mirror of
				https://github.com/RfidResearchGroup/proxmark3.git
				synced 2025-11-01 00:46:39 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			344 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			344 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| //-----------------------------------------------------------------------------
 | |
| // Copyright (C) 2010, Flavio D. Garcia, Peter van Rossum, Roel Verdult
 | |
| // and Ronny Wichers Schreur. Radboud University Nijmegen
 | |
| // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
 | |
| //
 | |
| // This program is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // This program is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License for more details.
 | |
| //
 | |
| // See LICENSE.txt for the text of the license.
 | |
| //-----------------------------------------------------------------------------
 | |
| // SecureMemory, CryptoMemory and CryptoRF library
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| #include "cryptolib.h"
 | |
| #include <stdbool.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| typedef enum {
 | |
|     CA_ENCRYPT = 0x01,
 | |
|     CA_DECRYPT = 0x02
 | |
| } CryptoAction;
 | |
| 
 | |
| int counter = 0;
 | |
| 
 | |
| static uint8_t nibbles_to_byte(nibble b0, nibble b1) {
 | |
|     // Combine both nibbles
 | |
|     return ((b0 << 4) | b1);
 | |
| }
 | |
| 
 | |
| static uint8_t funny_mod(uint8_t a, uint8_t m) {
 | |
|     // Just return the input when this is less or equal than the modular value
 | |
|     if (a < m) return a;
 | |
| 
 | |
|     // Compute the modular value
 | |
|     a %= m;
 | |
| 
 | |
|     // Return the funny value, when the output was now zero, return the modular value
 | |
|     return (a == 0) ? m : a;
 | |
| }
 | |
| 
 | |
| static uint8_t bit_rotate_left(uint8_t a, uint8_t n_bits) {
 | |
|     // Rotate value a with the length of n_bits only 1 time
 | |
|     uint8_t mask = (1 << n_bits) - 1;
 | |
|     return ((a << 1) | (a >> (n_bits - 1))) & mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
| static void reconstruct_nibbles(crypto_state s)
 | |
| {
 | |
|   uint8_t b1, b5, b8, b15, b18;
 | |
|   uint8_t b0, b4, b7, b14, b17;
 | |
| 
 | |
|   // Extract the bytes that generated the "previous" nibble
 | |
|   b1 = (uint8_t)((s->l >> 25) & 0x1f);
 | |
|   b5 = (uint8_t)((s->l >> 5) & 0x1f);
 | |
|   b8 = (uint8_t)((s->m >> 35) & 0x1f);
 | |
|   b15 = (uint8_t)((s->r >> 15) & 0x1f);
 | |
|   b18 = (uint8_t)(s->r & 0x1f);
 | |
| 
 | |
|   // Reconstruct the b0 nibble
 | |
|   s->b0 = ((b1 ^ b5) & 0x0f) & ~(b8);
 | |
|   s->b0 |= ((b15 ^ b18) & 0x0f) & b8;
 | |
| 
 | |
|   // Extract the bytes for the current nibble
 | |
|   b0 = (uint8_t)((s->l >> 30) & 0x1f);
 | |
|   b4 = (uint8_t)((s->l >> 10) & 0x1f);
 | |
|   b7 = (uint8_t)((s->m >> 42) & 0x1f);
 | |
|   b14 = (uint8_t)((s->r >> 20) & 0x1f);
 | |
|   b17 = (uint8_t)((s->r >> 5) & 0x1f);
 | |
| 
 | |
|   // Construct the values for b1 generation
 | |
|   s->b1l = ((b0 ^ b4) & 0x0f);
 | |
|   s->b1r = ((b14 ^ b17) & 0x0f);
 | |
|   s->b1s = b7;
 | |
| 
 | |
|   // Reconstruct the b1 nibble
 | |
|   s->b1 = s->b1l  & ~(s->b1s);
