mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-11-11 01:55:38 +08:00
665 lines
18 KiB
C
665 lines
18 KiB
C
// Merlok, 2011, 2012
|
|
// people from mifare@nethemba.com, 2010
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// mifare commands
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "mifarehost.h"
|
|
|
|
// MIFARE
|
|
extern int compar_int(const void * a, const void * b) {
|
|
// didn't work: (the result is truncated to 32 bits)
|
|
//return (*(uint64_t*)b - *(uint64_t*)a);
|
|
|
|
// better:
|
|
if (*(uint64_t*)b > *(uint64_t*)a) return 1;
|
|
if (*(uint64_t*)b < *(uint64_t*)a) return -1;
|
|
return 0;
|
|
|
|
//return (*(uint64_t*)b > *(uint64_t*)a) - (*(uint64_t*)b < *(uint64_t*)a);
|
|
}
|
|
|
|
// Compare 16 Bits out of cryptostate
|
|
int Compare16Bits(const void * a, const void * b) {
|
|
if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
|
|
if ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000)) return -1;
|
|
return 0;
|
|
|
|
/* return
|
|
((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000))
|
|
-
|
|
((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000))
|
|
;
|
|
*/
|
|
}
|
|
|
|
// wrapper function for multi-threaded lfsr_recovery32
|
|
void* nested_worker_thread(void *arg)
|
|
{
|
|
struct Crypto1State *p1;
|
|
StateList_t *statelist = arg;
|
|
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
|
|
|
|
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
|
|
|
|
statelist->len = p1 - statelist->head.slhead;
|
|
statelist->tail.sltail = --p1;
|
|
qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
|
|
return statelist->head.slhead;
|
|
}
|
|
|
|
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
|
|
{
|
|
uint16_t i;
|
|
uint32_t uid;
|
|
UsbCommand resp;
|
|
StateList_t statelists[2];
|
|
struct Crypto1State *p1, *p2, *p3, *p4;
|
|
|
|
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
|
|
memcpy(c.d.asBytes, key, 6);
|
|
clearCommandBuffer();
|
|
SendCommand(&c);
|
|
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
|
|
|
|
// error during nested
|
|
if (resp.arg[0]) return resp.arg[0];
|
|
|
|
memcpy(&uid, resp.d.asBytes, 4);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
statelists[i].blockNo = resp.arg[2] & 0xff;
|
|
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
|
|
statelists[i].uid = uid;
|
|
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
|
|
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
|
|
}
|
|
|
|
// calc keys
|
|
pthread_t thread_id[2];
|
|
|
|
// create and run worker threads
|
|
for (i = 0; i < 2; i++)
|
|
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
|
|
|
|
// wait for threads to terminate:
|
|
for (i = 0; i < 2; i++)
|
|
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
|
|
|
|
// the first 16 Bits of the cryptostate already contain part of our key.
|
|
// Create the intersection of the two lists based on these 16 Bits and
|
|
// roll back the cryptostate
|
|
p1 = p3 = statelists[0].head.slhead;
|
|
p2 = p4 = statelists[1].head.slhead;
|
|
|
|
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
|
|
if (Compare16Bits(p1, p2) == 0) {
|
|
|
|
struct Crypto1State savestate, *savep = &savestate;
|
|
savestate = *p1;
|
|
while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
|
|
*p3 = *p1;
|
|
lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
|
|
p3++;
|
|
p1++;
|
|
}
|
|
savestate = *p2;
|
|
while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
|
|
*p4 = *p2;
|
|
lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
|
|
p4++;
|
|
p2++;
|
|
}
|
|
}
|
|
else {
|
|
while (Compare16Bits(p1, p2) == -1) p1++;
|
|
while (Compare16Bits(p1, p2) == 1) p2++;
|
|
}
|
|
}
|
|
|
|
p3->even = 0; p3->odd = 0;
|
|
