mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-11-11 18:33:18 +08:00
1049 lines
36 KiB
C
1049 lines
36 KiB
C
//-----------------------------------------------------------------------------
|
|
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// See LICENSE.txt for the text of the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Low frequency Indala commands
|
|
// PSK1, rf/32, 64 or 224 bits (known)
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "cmdlfindala.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <inttypes.h>
|
|
#include "cmdparser.h" // command_t
|
|
#include "comms.h"
|
|
#include "graph.h"
|
|
#include "cliparser.h"
|
|
#include "commonutil.h"
|
|
#include "ui.h" // PrintAndLog
|
|
#include "proxgui.h"
|
|
#include "lfdemod.h" // parityTest, bitbytes_to_byte
|
|
#include "cmddata.h"
|
|
#include "cmdlf.h" // lf_read
|
|
#include "protocols.h" // t55 defines
|
|
#include "cmdlft55xx.h" // verifywrite
|
|
#include "cliparser.h"
|
|
#include "cmdlfem4x05.h" // EM defines
|
|
#include "parity.h" // parity
|
|
#define INDALA_ARR_LEN 64
|
|
|
|
static int CmdHelp(const char *Cmd);
|
|
|
|
//large 224 bit indala formats (different preamble too...)
|
|
static uint8_t preamble224[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
|
|
// standard 64 bit indala formats including 26 bit 40134 format
|
|
static uint8_t preamble64[] = {1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
|
|
|
|
#define HEDEN2L_OFFSET 31
|
|
static void encodeHeden2L(uint8_t *dest, uint32_t cardnumber) {
|
|
|
|
uint8_t template[] = {
|
|
1, 0, 1, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 0, 0, 0, 1, 0, 0, 0,
|
|
1, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 1, 0, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 1, 0
|
|
};
|
|
uint8_t cardbits[32];
|
|
|
|
num_to_bytebits(cardnumber, sizeof(cardbits), cardbits);
|
|
|
|
if (cardbits[31] == 1) template[HEDEN2L_OFFSET + 8] = 0x1;
|
|
if (cardbits[30] == 1) template[HEDEN2L_OFFSET + 10] = 0x1;
|
|
if (cardbits[29] == 1) template[HEDEN2L_OFFSET + 14] = 0x1;
|
|
if (cardbits[28] == 1) template[HEDEN2L_OFFSET + 15] = 0x1;
|
|
if (cardbits[27] == 1) template[HEDEN2L_OFFSET + 12] = 0x1;
|
|
if (cardbits[26] == 1) template[HEDEN2L_OFFSET + 28] = 0x1;
|
|
if (cardbits[25] == 1) template[HEDEN2L_OFFSET + 3] = 0x1;
|
|
if (cardbits[24] == 1) template[HEDEN2L_OFFSET + 11] = 0x1;
|
|
if (cardbits[23] == 1) template[HEDEN2L_OFFSET + 19] = 0x1;
|
|
if (cardbits[22] == 1) template[HEDEN2L_OFFSET + 26] = 0x1;
|
|
if (cardbits[21] == 1) template[HEDEN2L_OFFSET + 17] = 0x1;
|
|
if (cardbits[20] == 1) template[HEDEN2L_OFFSET + 18] = 0x1;
|
|
if (cardbits[19] == 1) template[HEDEN2L_OFFSET + 20] = 0x1;
|
|
if (cardbits[18] == 1) template[HEDEN2L_OFFSET + 13] = 0x1;
|
|
if (cardbits[17] == 1) template[HEDEN2L_OFFSET + 7] = 0x1;
|
|
if (cardbits[16] == 1) template[HEDEN2L_OFFSET + 23] = 0x1;
|
|
|
|
// Parity
|
|
uint8_t counter = 0;
|
|
for (int i = 0; i < sizeof(template) - HEDEN2L_OFFSET; i++) {
|
|
if (template[i])
|
|
counter++;
|
|
}
|
|
template[63] = (counter & 0x1);
|
|
|
|
for (int i = 0; i < sizeof(template); i += 8) {
|
|
dest[i / 8] = bytebits_to_byte(template + i, 8);
|
|
}
|
|
|
|
PrintAndLogEx(INFO, "Heden-2L card number %u", cardnumber);
|
|
}
|
|
|
|
static void decodeHeden2L(uint8_t *bits) {
|
|
|
|
uint32_t cardnumber = 0;
|
|
uint8_t offset = HEDEN2L_OFFSET;
|
|
|
|
if (bits[offset + 8]) cardnumber += 1;
|
|
if (bits[offset + 10]) cardnumber += 2;
|
|
if (bits[offset + 14]) cardnumber += 4;
|
|
if (bits[offset + 15]) cardnumber += 8;
|
|
if (bits[offset + 12]) cardnumber += 16;
|
|
if (bits[offset + 28]) cardnumber += 32;
|
|
if (bits[offset + 3]) cardnumber += 64;
|
|
if (bits[offset + 11]) cardnumber += 128;
|
|
if (bits[offset + 19]) cardnumber += 256;
|
|
if (bits[offset + 26]) cardnumber += 512;
|
|
if (bits[offset + 17]) cardnumber += 1024;
|
|
if (bits[offset + 18]) cardnumber += 2048;
|
|
if (bits[offset + 20]) cardnumber += 4096;
|
|
if (bits[offset + 13]) cardnumber += 8192;
|
|
if (bits[offset + 7]) cardnumber += 16384;
|
|
if (bits[offset + 23]) cardnumber += 32768;
|
|
|
|
PrintAndLogEx(SUCCESS, " Heden-2L | %u", cardnumber);
|
|
}
|
|
|
|
// Indala 26 bit decode
|
|
// by marshmellow, martinbeier
|
|
// optional arguments - same as PSKDemod (clock & invert & maxerr)
|
|
int demodIndalaEx(int clk, int invert, int maxErr, bool verbose) {
|
|
(void) verbose; // unused so far
|
|
int ans = PSKDemod(clk, invert, maxErr, true);
|
|
if (ans != PM3_SUCCESS) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala can't demod signal: %d", ans);
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
uint8_t inv = 0;
|
|
size_t size = g_DemodBufferLen;
|
|
int idx = detectIndala(g_DemodBuffer, &size, &inv);
|
|
if (idx < 0) {
|
|
if (idx == -1)
|
|
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: not enough samples");
|
|
else if (idx == -2)
|
|
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: only noise found");
|
|
else if (idx == -4)
|
|
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: preamble not found");
|
|
else if (idx == -5)
|
|
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: size not correct: %zu", size);
|
|
else
|
|
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: error demoding psk idx: %d", idx);
|
|
return PM3_ESOFT;
|
|
}
|
|
setDemodBuff(g_DemodBuffer, size, idx);
|
|
setClockGrid(g_DemodClock, g_DemodStartIdx + (idx * g_DemodClock));
|
|
|
|
//convert UID to HEX
|
|
uint32_t uid1 = bytebits_to_byte(g_DemodBuffer, 32);
|
|
uint32_t uid2 = bytebits_to_byte(g_DemodBuffer + 32, 32);
|
|
// To be checked, what's this internal ID ?