 | |
|   s->b1 |= s->b1r &  s->b1s;
 | |
| }
 | |
| */
 | |
| static void next_left(uint8_t in, crypto_state s) {
 | |
|     uint8_t b3, b6, bx;
 | |
| 
 | |
|     // Update the left cipher state with the input byte
 | |
|     s->l ^= ((in & 0x1f) << 20);
 | |
| 
 | |
|     // Extract the two (5 bits) values used for modular addtion
 | |
|     b3 = (uint8_t)((s->l >> 15) & 0x1f);
 | |
|     b6 = (uint8_t)(s->l & 0x1f);
 | |
| 
 | |
|     // Compute the modular addition
 | |
|     bx = funny_mod(b3 + bit_rotate_left(b6, 5), 0x1f);
 | |
| 
 | |
|     // Rotate the left cipher state 5 bits
 | |
|     s->l = ((s->l >> 5) | ((uint64_t)bx << 30));
 | |
| 
 | |
|     // Save the 4 left output bits used for b1
 | |
|     s->b1l = ((bx ^ b3) & 0x0f);
 | |
| }
 | |
| 
 | |
| static void next_right(uint8_t in, crypto_state s) {
 | |
|     uint8_t b16, b18, bx;
 | |
| 
 | |
|     // Update the right cipher state with the input byte
 | |
|     s->r ^= ((in & 0xf8) << 12);
 | |
| 
 | |
|     // Extract the two (5 bits) values used for modular addtion
 | |
|     b16 = (uint8_t)((s->r >> 10) & 0x1f);
 | |
|     b18 = (uint8_t)(s->r & 0x1f);
 | |
| 
 | |
|     // Compute the modular addition
 | |
|     bx = funny_mod(b18 + b16, 0x1f);
 | |
| 
 | |
|     // Rotate the right cipher state 5 bits
 | |
|     s->r = ((s->r >> 5) | ((uint64_t)bx << 20));
 | |
| 
 | |
|     // Save the 4 right output bits used for b1
 | |
|     s->b1r = ((bx ^ b16) & 0x0f);
 | |
| }
 | |
| 
 | |
| static void next_middle(uint8_t in, crypto_state s) {
 | |
|     uint8_t b12, b13, bx;
 | |
| 
 | |
|     // Update the middle cipher state with the input byte
 | |
|     s->m ^= (((((uint64_t)in << 3) & 0x7f) | (in >> 5)) << 14);
 | |
| 
 | |
|     // Extract the two (7 bits) values used for modular addtion
 | |
|     b12 = (uint8_t)((s->m >> 7) & 0x7f);
 | |
|     b13 = (uint8_t)(s->m & 0x7f);
 | |
| 
 | |
|     // Compute the modular addition
 | |
|     bx = (funny_mod(b12 + bit_rotate_left(b13, 7), 0x7f));
 | |
| 
 | |
|     // Rotate the middle cipher state 7 bits
 | |
|     s->m = ((s->m >> 7) | ((uint64_t)bx << 42));
 | |
| 
 | |
|     // Save the 4 middle selector bits used for b1
 | |
|     s->b1s = bx & 0x0f;
 | |
| }
 | |
| 
 | |
| static void next(const bool feedback, uint8_t in, crypto_state s) {
 | |
|     // Initialize the (optional) input parameter
 | |
|     uint8_t a = in;
 | |
| 
 | |
|     // Only Cryptomemory uses feedback
 | |
|     if (feedback) {
 | |
|         // Construct the cipher update 'a' from (input ^ feedback)
 | |
|         a = in ^ nibbles_to_byte(s->b0, s->b1);
 | |
|     }
 | |
| 
 | |
|     // Shift the cipher state
 | |
|     next_left(a, s);
 | |
|     next_middle(a, s);
 | |
|     next_right(a, s);
 | |
| 
 | |
|     // For active states we can use the available (previous) 'b1' nibble,
 | |
|     // otherwise use reconstruct_nibbles() to generate them
 | |
|     // reconstruct_nibbles(s)
 | |
| 
 | |
|     // The nible from b1 shifts to b0
 | |
|     s->b0 = s->b1;
 | |
| 
 | |
|     // Construct the new value of nible b1
 | |
|     s->b1 = s->b1l  & ~(s->b1s);
 | |
|     s->b1 |= s->b1r &  s->b1s;
 | |
| }
 | |
| 
 | |
