INFINEON B 0C
0x6bc1e1ae547d, // INFINEON B 0D
0x22729a9bd40f // INFINEON B 0E
};
// Can remember something like that in case of Bigbuf
keyBlock = BigBuf_malloc(ARRAYLEN(mfKeys) * 6);
int mfKeysCnt = ARRAYLEN(mfKeys);
for (int mfKeyCounter = 0; mfKeyCounter < mfKeysCnt; mfKeyCounter++) {
num_to_bytes(mfKeys[mfKeyCounter], 6, (uint8_t *)(keyBlock + mfKeyCounter * 6));
}
// TODO : remember why we actually had need to initialize this array in such specific case
// and why not a simple memset abuse to 0xffize the whole space in one go ?
// uint8_t foundKey[2][40][6]; //= [ {0xff} ]; /* C99 abusal 6.7.8.21
uint8_t foundKey[2][40][6];
for (uint16_t i = 0; i < 2; i++) {
for (uint16_t sectorNo = 0; sectorNo < sectorsCnt; sectorNo++) {
foundKey[i][sectorNo][0] = 0xFF;
foundKey[i][sectorNo][1] = 0xFF;
foundKey[i][sectorNo][2] = 0xFF;
foundKey[i][sectorNo][3] = 0xFF;
foundKey[i][sectorNo][4] = 0xFF;
foundKey[i][sectorNo][5] = 0xFF;
}
}
int key = -1;
bool err = 0;
bool trapped = 0;
bool allKeysFound = true;
uint32_t size = mfKeysCnt;
// banner:
vtsend_reset(NULL);
DbprintfEx(FLAG_NEWLINE, "\r\n%s", clearTerm);
DbprintfEx(FLAG_NEWLINE, "%s%s%s", _XCYAN_, sub_banner, _XWHITE_);
DbprintfEx(FLAG_NEWLINE, "%s>>%s C.J.B's MifareFastPwn Started\r\n", _XRED_, _XWHITE_);
colin_currline = 20;
colin_curlline = 20;
colin_currfline = 24;
cjSetCursLeft();
add_schemas_from_json_in_spiffs((char *)HFCOLIN_SCHEMAS_JSON);
failtag:
vtsend_cursor_position_save(NULL);
vtsend_set_attribute(NULL, 1);
vtsend_set_attribute(NULL, 5);
DbprintfEx(FLAG_NEWLINE, "\t\t\t[ Waiting For Tag ]");
vtsend_set_attribute(NULL, 0);
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
SpinOff(50);
LED_A_ON();
while (!iso14443a_select_card(colin_cjuid, &colin_p_card, &colin_cjcuid, true, 0, true)) {
WDT_HIT();
if (BUTTON_HELD(10) == BUTTON_HOLD) {
WDT_HIT();
DbprintfEx(FLAG_NEWLINE, "\t\t\t[ READING FLASH ]");
ReadLastTagFromFlash();
goto readysim;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(500);
LED_A_INV();
}
SpinOff(50);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
vtsend_cursor_position_restore(NULL);
DbprintfEx(FLAG_NEWLINE, "\t\t\t%s[ GOT a Tag ! ]%s", _XGREEN_, _XWHITE_);
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "\t\t\t `---> Breaking keys ---->");
cjSetCursRight();
DbprintfEx(FLAG_NEWLINE, "\t%sGOT TAG :%s %08x%s", _XRED_, _XCYAN_, colin_cjcuid, _XWHITE_);
if (colin_cjcuid == 0) {
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%s>>%s BUG: 0000_CJCUID! Retrying...", _XRED_, _XWHITE_);
SpinErr(LED_A, 100, 8);
goto failtag;
}
SpinOff(50);
LED_B_ON();
cjSetCursRight();
DbprintfEx(FLAG_NEWLINE, "--------+--------------------+-------");
cjSetCursRight();
DbprintfEx(FLAG_NEWLINE, " SECTOR | KEY | A/B ");
cjSetCursRight();
DbprintfEx(FLAG_NEWLINE, "--------+--------------------+-------");
uint32_t start_time = GetTickCount();
uint32_t delta_time = 0;
// ---------------------------------------------------------------------------
// WE SHOULD FIND A WAY TO GET UID TO AVOID THIS "TESTRUN"
// --------------------------------------------------------
// + HERE IS TO BE THOUGHT AS ONLY A KEY SHOULD BE CHECK
// `-+ THEN WE FILL EMULATOR WITH KEY
// `-+ WHEN WE FILL EMULATOR CARD WITH A KEY
// `-+ IF THERE IS ANY FAIL DURING ANY POINT, WE START BACK CHECKING B KEYS
// `-+ THEN FILL EMULATOR WITH B KEEY
// `-+ THEN EMULATOR WITH CARD WITH B KEY
// `-+ IF IT HAS FAILED OF ANY OF SORT THEN WE ARE MARRON LIKE POMALO.