|
|
// foo is only used for 64b ids and in that case uid1 must be only preamble, plus the following code is wrong as x<<32 & 0x1FFFFFFF is always zero
|
|
//uint64_t foo = (((uint64_t)uid1 << 32) & 0x1FFFFFFF) | (uid2 & 0x7FFFFFFF);
|
|
uint64_t foo = uid2 & 0x7FFFFFFF;
|
|
|
|
if (g_DemodBufferLen == 64) {
|
|
PrintAndLogEx(SUCCESS, "Indala (len %zu) Raw: " _GREEN_("%x%08x"), g_DemodBufferLen, uid1, uid2);
|
|
|
|
uint16_t p1 = 0;
|
|
p1 |= g_DemodBuffer[32 + 3] << 8;
|
|
p1 |= g_DemodBuffer[32 + 6] << 5;
|
|
p1 |= g_DemodBuffer[32 + 8] << 4;
|
|
p1 |= g_DemodBuffer[32 + 9] << 3;
|
|
p1 |= g_DemodBuffer[32 + 11] << 1;
|
|
p1 |= g_DemodBuffer[32 + 16] << 6;
|
|
p1 |= g_DemodBuffer[32 + 19] << 7;
|
|
p1 |= g_DemodBuffer[32 + 20] << 10;
|
|
p1 |= g_DemodBuffer[32 + 21] << 2;
|
|
p1 |= g_DemodBuffer[32 + 22] << 0;
|
|
p1 |= g_DemodBuffer[32 + 24] << 9;
|
|
|
|
uint8_t fc = 0;
|
|
fc |= g_DemodBuffer[57] << 7; // b8
|
|
fc |= g_DemodBuffer[49] << 6; // b7
|
|
fc |= g_DemodBuffer[44] << 5; // b6
|
|
fc |= g_DemodBuffer[47] << 4; // b5
|
|
fc |= g_DemodBuffer[48] << 3; // b4
|
|
fc |= g_DemodBuffer[53] << 2; // b3
|
|
fc |= g_DemodBuffer[39] << 1; // b2
|
|
fc |= g_DemodBuffer[58] << 0; // b1
|
|
|
|
uint16_t csn = 0;
|
|
csn |= g_DemodBuffer[42] << 15; // b16
|
|
csn |= g_DemodBuffer[45] << 14; // b15
|
|
csn |= g_DemodBuffer[43] << 13; // b14
|
|
csn |= g_DemodBuffer[40] << 12; // b13
|
|
csn |= g_DemodBuffer[52] << 11; // b12
|
|
csn |= g_DemodBuffer[36] << 10; // b11
|
|
csn |= g_DemodBuffer[35] << 9; // b10
|
|
csn |= g_DemodBuffer[51] << 8; // b9
|
|
csn |= g_DemodBuffer[46] << 7; // b8
|
|
csn |= g_DemodBuffer[33] << 6; // b7
|
|
csn |= g_DemodBuffer[37] << 5; // b6
|
|
csn |= g_DemodBuffer[54] << 4; // b5
|
|
csn |= g_DemodBuffer[56] << 3; // b4
|
|
csn |= g_DemodBuffer[59] << 2; // b3
|
|
csn |= g_DemodBuffer[50] << 1; // b2
|
|
csn |= g_DemodBuffer[41] << 0; // b1
|
|
|
|
uint8_t parity = 0;
|
|
parity |= g_DemodBuffer[34] << 1; // b2
|
|
parity |= g_DemodBuffer[38] << 0; // b1
|
|
|
|
uint8_t checksum = 0;
|
|
checksum |= g_DemodBuffer[62] << 1; // b2
|
|
checksum |= g_DemodBuffer[63] << 0; // b1
|
|
|
|
PrintAndLogEx(SUCCESS, "Fmt " _GREEN_("26") " FC: " _GREEN_("%u") " Card: " _GREEN_("%u") " Parity: " _GREEN_("%1d%1d")
|
|
, fc
|
|
, csn
|
|
, parity >> 1 & 0x01
|
|
, parity & 0x01
|
|
);
|
|
PrintAndLogEx(DEBUG, "two bit checksum... " _GREEN_("%1d%1d"), checksum >> 1 & 0x01, checksum & 0x01);
|
|
|
|
PrintAndLogEx(SUCCESS, "Possible de-scramble patterns");
|
|
// This doesn't seem to line up with the hot-stamp numbers on any HID cards I have seen, but, leaving it alone since I do not know how those work. -MS
|
|
PrintAndLogEx(SUCCESS, " Printed | __%04d__ [0x%X]", p1, p1);
|
|
PrintAndLogEx(SUCCESS, " Internal ID | %" PRIu64, foo);
|
|
decodeHeden2L(g_DemodBuffer);
|
|
|
|
} else {
|
|
uint32_t uid3 = bytebits_to_byte(g_DemodBuffer + 64, 32);
|
|
uint32_t uid4 = bytebits_to_byte(g_DemodBuffer + 96, 32);
|
|
uint32_t uid5 = bytebits_to_byte(g_DemodBuffer + 128, 32);
|
|
uint32_t uid6 = bytebits_to_byte(g_DemodBuffer + 160, 32);
|
|
uint32_t uid7 = bytebits_to_byte(g_DemodBuffer + 192, 32);
|
|
PrintAndLogEx(
|
|
SUCCESS
|
|
, "Indala (len %zu) Raw: " _GREEN_("%x%08x%08x%08x%08x%08x%08x")
|
|
, g_DemodBufferLen
|
|
, uid1
|
|
, uid2
|
|
, uid3
|
|
, uid4
|
|
, uid5
|
|
, uid6
|
|
, uid7
|
|
);
|
|
}
|
|
|
|
if (g_debugMode) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: Indala - printing DemodBuffer");
|
|
printDemodBuff(0, false, false, false);
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
int demodIndala(bool verbose) {
|
|
return demodIndalaEx(0, 0, 100, verbose);
|
|
}
|
|
|
|