p4->even = 0; p4->odd = 0;
|
|
statelists[0].len = p3 - statelists[0].head.slhead;
|
|
statelists[1].len = p4 - statelists[1].head.slhead;
|
|
statelists[0].tail.sltail=--p3;
|
|
statelists[1].tail.sltail=--p4;
|
|
|
|
// the statelists now contain possible keys. The key we are searching for must be in the
|
|
// intersection of both lists. Create the intersection:
|
|
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
|
|
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
|
|
|
|
uint64_t *p5, *p6, *p7;
|
|
p5 = p7 = statelists[0].head.keyhead;
|
|
p6 = statelists[1].head.keyhead;
|
|
|
|
while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
|
|
if (compar_int(p5, p6) == 0) {
|
|
*p7++ = *p5++;
|
|
p6++;
|
|
}
|
|
else {
|
|
while (compar_int(p5, p6) == -1) p5++;
|
|
while (compar_int(p5, p6) == 1) p6++;
|
|
}
|
|
}
|
|
statelists[0].len = p7 - statelists[0].head.keyhead;
|
|
statelists[0].tail.keytail = --p7;
|
|
|
|
uint32_t numOfCandidates = statelists[0].len;
|
|
if ( numOfCandidates == 0 ) goto out;
|
|
|
|
memset(resultKey, 0, 6);
|
|
uint64_t key64 = 0;
|
|
|
|
// The list may still contain several key candidates. Test each of them with mfCheckKeys
|
|
// uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
|
|
uint8_t keyBlock[USB_CMD_DATA_SIZE] = {0x00};
|
|
|
|
for (i = 0; i < numOfCandidates; ++i){
|
|
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
|
|
num_to_bytes(key64, 6, keyBlock + i * 6);
|
|
}
|
|
|
|
if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, numOfCandidates, keyBlock, &key64)) {
|
|
free(statelists[0].head.slhead);
|
|
free(statelists[1].head.slhead);
|
|
num_to_bytes(key64, 6, resultKey);
|
|
|
|
PrintAndLog("UID: %08x target block:%3u key type: %c -- Found key [%012"llx"]",
|
|
uid,
|
|
(uint16_t)resp.arg[2] & 0xff,
|
|
(resp.arg[2] >> 8) ? 'B' : 'A',
|
|
key64
|
|
);
|
|
return -5;
|
|
}
|
|
|
|
out:
|
|
PrintAndLog("UID: %08x target block:%3u key type: %c",
|
|
uid,
|
|
(uint16_t)resp.arg[2] & 0xff,
|
|
(resp.arg[2] >> 8) ? 'B' : 'A'
|
|
);
|
|
|
|
free(statelists[0].head.slhead);
|
|
free(statelists[1].head.slhead);
|
|
return -4;
|
|
}
|
|
|
|
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
|
|
*key = 0;
|
|
UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType<<8)), clear_trace, keycnt}};
|
|
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
|
|
clearCommandBuffer();
|
|
SendCommand(&c);
|
|
UsbCommand resp;
|
|
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) return 1;
|
|
if ((resp.arg[0] & 0xff) != 0x01) return 2;
|
|
*key = bytes_to_num(resp.d.asBytes, 6);
|
|
return 0;
|
|
}
|
|
// PM3 imp of J-Run mf_key_brute (part 2)
|
|
// ref: https://github.com/J-Run/mf_key_brute
|
|
int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultkey){
|
|
|
|
#define KEYS_IN_BLOCK 85
|
|
#define KEYBLOCK_SIZE 510
|
|
#define CANDIDATE_SIZE 0xFFFF * 6
|
|
uint8_t found = FALSE;
|
|
uint64_t key64 = 0;
|
|
uint8_t candidates[CANDIDATE_SIZE] = {0x00};
|
|
uint8_t keyBlock[KEYBLOCK_SIZE] = {0x00};
|
|
|
|
memset(candidates, 0, sizeof(candidates));
|
|
memset(keyBlock, 0, sizeof(keyBlock));
|
|
|
|
// Generate all possible keys for the first two unknown bytes.
|
|
for (uint16_t i = 0; i < 0xFFFF; ++i) {
|
|
uint32_t j = i * 6;
|
|
candidates[0 + j] = i >> 8;
|
|
candidates[1 + j] = i;
|
|
candidates[2 + j] = key[2];
|
|
candidates[3 + j] = key[3];
|
|
candidates[4 + j] = key[4];
|
|
candidates[5 + j] = key[5];
|
|
}
|
|
uint32_t counter, i;
|
|
for ( i = 0, counter = 1; i < CANDIDATE_SIZE; i += KEYBLOCK_SIZE, ++counter){
|
|
|
|
key64 = 0;
|
|
|
|
// copy candidatekeys to test key block
|
|
memcpy(keyBlock, candidates + i, KEYBLOCK_SIZE);
|
|
|
|
// check a block of generated candidate keys.