| static void next_n(const bool feedback, size_t n, uint8_t in, crypto_state s) {
 | |
|     // While n-rounds left, shift the cipher
 | |
|     while (n--) next(feedback, in, s);
 | |
| }
 | |
| 
 | |
| static void initialize(const bool feedback, const uint8_t *Gc, const uint8_t *Ci, const uint8_t *Q, const size_t n, crypto_state s) {
 | |
|     size_t pos;
 | |
| 
 | |
|     // Reset the cipher state
 | |
|     memset(s, 0x00, sizeof(crypto_state_t));
 | |
| 
 | |
|     // Load in the ci (tag-nonce), together with the first half of Q (reader-nonce)
 | |
|     for (pos = 0; pos < 4; pos++) {
 | |
|         next_n(feedback, n, Ci[2 * pos  ], s);
 | |
|         next_n(feedback, n, Ci[2 * pos + 1], s);
 | |
|         next(feedback, Q[pos], s);
 | |
|     }
 | |
| 
 | |
|     // Load in the diversified key (Gc), together with the second half of Q (reader-nonce)
 | |
|     for (pos = 0; pos < 4; pos++) {
 | |
|         next_n(feedback, n, Gc[2 * pos  ], s);
 | |
|         next_n(feedback, n, Gc[2 * pos + 1], s);
 | |
|         next(feedback, Q[pos + 4], s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint8_t cm_byte(crypto_state s) {
 | |
|     // Construct keystream byte by combining both nibbles
 | |
|     return nibbles_to_byte(s->b0, s->b1);
 | |
| }
 | |
| 
 | |
| static uint8_t sm_byte(crypto_state s) {
 | |
|     uint8_t ks;
 | |
| 
 | |
|     // Construct keystream byte by combining 2 parts from 4 nibbles
 | |
|     next_n(false, 2, 0, s);
 | |
|     ks = s->b1 << 4;
 | |
|     next_n(false, 2, 0, s);
 | |
|     ks |= s->b1;
 | |
| 
 | |
|     return ks;
 | |
| }
 | |
| 
 | |
| void print_crypto_state(const char *text, crypto_state s) {
 | |
|     int pos;
 | |
| 
 | |
|     printf("%s", text);
 | |
|     for (pos = 6; pos >= 0; pos--)
 | |
|         printf(" %02x", (uint8_t)(s->l >> (pos * 5)) & 0x1f);
 | |
| 
 | |
|     printf(" |");
 | |
|     for (pos = 6; pos >= 0; pos--)
 | |
|         printf(" %02x", (uint8_t)(s->m >> (pos * 7)) & 0x7f);
 | |
| 
 | |
|     printf(" |");
 | |
|     for (pos = 4; pos >= 0; pos--)
 | |
|         printf(" %02x", (uint8_t)(s->r >> (pos * 5)) & 0x1f);
 | |
| 
 | |
|     printf(" | %02x", cm_byte(s));
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| void sm_auth(const uint8_t *Gc, const uint8_t *Ci, const uint8_t *Q, uint8_t *Ch, uint8_t *Ci_1, crypto_state s) {
 | |
|     size_t pos;
 | |
| 
 | |
|     initialize(false, Gc, Ci, Q, 1, s);
 | |
| 
 | |
|     // Generate challenge answer for Tag and Reader
 | |
|     for (pos = 0; pos < 8; pos++) {
 | |
|         Ci_1[pos] = sm_byte(s);
 | |
|         Ch[pos] = sm_byte(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cm_auth(const uint8_t *Gc, const uint8_t *Ci, const uint8_t *Q, uint8_t *Ch, uint8_t *Ci_1, uint8_t *Ci_2, crypto_state s) {
 | |
|     size_t pos;
 | |
| 
 | |
|     initialize(true, Gc, Ci, Q, 3, s);
 | |
| 
 | |
|     // Construct the reader-answer (challenge)
 | |
|     next_n(true, 6, 0, s);
 | |
|     Ch[0] = cm_byte(s);
 | |
|     for (pos = 1; pos < 8; pos++) {
 | |
|         next_n(true, 7, 0, s);
 | |
|         Ch [pos] = cm_byte(s);
 | |
|     }
 | |
| 
 | |
|     // Construct the tag-answer (Ci+1 = ff .. .. .. .. .. .. ..)