// ----------------------------------------------------------------------------
// AN EVEN BETTER IMPLEMENTATION IS TO CHECK EVERY KEY FOR SECTOR 0 KEY A
// THEN IF FOUND CHECK THE SAME KEY FOR NEXT SECTOR ONLY KEY A
// THEN IF FAIL CHECK EVERY SECTOR A KEY FOR EVERY OTHER KEY BUT NOT THE BLOCK
// 0 KEY
// THEN TRY TO READ B KEYS FROM KNOWN A KEYS
// IF FAIL, CHECK SECTOR 0 B KEY WITH SECTOR 0 A KEY
// THEN IF FOUND CHECK EVERY SECTOR FOR SAME B KEY
// ELSE IF FAIL CHECK EVERY KEY FOR SECTOR 0 KEY B
// THEN IF FOUND CHECK SAME KEY FOR ONLY NEXT SECTOR KEY B (PROBABLE A KEY IS
// SAME FOR EVERY SECTOR AND B KEY IS SAME FOR EVERY SECTOR WITH JUST A vs B
// DERIVATION
// THEN IF B KEY IS NOT OF THIS SCHEME CHECK EVERY REMAINING B KEYED SECTOR
// WITH EVERY REMAINING KEYS, BUT DISCARDING ANY DEFAULT TRANSPORT KEYS.
// -----------------------------------------------------------------------------
// also we could avoid first UID check for every block
// then let's expose this optimal case of well known vigik schemes :
for (uint8_t type = 0; type < 2 && !err && !trapped; type++) {
for (int sec = 0; sec < sectorsCnt && !err && !trapped; ++sec) {
key = cjat91_saMifareChkKeys(sec * 4, type, NULL, size, &keyBlock[0], &key64);
if (key == -1) {
err = 1;
allKeysFound = false;
// used in portable imlementation on microcontroller: it reports back the fail and open the
// standalone lock reply_ng(CMD_CJB_FSMSTATE_MENU, NULL, 0);
break;
} else if (key == -2) {
err = 1; // Can't select card.