static int CmdIndalaDemod(const char *Cmd) {
|
|
|
|
CLIParserContext *ctx;
|
|
CLIParserInit(&ctx, "lf indala demod",
|
|
"Tries to PSK demodulate the graphbuffer as Indala",
|
|
"lf indala demod\n"
|
|
"lf indala demod --clock 32 -> demod a Indala tag from the GraphBuffer using a clock of RF/32\n"
|
|
"lf indala demod --clock 32 -i -> demod a Indala tag from the GraphBuffer using a clock of RF/32 and inverting data\n"
|
|
"lf indala demod --clock 64 -i --maxerror 0 -> demod a Indala tag from the GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"
|
|
);
|
|
|
|
void *argtable[] = {
|
|
arg_param_begin,
|
|
arg_int0(NULL, "clock", "<dec>", "optional - set clock (as integer), if not set, autodetect."),
|
|
arg_int0(NULL, "maxerr", "<dec>", "optional - set maximum allowed errors, default = 100"),
|
|
arg_lit0("i", "invert", "optional - invert output"),
|
|
arg_param_end
|
|
};
|
|
CLIExecWithReturn(ctx, Cmd, argtable, true);
|
|
uint32_t clk = arg_get_u32_def(ctx, 1, 32);
|
|
uint32_t max_err = arg_get_u32_def(ctx, 2, 100);
|
|
bool invert = arg_get_lit(ctx, 3);
|
|
CLIParserFree(ctx);
|
|
|
|
return demodIndalaEx(clk, invert, max_err, true);
|
|
}
|
|
|
|
// older alternative indala demodulate (has some positives and negatives)
|
|
// returns false positives more often - but runs against more sets of samples
|
|
// poor psk signal can be difficult to demod this approach might succeed when the other fails
|
|
// but the other appears to currently be more accurate than this approach most of the time.
|
|
static int CmdIndalaDemodAlt(const char *Cmd) {
|
|
|
|
CLIParserContext *ctx;
|
|
CLIParserInit(&ctx, "lf indala altdemod",
|
|
"Tries to PSK demodulate the graphbuffer as Indala\n"
|
|
"This is uses a alternative way to demodulate and was used from the beginning in the Pm3 client.\n"
|
|
"It's now considered obsolete but remains because it has sometimes its advantages.",
|
|
"lf indala altdemod\n"
|
|
"lf indala altdemod --long -> demod a Indala tag from the GraphBuffer as 224 bit long format"
|
|
);
|
|
|
|
void *argtable[] = {
|
|
arg_param_begin,
|
|
arg_lit0("l", "long", "optional - demod as 224b long format"),
|
|
arg_param_end
|
|
};
|
|
CLIExecWithReturn(ctx, Cmd, argtable, true);
|
|
bool is_long = arg_get_lit(ctx, 1);
|
|
CLIParserFree(ctx);
|
|
|
|
// Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
|
|
int state = -1;
|
|
int count = 0;
|
|
int i, j;
|
|
|
|
// worst case with g_GraphTraceLen=40000 is < 4096
|
|
// under normal conditions it's < 2048
|
|
uint8_t data[MAX_GRAPH_TRACE_LEN] = {0};
|
|
size_t datasize = getFromGraphBuf(data);
|
|
|
|
uint8_t rawbits[4096];
|
|
int rawbit = 0;
|
|
int worst = 0, worstPos = 0;
|
|
|
|
//clear clock grid and demod plot
|
|
setClockGrid(0, 0);
|
|
g_DemodBufferLen = 0;
|
|
|
|
// PrintAndLogEx(NORMAL, "Expecting a bit less than %d raw bits", g_GraphTraceLen / 32);
|
|
// loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2)
|
|
for (i = 0; i < datasize - 1; i += 2) {
|
|
count += 1;
|
|
if ((data[i] > data[i + 1]) && (state != 1)) {
|
|
// appears redundant - marshmellow
|
|
if (state == 0) {
|
|
for (j = 0; j < count - 8; j += 16) {
|
|
rawbits[rawbit++] = 0;
|
|
}
|
|
if ((abs(count - j)) > worst) {
|
|
worst = abs(count - j);
|
|
worstPos = i;
|
|
}
|
|
}
|
|
state = 1;
|
|
count = 0;
|
|
} else if ((data[i] < data[i + 1]) && (state != 0)) {
|
|
//appears redundant
|
|
if (state == 1) {
|
|
for (j = 0; j < count - 8; j += 16) {
|
|
rawbits[rawbit++] = 1;
|
|
}
|
|
if ((abs(count - j)) > worst) {
|
|
worst = abs(count - j);
|
|
worstPos = i;
|
|
}
|
|
}
|
|
state = 0;
|
|
count = 0;
|
|
}
|
|
}
|
|
|
|
if (rawbit > 0) {
|
|