 | |
|     Ci_1[0] = 0xff;
 | |
|     for (pos = 1; pos < 8; pos++) {
 | |
|         next_n(true, 2, 0, s);
 | |
|         Ci_1[pos] = cm_byte(s);
 | |
|     }
 | |
| 
 | |
|     // Construct the session key (Ci+2)
 | |
|     for (pos = 0; pos < 8; pos++) {
 | |
|         next_n(true, 2, 0, s);
 | |
|         Ci_2[pos] = cm_byte(s);
 | |
|     }
 | |
| 
 | |
|     // Prepare the cipher for encryption by shifting 3 more times
 | |
|     next_n(true, 3, 0, s);
 | |
| }
 | |
| 
 | |
| static void cm_crypt(const CryptoAction ca, const uint8_t offset, const uint8_t len, const uint8_t *in, uint8_t *out, crypto_state s) {
 | |
|     size_t pos;
 | |
|     uint8_t bt;
 | |
| 
 | |
|     next_n(true, 5, 0, s);
 | |
|     next(true, offset, s);
 | |
|     next_n(true, 5, 0, s);
 | |
|     next(true, len, s);
 | |
|     for (pos = 0; pos < len; pos++) {
 | |
|         // Perform the crypto operation
 | |
|         bt = in[pos] ^ cm_byte(s);
 | |
| 
 | |
|         // Generate output
 | |
|         if (out) out[pos] = bt;
 | |
| 
 | |
|         // Detect where to find the plaintext for loading into cipher state
 | |
|         if (ca == CA_DECRYPT) {
 | |
|             next(true, bt, s);
 | |
|         } else {
 | |
|             next(true, in[pos], s);
 | |
|         }
 | |
| 
 | |
|         // Shift the cipher state 5 times
 | |
|         next_n(true, 5, 0, s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cm_encrypt(const uint8_t offset, const uint8_t len, const uint8_t *pt, uint8_t *ct, crypto_state s) {
 | |
|     next_n(true, 5, 0, s);
 | |
|     next(true, 0, s);
 | |
|     cm_crypt(CA_ENCRYPT, offset, len, pt, ct, s);
 | |
| }
 | |
| 
 | |
| void cm_decrypt(const uint8_t offset, const uint8_t len, const uint8_t *ct, uint8_t *pt, crypto_state s) {
 | |
|     next_n(true, 5, 0, s);
 | |
|     next(true, 0, s);
 | |
|     cm_crypt(CA_DECRYPT, offset, len, ct, pt, s);
 | |
| }
 | |
| 
 | |
| void cm_grind_read_system_zone(const uint8_t offset, const uint8_t len, const uint8_t *pt, crypto_state s) {
 | |
|     cm_crypt(CA_ENCRYPT, offset, len, pt, NULL, s);
 | |
| }
 | |
| 
 | |
| void cm_grind_set_user_zone(const uint8_t zone, crypto_state s) {
 | |
|     next(true, zone, s);
 | |
| }
 | |
| 
 | |
| void cm_mac(uint8_t *mac, crypto_state s) {
 | |
|     next_n(true, 10, 0, s);
 | |
|     if (mac)
 | |
|         mac[0] = cm_byte(s);
 | |
| 
 | |
|     next_n(true, 5, 0, s);
 | |
|     if (mac)
 | |
|         mac[1] = cm_byte(s);
 | |
| }
 | |
| 
 | |
| void cm_password(const uint8_t *pt, uint8_t *ct, crypto_state s) {
 | |
|     for (size_t pos = 0; pos < 3; pos++) {
 | |
|         next_n(true, 5, pt[pos], s);
 | |
|         ct[pos] = cm_byte(s);
 | |
|     }
 | |
| }
 | |
| 
 |