allKeysFound = false;
// reply_old(CMD_CJB_FSMSTATE_MENU, 0, 0, 0, 0, 0);
break;
} else {
/* BRACE YOURSELF : AS LONG AS WE TRAP A KNOWN KEY, WE STOP CHECKING AND ENFORCE KNOWN SCHEMES */
// uint8_t tosendkey[13];
char tosendkey[13];
num_to_bytes(key64, 6, foundKey[type][sec]);
cjSetCursRight();
DbprintfEx(FLAG_NEWLINE, "SEC: %02x ; KEY : %012" PRIx64 " ; TYP: %i", sec, key64, type);
/*reply_old(CMD_CJB_INFORM_CLIENT_KEY, 12, sec, type, tosendkey, 12);*/
for (int i = 0; i < colin_total_schemas; i++) {
if (key64 == colin_Schemas[i].trigger) {
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%s>>>>>>>>>>>>!*STOP*!<<<<<<<<<<<<<<%s", _XRED_, _XWHITE_);
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, " .TAG SEEMS %sDETERMINISTIC%s. ", _XGREEN_, _XWHITE_);
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%sDetected: %s %s%s", _XORANGE_, _XCYAN_, colin_Schemas[i].name, _XWHITE_);
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "...%s[%sKey_derivation_schemeTest%s]%s...", _XYELLOW_, _XGREEN_,
_XYELLOW_, _XGREEN_);
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%s>>>>>>>>>>>>!*DONE*!<<<<<<<<<<<<<<%s", _XGREEN_, _XWHITE_);
uint16_t t = 0;
for (uint16_t s = 0; s < sectorsCnt; s++) {
num_to_bytes(colin_Schemas[i].keysA[s], 6, foundKey[t][s]);
sprintf(tosendkey, "%02x%02x%02x%02x%02x%02x", foundKey[t][s][0], foundKey[t][s][1],
foundKey[t][s][2], foundKey[t][s][3], foundKey[t][s][4], foundKey[t][s][5]);
cjSetCursRight();
DbprintfEx(FLAG_NEWLINE, "SEC: %02x ; KEY : %s ; TYP: %d", s, tosendkey, t);
}
t = 1;
for (uint16_t s = 0; s < sectorsCnt; s++) {
num_to_bytes(colin_Schemas[i].keysB[s], 6, foundKey[t][s]);
sprintf(tosendkey, "%02x%02x%02x%02x%02x%02x", foundKey[t][s][0], foundKey[t][s][1],
foundKey[t][s][2], foundKey[t][s][3], foundKey[t][s][4], foundKey[t][s][5]);
cjSetCursRight();
DbprintfEx(FLAG_NEWLINE, "SEC: %02x ; KEY : %s ; TYP: %d", s, tosendkey, t);
}
trapped = 1;
break;
}
}
/* etc etc for testing schemes quick schemes */
}
}
}
if (!allKeysFound) {
cjSetCursLeft();
cjTabulize();
DbprintfEx(FLAG_NEWLINE, "%s[ FAIL ]%s\r\n->did not found all the keys :'(", _XRED_, _XWHITE_);
cjSetCursLeft();
SpinErr(LED_B, 100, 8);
SpinOff(100);
return;
}
// Settings keys to emulator
emlClearMem();
uint8_t mblock[16];
for (uint8_t sectorNo = 0; sectorNo < sectorsCnt; sectorNo++) {
emlGetMem(mblock, FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 1);
for (uint8_t t = 0; t < 2; t++) {
memcpy(mblock + t * 10, foundKey[t][sectorNo], 6);
}
emlSetMem_xt(mblock, FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 1, 16);
}
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%s>>%s Setting Keys->Emulator MEM...[%sOK%s]", _XYELLOW_, _XWHITE_, _XGREEN_, _XWHITE_);
// filling TAG to emulator
int filled;