|
|
if (!mfCheckKeys(blockNo, keyType, TRUE, KEYS_IN_BLOCK, keyBlock, &key64)) {
|
|
*resultkey = key64;
|
|
found = TRUE;
|
|
break;
|
|
}
|
|
|
|
// progress
|
|
if ( counter % 20 == 0 )
|
|
PrintAndLog("tried : %s.. \t %u keys", sprint_hex(candidates + i, 6), counter * KEYS_IN_BLOCK );
|
|
}
|
|
return found;
|
|
}
|
|
|
|
|
|
// EMULATOR
|
|
|
|
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
|
|
UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
|
|
clearCommandBuffer();
|
|
SendCommand(&c);
|
|
UsbCommand resp;
|
|
if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
|
|
memcpy(data, resp.d.asBytes, blocksCount * 16);
|
|
return 0;
|
|
}
|
|
|
|
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
|
|
return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
|
|
}
|
|
|
|
int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
|
|
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}};
|
|
memcpy(c.d.asBytes, data, blocksCount * blockBtWidth);
|
|
clearCommandBuffer();
|
|
SendCommand(&c);
|
|
return 0;
|
|
}
|
|
|
|
// "MAGIC" CARD
|
|
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
|
|
|
|
uint8_t params = MAGIC_SINGLE;
|
|
uint8_t block0[16];
|
|
memset(block0, 0x00, sizeof(block0));
|
|
|
|
int old = mfCGetBlock(0, block0, params);
|
|
if (old == 0)
|
|
PrintAndLog("old block 0: %s", sprint_hex(block0, sizeof(block0)));
|
|
else
|
|
PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
|
|
|
|
// fill in the new values
|
|
// UID
|
|
memcpy(block0, uid, 4);
|
|
// Mifare UID BCC
|
|
block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
|
|
// mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
|
|
if ( sak != NULL )
|
|
block0[5]=sak[0];
|
|
|
|
if ( atqa != NULL ) {
|
|
block0[6]=atqa[1];
|
|
block0[7]=atqa[0];
|
|
}
|
|
PrintAndLog("new block 0: %s", sprint_hex(block0,16));
|
|
|
|
if ( wipecard ) params |= MAGIC_WIPE;
|
|
if ( oldUID == NULL) params |= MAGIC_UID;
|
|
|
|
return mfCSetBlock(0, block0, oldUID, params);
|
|
}
|
|
|
|
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
|
|
|
|
uint8_t isOK = 0;
|
|
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}};
|
|
memcpy(c.d.asBytes, data, 16);
|
|
clearCommandBuffer();
|
|
SendCommand(&c);
|
|
UsbCommand resp;
|
|
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
|
|
isOK = resp.arg[0] & 0xff;
|
|
if (uid != NULL)
|
|
memcpy(uid, resp.d.asBytes, 4);
|
|
if (!isOK)
|
|
return 2;
|
|
} else {
|
|
PrintAndLog("Command execute timeout");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
|
|
uint8_t isOK = 0;
|
|
UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
|
|
clearCommandBuffer();
|
|
SendCommand(&c);
|
|
UsbCommand resp;
|
|
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
|
|
isOK = resp.arg[0] & 0xff;
|
|
memcpy(data, resp.d.asBytes, 16);
|
|
if (!isOK) return 2;
|
|
} else {
|
|
PrintAndLog("Command execute timeout");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// SNIFFER
|
|
// [iceman] so many global variables....
|
|
|
|
// constants
|
|
static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
|
|
|
|
// variables
|
|
char logHexFileName[FILE_PATH_SIZE] = {0x00};
|
|
static uint8_t traceCard[4096] = {0x00};
|
|
static char traceFileName[FILE_PATH_SIZE] = {0x00};
|
|
static int traceState = TRACE_IDLE;
|
|
static uint8_t traceCurBlock = 0;
|
|
static uint8_t traceCurKey = 0;
|
|
|
|
struct Crypto1State *traceCrypto1 = NULL;
|
|
struct Crypto1State *revstate = NULL;
|
|
uint64_t key = 0;
|
|
uint32_t ks2 = 0;
|
|
uint32_t ks3 = 0;
|
|
|
|
uint32_t cuid = 0; // serial number
|
|