PrintAndLogEx(INFO, "Recovered %d raw bits, expected: %zu", rawbit, g_GraphTraceLen / 32);
|
|
PrintAndLogEx(INFO, "Worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
|
|
} else {
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
// Finding the start of a UID
|
|
int uidlen, long_wait;
|
|
if (is_long) {
|
|
uidlen = 224;
|
|
long_wait = 30;
|
|
} else {
|
|
uidlen = 64;
|
|
long_wait = 29;
|
|
}
|
|
|
|
int start;
|
|
int first = 0;
|
|
for (start = 0; start <= rawbit - uidlen; start++) {
|
|
first = rawbits[start];
|
|
for (i = start; i < start + long_wait; i++) {
|
|
if (rawbits[i] != first) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == (start + long_wait)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (start == rawbit - uidlen + 1) {
|
|
PrintAndLogEx(FAILED, "Nothing to wait for");
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
// Inverting signal if needed
|
|
if (first == 1) {
|
|
for (i = start; i < rawbit; i++) {
|
|
rawbits[i] = !rawbits[i];
|
|
}
|
|
}
|
|
|
|
// Dumping UID
|
|
uint8_t bits[224] = {0x00};
|
|
char showbits[225] = {0x00};
|
|
int bit;
|
|
i = start;
|
|
int times = 0;
|
|
|
|
if (uidlen > rawbit) {
|
|
PrintAndLogEx(WARNING, "Warning: not enough raw bits to get a full UID");
|
|
for (bit = 0; bit < rawbit; bit++) {
|
|
bits[bit] = rawbits[i++];
|
|
// As we cannot know the parity, let's use "." and "/"
|
|
showbits[bit] = '.' + bits[bit];
|
|
}
|
|
showbits[bit + 1] = '\0';
|
|
PrintAndLogEx(SUCCESS, "Partial UID | %s", showbits);
|
|
return PM3_SUCCESS;
|
|
} else {
|
|
for (bit = 0; bit < uidlen; bit++) {
|
|
bits[bit] = rawbits[i++];
|
|
showbits[bit] = '0' + bits[bit];
|
|
}
|
|
times = 1;
|
|
}
|
|
|
|
//convert UID to HEX
|
|
int idx;
|
|
uint32_t uid1 = 0;
|
|
uint32_t uid2 = 0;
|
|
|
|
if (uidlen == 64) {
|
|
for (idx = 0; idx < 64; idx++) {
|
|
if (showbits[idx] == '0') {
|
|
uid1 = (uid1 << 1) | (uid2 >> 31);
|
|
uid2 = (uid2 << 1) | 0;
|
|
} else {
|
|
uid1 = (uid1 << 1) | (uid2 >> 31);
|
|
uid2 = (uid2 << 1) | 1;
|
|
}
|
|
}
|
|
PrintAndLogEx(SUCCESS, "UID | %s (%x%08x)", showbits, uid1, uid2);
|
|
} else {
|
|
uint32_t uid3 = 0;
|
|
uint32_t uid4 = 0;
|
|
uint32_t uid5 = 0;
|
|
uint32_t uid6 = 0;
|
|
uint32_t uid7 = 0;
|
|
|
|
for (idx = 0; idx < 224; idx++) {
|
|
uid1 = (uid1 << 1) | (uid2 >> 31);
|
|
uid2 = (uid2 << 1) | (uid3 >> 31);
|
|
uid3 = (uid3 << 1) | (uid4 >> 31);
|
|
uid4 = (uid4 << 1) | (uid5 >> 31);
|
|
uid5 = (uid5 << 1) | (uid6 >> 31);
|
|
uid6 = (uid6 << 1) | (uid7 >> 31);
|
|
|
|
if (showbits[idx] == '0')
|
|
uid7 = (uid7 << 1) | 0;
|
|
else
|
|
uid7 = (uid7 << 1) | 1;
|
|
}
|
|
PrintAndLogEx(SUCCESS, "UID | %s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
|
|
}
|
|
|
|
// Checking UID against next occurrences
|
|
for (; i + uidlen <= rawbit;) {
|
|
int failed = 0;
|
|
for (bit = 0; bit < uidlen; bit++) {
|
|
if (bits[bit] != rawbits[i++]) {
|
|
failed = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (failed == 1) {
|
|
break;
|
|
}
|
|
times += 1;
|
|
}
|
|
|
|
PrintAndLogEx(DEBUG, "Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen);
|
|
|
|
// Remodulating for tag cloning
|
|
// HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod)
|
|
// since this changes graphbuffer data.
|
|
g_GraphTraceLen = 32 * uidlen;
|
|
i = 0;
|
|
int phase;
|
|
for (bit = 0; bit < uidlen; bit++) {
|
|
if (bits[bit] == 0) {
|
|
phase = 0;
|
|
} else {
|
|
phase = 1;
|
|
}
|
|
for (j = 0; j < 32; j++) {
|
|
g_GraphBuffer[i++] = phase;
|
|
phase = !phase;
|
|
}
|
|
}
|
|
|
|
RepaintGraphWindow();
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// this read is the "normal" read, which download lf signal and tries to demod here.
