proxmark3/armsrc/iclass.c
2020-05-19 17:05:43 +02:00

2497 lines
82 KiB
C

//-----------------------------------------------------------------------------
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
// Gerhard de Koning Gans - May 2011
// Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support iClass.
//-----------------------------------------------------------------------------
// Based on ISO14443a implementation. Still in experimental phase.
// Contribution made during a security research at Radboud University Nijmegen
//
// Please feel free to contribute and extend iClass support!!
//-----------------------------------------------------------------------------
//
// FIX:
// ====
// We still have sometimes a demodulation error when sniffing iClass communication.
// The resulting trace of a read-block-03 command may look something like this:
//
// + 22279: : 0c 03 e8 01
//
// ...with an incorrect answer...
//
// + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
//
// We still left the error signalling bytes in the traces like 0xbb
//
// A correct trace should look like this:
//
// + 21112: : 0c 03 e8 01
// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
//
//-----------------------------------------------------------------------------
#include "iclass.h"
#include "proxmark3_arm.h"
#include "cmd.h"
// Needed for CRC in emulation mode;
// same construction as in ISO 14443;
// different initial value (CRC_ICLASS)
#include "crc16.h"
#include "optimized_cipher.h"
#include "appmain.h"
#include "BigBuf.h"
#include "fpgaloader.h"
#include "string.h"
#include "util.h"
#include "dbprint.h"
#include "protocols.h"
#include "ticks.h"
static int g_wait = 290;
static int timeout = 5000;
static uint32_t time_rdr = 0;
static uint32_t time_response = 0;
static int SendIClassAnswer(uint8_t *resp, int respLen, uint16_t delay);
int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
#define MODE_SIM_CSN 0
#define MODE_EXIT_AFTER_MAC 1
#define MODE_FULLSIM 2
#ifndef ICLASS_DMA_BUFFER_SIZE
# define ICLASS_DMA_BUFFER_SIZE 256
#endif
// The length of a received command will in most cases be no more than 18 bytes.
// 32 should be enough!
#ifndef ICLASS_BUFFER_SIZE
#define ICLASS_BUFFER_SIZE 32
#endif
#define AddCrc(data, len) compute_crc(CRC_ICLASS, (data), (len), (data)+(len), (data)+(len)+1)
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
/*
typedef struct {
enum {
STATE_UNSYNCD,
STATE_START_OF_COMMUNICATION,
STATE_RECEIVING
} state;
uint16_t shiftReg;
int bitCnt;
int byteCnt;
// int byteCntMax;
int posCnt;
int nOutOfCnt;
int OutOfCnt;
int syncBit;
int samples;
int highCnt;
int swapper;
int counter;
int bitBuffer;
int dropPosition;
uint8_t *output;
} tUartIc;
*/
typedef struct {
enum {
DEMOD_IC_UNSYNCD,
DEMOD_IC_START_OF_COMMUNICATION,
DEMOD_IC_START_OF_COMMUNICATION2,
DEMOD_IC_START_OF_COMMUNICATION3,
DEMOD_IC_SOF_COMPLETE,
DEMOD_IC_MANCHESTER_D,
DEMOD_IC_MANCHESTER_E,
DEMOD_IC_END_OF_COMMUNICATION,
DEMOD_IC_END_OF_COMMUNICATION2,
DEMOD_IC_MANCHESTER_F,
DEMOD_IC_ERROR_WAIT
} state;
int bitCount;
int posCount;
int syncBit;
uint16_t shiftReg;
uint32_t buffer;
uint32_t buffer2;
uint32_t buffer3;
int buff;
int samples;
int len;
enum {
SUB_NONE,
SUB_FIRST_HALF,