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%s>>%s Filling Emulator <- from A keys...", _XYELLOW_, _XWHITE_);
filled = e_MifareECardLoad(sectorsCnt, 0);
if (filled != PM3_SUCCESS) {
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%s>>%s W_FAILURE ! %sTrying fallback B keys....", _XRED_, _XORANGE_, _XWHITE_);
// no trace, no dbg
filled = e_MifareECardLoad(sectorsCnt, 1);
if (filled != PM3_SUCCESS) {
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "FATAL:EML_FALLBACKFILL_B");
SpinErr(LED_C, 100, 8);
SpinOff(100);
return;
}
}
delta_time = GetTickCountDelta(start_time);
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%s>>%s Time for VIGIK break :%s%dms%s", _XGREEN_, _XWHITE_, _XYELLOW_, delta_time,
_XWHITE_);
vtsend_cursor_position_save(NULL);
vtsend_set_attribute(NULL, 1);
vtsend_set_attribute(NULL, 5);
cjTabulize();
DbprintfEx(FLAG_NEWLINE, "[ WRITING FLASH ]");
cjSetCursLeft();
cjSetCursLeft();
WriteTagToFlash(colin_cjcuid, 1024);
readysim:
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "-> We launch Emulation ->");
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%s!> HOLD ON : %s When you'll click, simm will stop", _XRED_, _XWHITE_);
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE,
"Then %s immediately %s we'll try to %s dump our emulator state%s \r\nin a %s chinese tag%s", _XRED_,
_XWHITE_, _XYELLOW_, _XWHITE_, _XCYAN_, _XWHITE_);
cjSetCursLeft();
cjSetCursLeft();
cjTabulize();
DbprintfEx(FLAG_NEWLINE, "[ SIMULATION ]");
vtsend_set_attribute(NULL, 0);
SpinOff(100);
LED_C_ON();
/*
uint16_t flags = 0;
switch (colin_p_card.uidlen) {
case 10:
flags = FLAG_10B_UID_IN_DATA;
break;
case 7:
flags = FLAG_7B_UID_IN_DATA;
break;
case 4:
flags = FLAG_4B_UID_IN_DATA;
break;
default:
flags = FLAG_UID_IN_EMUL;
break;
}
// Use UID, SAK, ATQA from EMUL, if uid not defined
if ((flags & (FLAG_4B_UID_IN_DATA | FLAG_7B_UID_IN_DATA | FLAG_10B_UID_IN_DATA)) == 0) {
flags |= FLAG_UID_IN_EMUL;
}
flags |= FLAG_MF_1K;
if ((flags & (FLAG_4B_UID_IN_DATA | FLAG_7B_UID_IN_DATA | FLAG_10B_UID_IN_DATA)) == 0) {
flags |= FLAG_UID_IN_EMUL;
}
flags = 0x10;
*/
uint16_t flags = FLAG_UID_IN_EMUL;
DbprintfEx(FLAG_NEWLINE, "\n\n\n\n\n\n\n\nn\n\nn\n\n\nflags: %d (0x%02x)", flags, flags);
cjSetCursLeft();
SpinOff(1000);
Mifare1ksim(flags, 0, colin_cjuid, 0, 0);
LED_C_OFF();
SpinOff(50);
vtsend_cursor_position_restore(NULL);
DbprintfEx(FLAG_NEWLINE, "[ SIMUL ENDED ]%s", _XGREEN_, _XWHITE_);
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "<- We're out of Emulation");
// END SIM
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "-> Trying a clone !");
saMifareMakeTag();
cjSetCursLeft();
vtsend_cursor_position_restore(NULL);
DbprintfEx(FLAG_NEWLINE, "%s[ CLONED? ]", _XCYAN_);
DbprintfEx(FLAG_NEWLINE, "-> End Cloning.");
WDT_HIT();
// Debunk...