|
|
static int CmdIndalaReader(const char *Cmd) {
|
|
CLIParserContext *ctx;
|
|
CLIParserInit(&ctx, "lf indala reader",
|
|
"read a Indala tag",
|
|
"lf indala reader -@ -> continuous reader mode"
|
|
);
|
|
|
|
void *argtable[] = {
|
|
arg_param_begin,
|
|
arg_int0(NULL, "clock", "<dec>", "optional - set clock (as integer), if not set, autodetect."),
|
|
arg_int0(NULL, "maxerr", "<dec>", "optional - set maximum allowed errors, default = 100"),
|
|
arg_lit0("i", "invert", "optional - invert output"),
|
|
arg_lit0("@", NULL, "optional - continuous reader mode"),
|
|
arg_param_end
|
|
};
|
|
CLIExecWithReturn(ctx, Cmd, argtable, true);
|
|
uint32_t clk = arg_get_u32_def(ctx, 1, 32);
|
|
uint32_t max_err = arg_get_u32_def(ctx, 2, 100);
|
|
bool invert = arg_get_lit(ctx, 3);
|
|
bool cm = arg_get_lit(ctx, 4);
|
|
CLIParserFree(ctx);
|
|
|
|
if (cm) {
|
|
PrintAndLogEx(INFO, "Press " _GREEN_("<Enter>") " to exit");
|
|
}
|
|
|
|
do {
|
|
lf_read(false, 30000);
|
|
demodIndalaEx(clk, invert, max_err, !cm);
|
|
} while (cm && !kbd_enter_pressed());
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
static int CmdIndalaSim(const char *Cmd) {
|
|
|
|
CLIParserContext *ctx;
|
|
CLIParserInit(&ctx, "lf indala sim",
|
|
"Enables simulation of Indala card with specified facility code and card number.\n"
|
|
"Simulation runs until the button is pressed or another USB command is issued.",
|
|
"lf indala sim --heden 888\n"
|
|
"lf indala sim --raw a0000000a0002021\n"
|
|
"lf indala sim --raw 80000001b23523a6c2e31eba3cbee4afb3c6ad1fcf649393928c14e5"
|
|
);
|
|
|
|
void *argtable[] = {
|
|
arg_param_begin,
|
|
arg_str0("r", "raw", "<hex>", "raw bytes"),
|
|
arg_int0(NULL, "heden", "<decimal>", "Cardnumber for Heden 2L format"),
|
|
arg_param_end
|
|
};
|
|
CLIExecWithReturn(ctx, Cmd, argtable, false);
|
|
|
|
// raw param
|
|
int raw_len = 0;
|
|
uint8_t raw[(7 * 4) + 1];
|
|
memset(raw, 0, sizeof(raw));
|
|
CLIGetHexWithReturn(ctx, 1, raw, &raw_len);
|
|
|
|
bool is_long_uid = (raw_len == 28);
|
|
|
|
int32_t cardnumber;
|
|
bool got_cn = false;
|
|
if (is_long_uid == false) {
|
|
|
|
// Heden param
|
|
cardnumber = arg_get_int_def(ctx, 2, -1);
|
|
got_cn = (cardnumber != -1);
|
|
}
|
|
|
|
CLIParserFree(ctx);
|
|
|
|
if (got_cn) {
|
|
encodeHeden2L(raw, cardnumber);
|
|
raw_len = 8;
|
|
}
|
|
|
|
// convert to binarray
|
|
uint8_t bs[224];
|
|
memset(bs, 0x00, sizeof(bs));
|
|
|
|
uint8_t counter = 0;
|
|
for (int8_t i = 0; i < raw_len; i++) {
|
|
uint8_t tmp = raw[i];
|
|
bs[counter++] = (tmp >> 7) & 1;
|
|
bs[counter++] = (tmp >> 6) & 1;
|
|
bs[counter++] = (tmp >> 5) & 1;
|
|
bs[counter++] = (tmp >> 4) & 1;
|
|
bs[counter++] = (tmp >> 3) & 1;
|
|
bs[counter++] = (tmp >> 2) & 1;
|
|
bs[counter++] = (tmp >> 1) & 1;
|
|
bs[counter++] = tmp & 1;
|
|
}
|
|
|
|
// a0 00 00 00 bd 98 9a 11
|
|
|
|
// indala PSK
|
|
// It has to send either 64bits (8bytes) or 224bits (28bytes). Zero padding needed if not.
|
|
// lf simpsk -1 -c 32 --fc 2 -d 0102030405060708
|
|
|
|
PrintAndLogEx(SUCCESS, "Simulating " _YELLOW_("%s") " Indala raw " _YELLOW_("%s")
|
|
, (is_long_uid) ? "224 bit" : "64 bit"
|
|
, sprint_hex_inrow(raw, raw_len)
|
|
);
|
|
PrintAndLogEx(SUCCESS, "Press pm3-button to abort simulation or run another command");
|
|
|
|
// indala PSK, clock 32, carrier 0
|
|
lf_psksim_t *payload = calloc(1, sizeof(lf_psksim_t) + sizeof(bs));
|
|
payload->carrier = 2;
|
|
payload->invert = 0;
|
|
payload->clock = 32;
|
|
memcpy(payload->data, bs, raw_len * 8);
|
|
|
|
clearCommandBuffer();
|
|
SendCommandNG(CMD_LF_PSK_SIMULATE, (uint8_t *)payload, sizeof(lf_psksim_t) + (raw_len * 8));
|
|
free(payload);
|
|
|
|
PacketResponseNG resp;
|
|
WaitForResponse(CMD_LF_PSK_SIMULATE, &resp);
|
|
|
|
PrintAndLogEx(INFO, "Done");
|
|
if (resp.status != PM3_EOPABORTED)
|
|
return resp.status;
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
static int CmdIndalaClone(const char *Cmd) {
|
|
|
|
int32_t cardnumber;
|
|
uint8_t fc = 0;
|
|
uint16_t cn = 0;
|
|
|
|
CLIParserContext *ctx;
|
|
CLIParserInit(&ctx, "lf indala clone",
|
|