SUB_SECOND_HALF,
SUB_BOTH
} sub;
uint8_t *output;
} tDemodIc;
/*
* Abrasive's uart implementation
* https://github.com/abrasive/proxmark3/commit/2b8bff7daea8ae1193bf7ee29b1fa46e95218902
*/
// Static vars for UART
typedef struct {
bool synced;
bool frame;
bool frame_done;
uint8_t *buf;
int len;
} tUartIc;
static tUartIc Uart;
static void OnError(uint8_t reason) {
reply_mix(CMD_ACK, 0, reason, 0, 0, 0);
switch_off();
}
static void uart_reset(void) {
Uart.frame_done = false;
Uart.synced = false;
Uart.frame = false;
}
static void uart_init(uint8_t *data) {
Uart.buf = data;
uart_reset();
}
static void uart_bit(uint8_t bit) {
static uint8_t buf = 0xff;
static uint8_t n_buf;
static int nmsg_byte;
buf <<= 1;
buf |= bit ? 1 : 0;
if (!Uart.frame) {
if (buf == 0x7b) { // 0b0111 1011
Uart.frame = true;
n_buf = 0;
Uart.len = 0;
nmsg_byte = 0;
}
} else {
static uint8_t msg_byte;
n_buf++;
if (n_buf == 8) {
msg_byte >>= 2;
switch (buf) {
case 0xbf: // 0 - 1011 1111
break;
case 0xef: // 1 - 1110 1111
msg_byte |= (1 << 6);
break;
case 0xfb: // 2 - 1111 1011
msg_byte |= (2 << 6);
break;
case 0xfe: // 3 - 1111 1110
msg_byte |= (3 << 6);
break;
case 0xdf: // eof - 1101 1111
Uart.frame = false;
Uart.synced = false;
Uart.frame_done = true;
break;
default:
Uart.frame = false;
Uart.synced = false;
Dbprintf("[-] bad %02X at %d:%d", buf, Uart.len, nmsg_byte);
}
if (Uart.frame) { // data bits
nmsg_byte += 2;
if (nmsg_byte >= 8) {
Uart.buf[Uart.len++] = msg_byte;
nmsg_byte = 0;
}
}
n_buf = 0;
buf = 0xff;
}
}
}
static void uart_samples(uint8_t byte) {
static uint32_t buf;
static int window;
static int drop_next = 0;
uint32_t falling;
int lz;
if (!Uart.synced) {
if (byte == 0xFF)
return;
buf = 0xFFFFFFFF;
window = 0;
drop_next = 0;
Uart.synced = true;
}
buf <<= 8;
buf |= byte;
if (drop_next) {
drop_next = 0;
return;
}
again:
falling = ~buf & ((buf >> 1) ^ buf) & (0xFF << window);
uart_bit(!falling);
if (!falling)
return;
lz = __builtin_clz(falling) - 24 + window;
// aim to get falling edge on fourth-leftmost bit of window
window += 3 - lz;
if (window < 0) {
window += 8;
drop_next = 1;
} else if (window >= 8) {
window -= 8;
goto again;
}
}
/*
static void UartReset(){
Uart.state = STATE_UNSYNCD;
Uart.shiftReg = 0;
Uart.bitCnt = 0;
Uart.byteCnt = 0;
Uart.posCnt = 0;
Uart.nOutOfCnt = 0;
Uart.OutOfCnt = 0;
Uart.syncBit = 0;
Uart.samples = 0;
Uart.highCnt = 0;
Uart.swapper = 0;
Uart.counter = 0;
Uart.bitBuffer = 0;
Uart.dropPosition = 0;
}
*/
/*
* READER TO CARD
* 1 out of 4 Decoding
* 1 out of 256 Decoding
*/
/*
static RAMFUNC int OutOfNDecoding(int bit) {
//int error = 0;
int bitright;
if (!Uart.bitBuffer) {
Uart.bitBuffer = bit ^ 0xFF0;
return false;
} else {
Uart.bitBuffer <<= 4;
Uart.bitBuffer ^= bit;
}
// if (Uart.swapper) {
// Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
// Uart.byteCnt++;
// Uart.swapper = 0;
// if (Uart.byteCnt > 15) return true;
// }
// else {
// Uart.swapper = 1;
// }
if (Uart.state != STATE_UNSYNCD) {
Uart.posCnt++;
if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit)
bit = 0;
else
bit = 1;
if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit)
bitright = 0;
else
bitright = 1;
if(bit != bitright)
bit = bitright;
// So, now we only have to deal with *bit*, lets see...