uint32_t nt =0; // tag challenge
|
|
uint32_t nr_enc =0; // encrypted reader challenge
|
|
uint32_t ar_enc =0; // encrypted reader response
|
|
uint32_t at_enc =0; // encrypted tag response
|
|
|
|
int isTraceCardEmpty(void) {
|
|
return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
|
|
}
|
|
|
|
int isBlockEmpty(int blockN) {
|
|
for (int i = 0; i < 16; i++)
|
|
if (traceCard[blockN * 16 + i] != 0) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int isBlockTrailer(int blockN) {
|
|
return ((blockN & 0x03) == 0x03);
|
|
}
|
|
|
|
int loadTraceCard(uint8_t *tuid, uint8_t uidlen) {
|
|
FILE * f;
|
|
char buf[64] = {0x00};
|
|
uint8_t buf8[64] = {0x00};
|
|
int i, blockNum;
|
|
|
|
if (!isTraceCardEmpty())
|
|
saveTraceCard();
|
|
|
|
memset(traceCard, 0x00, 4096);
|
|
memcpy(traceCard, tuid, uidlen);
|
|
|
|
FillFileNameByUID(traceFileName, tuid, ".eml", uidlen);
|
|
|
|
f = fopen(traceFileName, "r");
|
|
if (!f) return 1;
|
|
|
|
blockNum = 0;
|
|
|
|
while(!feof(f)){
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
if (fgets(buf, sizeof(buf), f) == NULL) {
|
|
PrintAndLog("No trace file found or reading error.");
|
|
fclose(f);
|
|
return 2;
|
|
}
|
|
|
|
if (strlen(buf) < 32){
|
|
if (feof(f)) break;
|
|
PrintAndLog("File content error. Block data must include 32 HEX symbols");
|
|
fclose(f);
|
|
return 2;
|
|
}
|
|
for (i = 0; i < 32; i += 2)
|
|
sscanf(&buf[i], "%02X", (unsigned int *)&buf8[i / 2]);
|
|
|
|
memcpy(traceCard + blockNum * 16, buf8, 16);
|
|
|
|
blockNum++;
|
|
}
|
|
fclose(f);
|
|
return 0;
|
|
}
|
|
|
|
int saveTraceCard(void) {
|
|
|
|
if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
|
|
|
|
FILE * f;
|
|
f = fopen(traceFileName, "w+");
|
|
if ( !f ) return 1;
|
|
|
|
for (int i = 0; i < 64; i++) { // blocks
|
|
for (int j = 0; j < 16; j++) // bytes
|
|
fprintf(f, "%02X", *(traceCard + i * 16 + j));
|
|
fprintf(f,"\n");
|
|
}
|
|
fflush(f);
|
|
fclose(f);
|
|
return 0;
|
|
}
|
|
|
|
int mfTraceInit(uint8_t *tuid, uint8_t uidlen, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
|
|
|
|
if (traceCrypto1)
|
|
crypto1_destroy(traceCrypto1);
|
|
|
|
traceCrypto1 = NULL;
|
|
|
|
if (wantSaveToEmlFile)
|
|
loadTraceCard(tuid, uidlen);
|
|
|
|
traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
|
|
traceCard[5] = sak;
|
|
memcpy(&traceCard[6], atqa, 2);
|
|
traceCurBlock = 0;
|
|
cuid = bytes_to_num(tuid+(uidlen-4), 4);
|
|
traceState = TRACE_IDLE;
|
|
return 0;
|
|
}
|
|
|
|
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
|
|
uint8_t bt = 0;
|
|
int i;
|
|
|
|
if (len != 1) {
|
|
for (i = 0; i < len; i++)
|
|
data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
|
|
} else {
|
|
bt = 0;
|
|
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 0)) << 0;
|
|
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 1)) << 1;
|
|
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 2)) << 2;
|
|
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 3)) << 3;
|
|
data[0] = bt;
|
|
}
|
|
return;
|
|
}
|
|
|
|
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
|
|
|
|
if (traceState == TRACE_ERROR) return 1;
|
|
|
|
if (len > 64) {
|
|
traceState = TRACE_ERROR;
|
|
return 1;
|
|
}
|
|
|
|
uint8_t data[64];
|
|
memset(data, 0x00, sizeof(data));
|
|
|
|
memcpy(data, data_src, len);
|
|
|
|
if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
|
|
mf_crypto1_decrypt(traceCrypto1, data, len, 0);
|
|
PrintAndLog("DEC| %s", sprint_hex(data, len));
|
|
AddLogHex(logHexFileName, "DEC| ", data, len);
|
|
}
|
|
|
|
switch (traceState) {
|
|
case TRACE_IDLE:
|
|
// check packet crc16!