"clone Indala UID to T55x7 or Q5/T5555 tag using different known formats\n"
|
|
_RED_("\nWarning, encoding with FC/CN doesn't always work"),
|
|
"lf indala clone --heden 888 --> use Heden 2L format\n"
|
|
"lf indala clone --fc 123 --cn 1337 --> use standard 26b format\n"
|
|
"lf indala clone --fc 123 --cn 1337 --4041x --> use 4041x format\n"
|
|
"lf indala clone -r a0000000a0002021\n"
|
|
"lf indala clone -r 80000001b23523a6c2e31eba3cbee4afb3c6ad1fcf649393928c14e5");
|
|
|
|
void *argtable[] = {
|
|
arg_param_begin,
|
|
arg_str0("r", "raw", "<hex>", "raw bytes"),
|
|
arg_int0(NULL, "heden", "<decimal>", "Card number for Heden 2L format"),
|
|
arg_int0(NULL, "fc", "<decimal>", "Facility code (26 bit H10301 format)"),
|
|
arg_int0(NULL, "cn", "<decimal>", "Card number (26 bit H10301 format)"),
|
|
arg_lit0(NULL, "q5", "Optional - specify writing to Q5/T5555 tag"),
|
|
arg_lit0(NULL, "em", "Optional - specify writing to EM4305/4469 tag"),
|
|
arg_lit0(NULL, "4041x", "Optional - specify Indala 4041X format, must use with fc and cn"),
|
|
arg_param_end
|
|
};
|
|
CLIExecWithReturn(ctx, Cmd, argtable, false);
|
|
// raw param
|
|
int raw_len = 0;
|
|
uint8_t raw[(7 * 4) + 1];
|
|
CLIGetHexWithReturn(ctx, 1, raw, &raw_len);
|
|
|
|
bool is_long_uid = (raw_len == 28);
|
|
bool q5 = arg_get_lit(ctx, 5);
|
|
bool em = arg_get_lit(ctx, 6);
|
|
bool fmt4041x = arg_get_lit(ctx, 7);
|
|
|
|
bool got_cn = false, got_26 = false;
|
|
if (is_long_uid == false) {
|
|
|
|
// Heden param
|
|
cardnumber = arg_get_int_def(ctx, 2, -1);
|
|
got_cn = (cardnumber != -1);
|
|
|
|
// 26b FC/CN param
|
|
fc = arg_get_int_def(ctx, 3, 0);
|
|
cn = arg_get_int_def(ctx, 4, 0);
|
|
got_26 = (fc != 0 && cn != 0);
|
|
}
|
|
CLIParserFree(ctx);
|
|
|
|
if (q5 && em) {
|
|
PrintAndLogEx(FAILED, "Can't specify both Q5 and EM4305 at the same time");
|
|
return PM3_EINVARG;
|
|
}
|
|
|
|
if ((!got_26) && fmt4041x) {
|
|
PrintAndLogEx(FAILED, "You must specify a facility code and card number when using 4041X format");
|
|
return PM3_EINVARG;
|
|
}
|
|
|
|
uint8_t max = 0;
|
|
uint32_t blocks[8] = {0};
|
|
char cardtype[16] = {"T55x7"};
|
|
|
|
if (is_long_uid) {
|
|
|
|
blocks[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
|
|
if (q5) {
|
|
blocks[0] = T5555_FIXED | T5555_SET_BITRATE(32) | T5555_MODULATION_PSK2 | (7 << T5555_MAXBLOCK_SHIFT);
|
|
snprintf(cardtype, sizeof(cardtype), "Q5/T5555");
|
|
}
|
|
|
|
if (em) {
|
|
blocks[0] = EM4305_INDALA_224_CONFIG_BLOCK;
|
|
snprintf(cardtype, sizeof(cardtype), "EM4305/4469");
|
|
}
|
|
|
|
blocks[1] = bytes_to_num(raw, 4);
|
|
blocks[2] = bytes_to_num(raw + 4, 4);
|
|
blocks[3] = bytes_to_num(raw + 8, 4);
|
|
blocks[4] = bytes_to_num(raw + 12, 4);
|
|
blocks[5] = bytes_to_num(raw + 16, 4);
|
|
blocks[6] = bytes_to_num(raw + 20, 4);
|
|
blocks[7] = bytes_to_num(raw + 24, 4);
|
|
max = 8;
|
|
|
|
// 224 BIT UID
|
|
// config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
|
|
PrintAndLogEx(INFO, "Preparing to clone Indala 224 bit to " _YELLOW_("%s") " raw " _GREEN_("%s")
|
|
, cardtype
|
|
, sprint_hex_inrow(raw, raw_len)
|
|
);
|
|
|
|
} else {
|
|
// 64 BIT UID
|
|
if (got_cn) {
|
|
encodeHeden2L(raw, cardnumber);
|
|
raw_len = 8;
|
|
} else if (got_26) {
|
|
|
|
PrintAndLogEx(INFO, "Using Indala 64 bit, FC " _GREEN_("%u") " CN " _GREEN_("%u"), fc, cn);
|
|
|
|
// Used with the 26bit FC/CSN
|
|
uint8_t *bits = calloc(INDALA_ARR_LEN, sizeof(uint8_t));
|
|
if (bits == NULL) {
|
|
PrintAndLogEx(WARNING, "Failed to allocate memory");
|
|
return PM3_EMALLOC;
|
|
}
|
|
|
|
// Bitstream generation, format select
|
|
int indalaReturn = PM3_ESOFT;
|
|
if (fmt4041x) {
|
|
indalaReturn = getIndalaBits4041x(fc, cn, bits);
|
|
} else {
|
|
indalaReturn = getIndalaBits(fc, cn, bits);
|
|
}
|
|
|
|
if (indalaReturn != PM3_SUCCESS) {
|
|
PrintAndLogEx(ERR, "Error with tag bitstream generation.");
|
|
free(bits);
|
|
return indalaReturn;
|
|
}
|
|
|
|
raw[0] = bytebits_to_byte(bits, 8);
|
|
raw[1] = bytebits_to_byte(bits + 8, 8);
|
|
raw[2] = bytebits_to_byte(bits + 16, 8);
|
|
raw[3] = bytebits_to_byte(bits + 24, 8);
|
|
raw[4] = bytebits_to_byte(bits + 32, 8);