cjSetCursLeft();
cjTabulize();
vtsend_set_attribute(NULL, 0);
vtsend_set_attribute(NULL, 7);
DbprintfEx(FLAG_NEWLINE, "- [ LA FIN ] -\r\n%s`-> You can take shell back :) ...", _XWHITE_);
cjSetCursLeft();
vtsend_set_attribute(NULL, 0);
SpinErr(LED_D, 100, 16);
SpinDown(75);
SpinOff(100);
return;
}
/* Abusive microgain on original MifareECardLoad :
* - *datain used as error return
* - tracing is falsed
*/
int e_MifareECardLoad(uint32_t numofsectors, uint8_t keytype) {
uint8_t numSectors = numofsectors;
uint8_t keyType = keytype;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t dataoutbuf[16];
uint8_t dataoutbuf2[16];
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(false);
bool isOK = true;
if (!iso14443a_select_card(colin_cjuid, &colin_p_card, &colin_cjcuid, true, 0, true)) {
isOK = false;
}
for (uint8_t s = 0; isOK && s < numSectors; s++) {
uint64_t ui64Key = emlGetKey(s, keyType);
if (s == 0) {
if (isOK && mifare_classic_auth(pcs, colin_cjcuid, FirstBlockOfSector(s), keyType, ui64Key, AUTH_FIRST)) {
break;
}
} else {
if (isOK && mifare_classic_auth(pcs, colin_cjcuid, FirstBlockOfSector(s), keyType, ui64Key, AUTH_NESTED)) {
isOK = false;
break;
}
}
for (uint8_t blockNo = 0; isOK && blockNo < NumBlocksPerSector(s); blockNo++) {
if (isOK && mifare_classic_readblock(pcs, FirstBlockOfSector(s) + blockNo, dataoutbuf)) {
isOK = false;
break;
};
if (isOK) {
if (blockNo < NumBlocksPerSector(s) - 1) {
emlSetMem_xt(dataoutbuf, FirstBlockOfSector(s) + blockNo, 1, 16);
} else {
// sector trailer, keep the keys, set only the AC
emlGetMem(dataoutbuf2, FirstBlockOfSector(s) + blockNo, 1);
memcpy(&dataoutbuf2[6], &dataoutbuf[6], 4);
emlSetMem_xt(dataoutbuf2, FirstBlockOfSector(s) + blockNo, 1, 16);
}
}
}
}
int res = mifare_classic_halt(pcs);
(void)res;
crypto1_deinit(pcs);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
return (isOK) ? PM3_SUCCESS : PM3_EUNDEF;
}
/* the chk function is a piwi'ed(tm) check that will try all keys for
a particular sector. also no tracing no dbg */
int cjat91_saMifareChkKeys(uint8_t blockNo, uint8_t keyType, bool clearTrace,
uint8_t keyCount, uint8_t *datain, uint64_t *key) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
set_tracing(false);
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
int retval = -1;
for (uint8_t i = 0; i < keyCount; i++) {
/* no need for anticollision. just verify tag is still here */
// if (!iso14443a_fast_select_card(colin_cjuid, 0)) {
if (!iso14443a_select_card(colin_cjuid, &colin_p_card, &colin_cjcuid, true, 0, true)) {
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "%sFATAL%s : E_MF_LOSTTAG", _XRED_, _XWHITE_);
break;
}
uint64_t ui64Key = bytes_to_num(datain + i * 6, 6);
if (mifare_classic_auth(pcs, colin_cjcuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
uint8_t dummy_answer = 0;
ReaderTransmit(&dummy_answer, 1, NULL);
// wait for the card to become ready again
SpinDelayUs(AUTHENTICATION_TIMEOUT);
continue;
}
*key = ui64Key;
retval = i;
break;
}
crypto1_deinit(pcs);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
return retval;
}
void saMifareMakeTag(void) {
uint8_t cfail = 0;
cjSetCursLeft();
cjTabulize();
vtsend_cursor_position_save(NULL);
vtsend_set_attribute(NULL, 1);
DbprintfEx(FLAG_NEWLINE, "[ CLONING ]");
vtsend_set_attribute(NULL, 0);
cjSetCursFRight();
DbprintfEx(FLAG_NEWLINE, ">> Write to Special:");
int flags = 0;
for (int blockNum = 0; blockNum < 16 * 4; blockNum++) {
uint8_t mblock[16];
emlGetMem(mblock, blockNum, 1);
// switch on field and send magic sequence
if (blockNum == 0)
flags = 0x08 + 0x02;
// just write
if (blockNum == 1)
flags = 0;
// Done. Magic Halt and switch off field.