|
|
if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
|
|
PrintAndLog("DEC| CRC ERROR!!!");
|
|
AddLogLine(logHexFileName, "DEC| ", "CRC ERROR!!!");
|
|
traceState = TRACE_ERROR; // do not decrypt the next commands
|
|
return 1;
|
|
}
|
|
|
|
// AUTHENTICATION
|
|
if ((len == 4) && ((data[0] == MIFARE_AUTH_KEYA) || (data[0] == MIFARE_AUTH_KEYB))) {
|
|
traceState = TRACE_AUTH1;
|
|
traceCurBlock = data[1];
|
|
traceCurKey = data[0] == 60 ? 1:0;
|
|
return 0;
|
|
}
|
|
|
|
// READ
|
|
if ((len ==4) && ((data[0] == ISO14443A_CMD_READBLOCK))) {
|
|
traceState = TRACE_READ_DATA;
|
|
traceCurBlock = data[1];
|
|
return 0;
|
|
}
|
|
|
|
// WRITE
|
|
if ((len ==4) && ((data[0] == ISO14443A_CMD_WRITEBLOCK))) {
|
|
traceState = TRACE_WRITE_OK;
|
|
traceCurBlock = data[1];
|
|
return 0;
|
|
}
|
|
|
|
// HALT
|
|
if ((len ==4) && ((data[0] == ISO14443A_CMD_HALT) && (data[1] == 0x00))) {
|
|
traceState = TRACE_ERROR; // do not decrypt the next commands
|
|
return 0;
|
|
}
|
|
return 0;
|
|
case TRACE_READ_DATA:
|
|
if (len == 18) {
|
|
traceState = TRACE_IDLE;
|
|
|
|
if (isBlockTrailer(traceCurBlock)) {
|
|
memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
|
|
} else {
|
|
memcpy(traceCard + traceCurBlock * 16, data, 16);
|
|
}
|
|
if (wantSaveToEmlFile) saveTraceCard();
|
|
return 0;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return 1;
|
|
}
|
|
break;
|
|
case TRACE_WRITE_OK:
|
|
if ((len == 1) && (data[0] == 0x0a)) {
|
|
traceState = TRACE_WRITE_DATA;
|
|
return 0;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return 1;
|
|
}
|
|
break;
|
|
case TRACE_WRITE_DATA:
|
|
if (len == 18) {
|
|
traceState = TRACE_IDLE;
|
|
memcpy(traceCard + traceCurBlock * 16, data, 16);
|
|
if (wantSaveToEmlFile) saveTraceCard();
|
|
return 0;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return 1;
|
|
}
|
|
break;
|
|
case TRACE_AUTH1:
|
|
if (len == 4) {
|
|
traceState = TRACE_AUTH2;
|
|
nt = bytes_to_num(data, 4);
|
|
return 0;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return 1;
|
|
}
|
|
break;
|
|
case TRACE_AUTH2:
|
|
if (len == 8) {
|
|
traceState = TRACE_AUTH_OK;
|
|
nr_enc = bytes_to_num(data, 4);
|
|
ar_enc = bytes_to_num(data + 4, 4);
|
|
return 0;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return 1;
|
|
}
|
|
break;
|
|
case TRACE_AUTH_OK:
|
|
if (len == 4) {
|
|
traceState = TRACE_IDLE;
|
|
at_enc = bytes_to_num(data, 4);
|
|
|
|
// decode key here)
|
|
ks2 = ar_enc ^ prng_successor(nt, 64);
|
|
ks3 = at_enc ^ prng_successor(nt, 96);
|
|
revstate = lfsr_recovery64(ks2, ks3);
|
|
lfsr_rollback_word(revstate, 0, 0);
|
|
lfsr_rollback_word(revstate, 0, 0);
|
|
lfsr_rollback_word(revstate, nr_enc, 1);
|
|
lfsr_rollback_word(revstate, cuid ^ nt, 0);
|
|
crypto1_get_lfsr(revstate, &key);
|
|
PrintAndLog("Found Key: [%012"llx"]", key);
|
|
|
|
//if ( tryMfk64(cuid, nt, nr_enc, ar_enc, at_enc, &key) )
|
|
AddLogUint64(logHexFileName, "Found Key: ", key);
|
|
|
|
int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
|
|
if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
|
|
|
|
if (traceCurKey)
|
|
num_to_bytes(key, 6, traceCard + blockShift + 10);
|
|
else
|
|
num_to_bytes(key, 6, traceCard + blockShift);
|
|
|
|
if (wantSaveToEmlFile)
|
|
saveTraceCard();
|
|
|
|
if (traceCrypto1)
|
|
crypto1_destroy(traceCrypto1);
|
|
|
|
// set cryptosystem state
|
|
traceCrypto1 = lfsr_recovery64(ks2, ks3);
|
|
|
|
return 0;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
traceState = TRACE_ERROR;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
|
|
PrintAndLog("\nEncrypted data: [%s]", sprint_hex(data, len) );
|
|
struct Crypto1State *s;
|
|
ks2 = ar_enc ^ prng_successor(nt, 64);
|
|
ks3 = at_enc ^ prng_successor(nt, 96);
|
|
s = lfsr_recovery64(ks2, ks3);
|
|
mf_crypto1_decrypt(s, data, len, FALSE);
|
|
PrintAndLog("Decrypted data: [%s]", sprint_hex(data, len) );
|
|
crypto1_destroy(s);
|
|
return 0;
|
|
}
|