|
|
raw[5] = bytebits_to_byte(bits + 40, 8);
|
|
raw[6] = bytebits_to_byte(bits + 48, 8);
|
|
raw[7] = bytebits_to_byte(bits + 56, 8);
|
|
raw_len = 8;
|
|
|
|
free(bits);
|
|
}
|
|
|
|
blocks[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT);
|
|
|
|
if (q5) {
|
|
blocks[0] = T5555_FIXED | T5555_SET_BITRATE(32) | T5555_MODULATION_PSK1 | (2 << T5555_MAXBLOCK_SHIFT);
|
|
snprintf(cardtype, sizeof(cardtype), "Q5/T5555");
|
|
}
|
|
|
|
if (em) {
|
|
blocks[0] = EM4305_INDALA_64_CONFIG_BLOCK;
|
|
snprintf(cardtype, sizeof(cardtype), "EM4305/4469");
|
|
}
|
|
|
|
blocks[1] = bytes_to_num(raw, 4);
|
|
blocks[2] = bytes_to_num(raw + 4, 4);
|
|
max = 3;
|
|
|
|
// config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
|
|
PrintAndLogEx(INFO, "Preparing to clone Indala 64 bit to " _YELLOW_("%s") " raw " _GREEN_("%s")
|
|
, cardtype
|
|
, sprint_hex_inrow(raw, raw_len)
|
|
);
|
|
}
|
|
|
|
print_blocks(blocks, max);
|
|
|
|
int res;
|
|
if (em) {
|
|
res = em4x05_clone_tag(blocks, ARRAYLEN(blocks), 0, false);
|
|
} else {
|
|
res = clone_t55xx_tag(blocks, ARRAYLEN(blocks));
|
|
}
|
|
PrintAndLogEx(SUCCESS, "Done");
|
|
PrintAndLogEx(HINT, "Hint: try " _YELLOW_("`lf indala reader`") " to verify");
|
|
return res;
|
|
}
|
|
|
|
static command_t CommandTable[] = {
|
|
{"help", CmdHelp, AlwaysAvailable, "This help"},
|
|
{"demod", CmdIndalaDemod, AlwaysAvailable, "Demodulate an Indala tag (PSK1) from the GraphBuffer"},
|
|
{"altdemod", CmdIndalaDemodAlt, AlwaysAvailable, "Alternative method to demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
|
|
{"reader", CmdIndalaReader, IfPm3Lf, "Read an Indala tag from the antenna"},
|
|
{"clone", CmdIndalaClone, IfPm3Lf, "Clone Indala tag to T55x7 or Q5/T5555"},
|
|
{"sim", CmdIndalaSim, IfPm3Lf, "Simulate Indala tag"},
|
|
{NULL, NULL, NULL, NULL}
|
|
};
|
|
|
|
static int CmdHelp(const char *Cmd) {
|
|
(void)Cmd; // Cmd is not used so far
|
|
CmdsHelp(CommandTable);
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
int CmdLFINDALA(const char *Cmd) {
|
|
clearCommandBuffer();
|
|
return CmdsParse(CommandTable, Cmd);
|
|
}
|
|
|
|
int getIndalaBits(uint8_t fc, uint16_t cn, uint8_t *bits) {
|
|
// preamble
|
|
// is there a preamble?
|
|
bits[0] = 1;
|
|
bits[2] = 1;
|
|
bits[32] = 1;
|
|
|
|
// add fc
|
|
bits[57] = ((fc >> 7) & 1); // b8
|
|
bits[49] = ((fc >> 6) & 1); // b7
|
|
bits[44] = ((fc >> 5) & 1); // b6
|
|
bits[47] = ((fc >> 4) & 1); // b5
|
|
bits[48] = ((fc >> 3) & 1); // b4
|
|
bits[53] = ((fc >> 2) & 1); // b3
|
|
bits[39] = ((fc >> 1) & 1); // b2
|
|
bits[58] = (fc & 1); // b1
|
|
|
|
// add cn
|
|
bits[42] = ((cn >> 15) & 1); // b16
|
|
bits[45] = ((cn >> 14) & 1); // b15 - c
|
|
bits[43] = ((cn >> 13) & 1); // b14
|
|
bits[40] = ((cn >> 12) & 1); // b13 - c
|
|
bits[52] = ((cn >> 11) & 1); // b12
|
|
bits[36] = ((cn >> 10) & 1); // b11
|
|
bits[35] = ((cn >> 9) & 1); // b10 - c
|
|
bits[51] = ((cn >> 8) & 1); // b9 - c
|
|
bits[46] = ((cn >> 7) & 1); // b8
|
|
bits[33] = ((cn >> 6) & 1); // b7 - c
|
|
bits[37] = ((cn >> 5) & 1); // b6 - c
|
|
bits[54] = ((cn >> 4) & 1); // b5
|
|
bits[56] = ((cn >> 3) & 1); // b4
|
|
bits[59] = ((cn >> 2) & 1); // b3 - c
|
|
bits[50] = ((cn >> 1) & 1); // b2
|
|
bits[41] = (cn & 1); // b1 - c
|
|
|
|
// checksum
|
|
uint8_t chk = 0;
|
|
//sum(y2, y4, y7, y8, y10, y11, y14, y16
|
|
chk += ((cn >> 14) & 1); //y2 == 75 - 30 = 45
|
|
chk += ((cn >> 12) & 1); //y4 == 70 - 30 = 40
|
|
chk += ((cn >> 9) & 1); //y7 == 65 - 30 = 35
|
|
chk += ((cn >> 8) & 1); //y8 == 81 - 30 = 51
|
|
chk += ((cn >> 6) & 1); //y10 == 63 - 30 = 33
|
|
chk += ((cn >> 5) & 1); //y11 == 67 - 30 = 37
|
|
chk += ((cn >> 2) & 1); //y14 == 89 - 30 = 59
|
|
chk += (cn & 1); //y16 == 71 - 30 = 41
|
|
|
|
if ((chk & 1) == 0) {
|
|
bits[62] = 0;
|
|
bits[63] = 1;
|
|
} else {
|
|
bits[62] = 1;
|
|
bits[63] = 0;
|
|
}
|
|
|
|
// add parity
|
|
bits[34] = 1; // p1 64 - 30 = 34
|
|
bits[38] = 1; // p2 68 - 30 = 38
|
|
|
|
// 92 = 62
|
|
// 93 = 63
|
|
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Permutation table for this format, lower 4 bytes of card data.