if (blockNum == 16 * 4 - 1)
flags = 0x04 + 0x10;
if (saMifareCSetBlock(0, flags & 0xFE, blockNum, mblock)) {
cjSetCursFRight();
if (colin_currfline > 53) {
colin_currfline = 54;
}
DbprintfEx(FLAG_NEWLINE, "Block :%02x %sOK%s", blockNum, _XGREEN_, _XWHITE_);
continue;
} else {
cjSetCursLeft();
cjSetCursLeft();
DbprintfEx(FLAG_NEWLINE, "`--> %sFAIL%s : CHN_FAIL_BLK_%02x_NOK", _XRED_, _XWHITE_, blockNum);
cjSetCursFRight();
DbprintfEx(FLAG_NEWLINE, "%s>>>>%s STOP AT %02x", _XRED_, _XWHITE_, blockNum);
cfail++;
break;
}
cjSetCursFRight();
DbprintfEx(FLAG_NEWLINE, "%s>>>>>>>> END <<<<<<<<%s", _XYELLOW_, _XWHITE_);
}
if (cfail == 0) {
SpinUp(50);
SpinUp(50);
SpinUp(50);
}
}
// TODO : make this work either for a Gen1a or for a block 0 direct write all transparently
//-----------------------------------------------------------------------------
// Matt's StandAlone mod.
// Work with "magic Chinese" card (email him: ouyangweidaxian@live.cn)
//-----------------------------------------------------------------------------
int saMifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
// params
uint8_t needWipe = arg0;
// bit 0 - need get UID
// bit 1 - need wupC
// bit 2 - need HALT after sequence
// bit 3 - need init FPGA and field before sequence
// bit 4 - need reset FPGA and LED
uint8_t workFlags = arg1;
uint8_t blockNo = arg2;
// card commands
uint8_t wupC1[] = {0x40};
uint8_t wupC2[] = {0x43};
uint8_t wipeC[] = {0x41};
// variables
uint8_t isOK = 0;
uint8_t d_block[18] = {0x00};
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// reset FPGA and LED
if (workFlags & 0x08) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// clear_trace();
set_tracing(FALSE);
}
while (true) {
cjSetCursLeft();
// get UID from chip
if (workFlags & 0x01) {
if (!iso14443a_select_card(colin_cjuid, &colin_p_card, &colin_cjcuid, true, 0, true)) {
DbprintfEx(FLAG_NEWLINE, "Can't select card");
break;
};
if (mifare_classic_halt(NULL)) {
DbprintfEx(FLAG_NEWLINE, "Halt error");
break;
};
};
// reset chip
if (needWipe) {
ReaderTransmitBitsPar(wupC1, 7, 0, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
DbprintfEx(FLAG_NEWLINE, "wupC1 error");
break;
};
ReaderTransmit(wipeC, sizeof(wipeC), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
DbprintfEx(FLAG_NEWLINE, "wipeC error");
break;
};
if (mifare_classic_halt(NULL)) {
DbprintfEx(FLAG_NEWLINE, "Halt error");
break;
};
};
// chaud
// write block
if (workFlags & 0x02) {
ReaderTransmitBitsPar(wupC1, 7, 0, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
DbprintfEx(FLAG_NEWLINE, "wupC1 error");
break;
};
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
DbprintfEx(FLAG_NEWLINE, "wupC2 errorv");
break;
};
}
if ((mifare_sendcmd_short(NULL, CRYPT_NONE, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 1) ||
(receivedAnswer[0] != 0x0a)) {
DbprintfEx(FLAG_NEWLINE, "write block send command error");
break;
};
memcpy(d_block, datain, 16);
AddCrc14A(d_block, 16);
ReaderTransmit(d_block, sizeof(d_block), NULL);
if ((ReaderReceive(receivedAnswer, receivedAnswerPar) != 1) || (receivedAnswer[0] != 0x0a)) {
DbprintfEx(FLAG_NEWLINE, "write block send data error");
break;
};
if (workFlags & 0x04) {
if (mifare_classic_halt(NULL)) {
cjSetCursFRight();
DbprintfEx(FLAG_NEWLINE, "Halt error");
break;
};
}
isOK = 1;
break;
}
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
return isOK;
}