if (Uart.posCnt == 1) {
// measurement first half bitperiod
if (!bit) {
// Drop in first half means that we are either seeing
// an SOF or an EOF.
if (Uart.nOutOfCnt == 1) {
// End of Communication
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
if (Uart.byteCnt == 0) {
// Its not straightforward to show single EOFs
// So just leave it and do not return TRUE
Uart.output[0] = 0xf0;
Uart.byteCnt++;
} else {
return true;
}
} else if (Uart.state != STATE_START_OF_COMMUNICATION) {
// When not part of SOF or EOF, it is an error
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 4;
}
}
} else {
// measurement second half bitperiod
// Count the bitslot we are in... (ISO 15693)
Uart.nOutOfCnt++;
if (!bit) {
if (Uart.dropPosition) {
if (Uart.state == STATE_START_OF_COMMUNICATION) {
//error = 1;
} else {
//error = 7;
}
// It is an error if we already have seen a drop in current frame
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
} else {
Uart.dropPosition = Uart.nOutOfCnt;
}
}
Uart.posCnt = 0;
if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
Uart.nOutOfCnt = 0;
if (Uart.state == STATE_START_OF_COMMUNICATION) {
if (Uart.dropPosition == 4) {
Uart.state = STATE_RECEIVING;
Uart.OutOfCnt = 256;
} else if (Uart.dropPosition == 3) {
Uart.state = STATE_RECEIVING;
Uart.OutOfCnt = 4;
//Uart.output[Uart.byteCnt] = 0xdd;
//Uart.byteCnt++;
} else {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
}
Uart.dropPosition = 0;
} else {
// RECEIVING DATA
// 1 out of 4
if (!Uart.dropPosition) {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 9;
} else {
Uart.shiftReg >>= 2;
// Swap bit order
Uart.dropPosition--;
//if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
//else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
Uart.bitCnt += 2;
Uart.dropPosition = 0;
if (Uart.bitCnt == 8) {
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
Uart.byteCnt++;
Uart.bitCnt = 0;
Uart.shiftReg = 0;
}
}
}
} else if (Uart.nOutOfCnt == Uart.OutOfCnt) {
// RECEIVING DATA
// 1 out of 256
if (!Uart.dropPosition) {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 3;
} else {
Uart.dropPosition--;
Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
Uart.byteCnt++;
Uart.bitCnt = 0;
Uart.shiftReg = 0;
Uart.nOutOfCnt = 0;
Uart.dropPosition = 0;
}
}
*/
/*if (error) {
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = error & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
return true;
}*/
/*
}
} else {
bit = Uart.bitBuffer & 0xf0;
bit >>= 4;
bit ^= 0x0F; // drops become 1s ;-)
if (bit) {
// should have been high or at least (4 * 128) / fc
// according to ISO this should be at least (9 * 128 + 20) / fc
if (Uart.highCnt == 8) {
// we went low, so this could be start of communication
// it turns out to be safer to choose a less significant
// syncbit... so we check whether the neighbour also represents the drop
Uart.posCnt = 1; // apparently we are busy with our first half bit period
Uart.syncBit = bit & 8;
Uart.samples = 3;
if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
if (Uart.syncBit && (Uart.bitBuffer & 8)) {
Uart.syncBit = 8;
// the first half bit period is expected in next sample
Uart.posCnt = 0;
Uart.samples = 3;
}
} else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
Uart.syncBit <<= 4;
Uart.state = STATE_START_OF_COMMUNICATION;
Uart.bitCnt = 0;