|
|
|
|
0x40 | 1 | CN 6 | P Hi | CN 9 | CN A | CN 5 | P Lo | FC 1 |
|
|
0x50 | CN C | CN 0 | CN 5 | CN D | FC 5 | CN E | CN 7 | FC 4 |
|
|
0x60 | FC 3 | FC 6 | CN 1 | CN 8 | CN B | FC 2 | CN 4 | 1 |
|
|
0x70 | CN 3 | FC 7 | FC 0 | CN 2 | 0 | 0 | 0 | 0 |
|
|
*/
|
|
int getIndalaBits4041x(uint8_t fc, uint16_t cn, uint8_t *bits) {
|
|
|
|
// Preamble and required values
|
|
bits[0] = 0x01;
|
|
bits[2] = 0x01;
|
|
bits[32] = 0x01;
|
|
bits[40] = 0x01;
|
|
bits[55] = 0x01;
|
|
|
|
// Facility code
|
|
bits[57] = ((fc >> 7) & 0x01); // MSB
|
|
bits[49] = ((fc >> 6) & 0x01);
|
|
bits[44] = ((fc >> 5) & 0x01);
|
|
bits[47] = ((fc >> 4) & 0x01);
|
|
bits[48] = ((fc >> 3) & 0x01);
|
|
bits[53] = ((fc >> 2) & 0x01);
|
|
bits[39] = ((fc >> 1) & 0x01);
|
|
bits[58] = (fc & 0x01); // LSB
|
|
|
|
// Serial number
|
|
bits[42] = ((cn >> 15) & 0x01); // MSB H
|
|
bits[45] = ((cn >> 14) & 0x01);
|
|
bits[43] = ((cn >> 13) & 0x01);
|
|
bits[40] = ((cn >> 12) & 0x01);
|
|
bits[52] = ((cn >> 11) & 0x01);
|
|
bits[36] = ((cn >> 10) & 0x01);
|
|
bits[35] = ((cn >> 9) & 0x01);
|
|
bits[51] = ((cn >> 8) & 0x01); // LSB H
|
|
bits[46] = ((cn >> 7) & 0x01); // MSB L
|
|
bits[33] = ((cn >> 6) & 0x01);
|
|
bits[37] = ((cn >> 5) & 0x01);
|
|
bits[54] = ((cn >> 4) & 0x01);
|
|
bits[56] = ((cn >> 3) & 0x01);
|
|
bits[59] = ((cn >> 2) & 0x01);
|
|
bits[50] = ((cn >> 1) & 0x01);
|
|
bits[41] = (cn & 0x01); // LSB L
|
|
|
|
// Parity
|
|
bits[34] = evenparity16((fc << 4) | (cn >> 12));
|
|
bits[38] = oddparity16(cn & 0x0fff);
|
|
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// redesigned by marshmellow adjusted from existing decode functions
|
|
// indala id decoding
|
|
int detectIndala(uint8_t *dest, size_t *size, uint8_t *invert) {
|
|
|
|
uint8_t preamble64_i[] = {0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0};
|
|
uint8_t preamble224_i[] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
|
|
size_t idx = 0;
|
|
size_t found_size = *size;
|
|
|
|
// PSK1
|
|
bool res = preambleSearch(dest, preamble64, sizeof(preamble64), &found_size, &idx);
|
|
if (res) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 64");
|
|
goto out;
|
|
}
|
|
idx = 0;
|
|
found_size = *size;
|
|
res = preambleSearch(dest, preamble64_i, sizeof(preamble64_i), &found_size, &idx);
|
|
if (res) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 64 inverted preamble");
|
|
goto inv;
|
|
}
|
|
|
|
/*
|
|
idx = 0;
|
|
found_size = *size;
|
|
res = preambleSearch(dest, preamble224, sizeof(preamble224), &found_size, &idx);
|
|
if ( res ) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 224");
|
|
goto out;
|
|
}
|
|
|
|
idx = 0;
|
|
found_size = *size;
|
|
res = preambleSearch(dest, preamble224_i, sizeof(preamble224_i), &found_size, &idx);
|
|
if ( res ) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 224 inverted preamble");
|
|
goto inv;
|
|
}
|
|
*/
|
|
|
|
// PSK2
|
|
psk1TOpsk2(dest, *size);
|
|
PrintAndLogEx(DEBUG, "DEBUG: detectindala Converting PSK1 -> PSK2");
|
|
|
|
idx = 0;
|
|
found_size = *size;
|
|
res = preambleSearch(dest, preamble64, sizeof(preamble64), &found_size, &idx);
|
|
if (res) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 64 preamble");
|
|
goto out;
|
|
}
|
|
|
|
idx = 0;
|
|
found_size = *size;
|
|
res = preambleSearch(dest, preamble224, sizeof(preamble224), &found_size, &idx);
|
|
if (res) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 224 preamble");
|
|
goto out;
|
|
}
|
|
|
|
idx = 0;
|
|
found_size = *size;
|
|
res = preambleSearch(dest, preamble64_i, sizeof(preamble64_i), &found_size, &idx);
|
|
if (res) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 64 inverted preamble");
|
|
goto inv;
|
|
}
|
|
|
|
idx = 0;
|
|
found_size = *size;
|
|
res = preambleSearch(dest, preamble224_i, sizeof(preamble224_i), &found_size, &idx);
|
|
if (res) {
|
|
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 224 inverted preamble");
|
|
goto inv;
|
|
}
|
|
|
|
return -4;
|
|
|
|
inv:
|
|
|
|
*invert ^= 1;
|
|
|
|
if (*invert && idx > 0) {
|
|
for (size_t i = idx - 1; i < found_size + idx + 2; i++) {
|
|
dest[i] ^= 1;
|
|
}
|
|
}
|
|
|
|
PrintAndLogEx(DEBUG, "DEBUG: Warning - Indala had to invert bits");
|
|
|
|
out:
|
|
|
|
*size = found_size;
|
|
|
|
if (found_size < 64) {
|
|
PrintAndLogEx(INFO, "DEBUG: detectindala | %zu", found_size);
|
|
return -5;
|
|
}
|
|
|
|
// 224 formats are typically PSK2 (afaik 2017 Marshmellow)
|
|
// note loses 1 bit at beginning of transformation...
|
|
return (int) idx;
|
|
|
|
}
|