Uart.byteCnt = 0;
Uart.nOutOfCnt = 0;
Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
Uart.dropPosition = 0;
Uart.shiftReg = 0;
//error = 0;
} else {
Uart.highCnt = 0;
}
} else {
if (Uart.highCnt < 8)
Uart.highCnt++;
}
}
return false;
}
*/
//=============================================================================
// Manchester
//=============================================================================
static tDemodIc Demod;
static void DemodIcReset(void) {
Demod.bitCount = 0;
Demod.posCount = 0;
Demod.syncBit = 0;
Demod.shiftReg = 0;
Demod.buffer = 0;
Demod.buffer2 = 0;
Demod.buffer3 = 0;
Demod.buff = 0;
Demod.samples = 0;
Demod.len = 0;
Demod.sub = SUB_NONE;
Demod.state = DEMOD_IC_UNSYNCD;
}
static void DemodIcInit(uint8_t *data) {
Demod.output = data;
DemodIcReset();
}
// UART debug
// it adds the debug values which will be put in the tracelog,
// visible on client when running 'hf list iclass'
/*
pm3 --> hf li iclass
Recorded Activity (TraceLen = 162 bytes)
Start | End | Src | Data (! denotes parity error) | CRC | Annotation |
------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|
0 | 0 | Rdr |0a | | ACTALL
1280 | 1280 | Tag |bb! 33! bb! 01 02 04 08 bb! | ok |
1280 | 1280 | Rdr |0c | | IDENTIFY
1616 | 1616 | Tag |bb! 33! bb! 00! 02 00! 02 bb! | ok |
1616 | 1616 | Rdr |0a | | ACTALL
2336 | 2336 | Tag |bb! d4! bb! 02 08 00! 08 bb! | ok |
2336 | 2336 | Rdr |0c | | IDENTIFY
2448 | 2448 | Tag |bb! 33! bb! 00! 00! 00! 02 bb! | ok |
2448 | 2448 | Rdr |0a | | ACTALL
2720 | 2720 | Tag |bb! d4! bb! 08 0b 01 04 bb! | ok |
2720 | 2720 | Rdr |0c | | IDENTIFY
3232 | 3232 | Tag |bb! d4! bb! 02 02 08 04 bb! | ok |
*/
static void uart_debug(int error, int bit) {
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = error & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = bit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.buffer & 0xFF;
Demod.len++;
// Look harder ;-)
Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
}
/*
* CARD TO READER
* in ISO15693-2 mode - Manchester
* in ISO 14443b - BPSK coding
*
* Timings:
* ISO 15693-2
* Tout = 330 µs, Tprog 1 = 4 to 15 ms, Tslot = 330 µs + (number of slots x 160 µs)
* ISO 14443a
* Tout = 100 µs, Tprog = 4 to 15 ms, Tslot = 100 µs+ (number of slots x 80 µs)
* ISO 14443b
Tout = 76 µs, Tprog = 4 to 15 ms, Tslot = 119 µs+ (number of slots x 150 µs)
*
*
* So for current implementation in ISO15693, its 330 µs from end of reader, to start of card.
*/
static RAMFUNC int ManchesterDecoding_iclass(uint32_t v) {
int bit;
int modulation;
int error = 0;
bit = Demod.buffer;
Demod.buffer = Demod.buffer2;
Demod.buffer2 = Demod.buffer3;
Demod.buffer3 = v;
// too few bits?
if (Demod.buff < 3) {
Demod.buff++;
return false;
}
if (Demod.state == DEMOD_IC_UNSYNCD) {
Demod.output[Demod.len] = 0xfa;
Demod.syncBit = 0;
//Demod.samples = 0;
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
if (bit & 0x08)
Demod.syncBit = 0x08;
if (bit & 0x04) {
if (Demod.syncBit)
bit <<= 4;
Demod.syncBit = 0x04;
}
if (bit & 0x02) {
if (Demod.syncBit)
bit <<= 2;
Demod.syncBit = 0x02;
}
if (bit & 0x01 && Demod.syncBit)
Demod.syncBit = 0x01;
if (Demod.syncBit) {
Demod.len = 0;
Demod.state = DEMOD_IC_START_OF_COMMUNICATION;
Demod.sub = SUB_FIRST_HALF;
Demod.bitCount = 0;
Demod.shiftReg = 0;
Demod.samples = 0;
if (Demod.posCount) {
switch (Demod.syncBit) {
case 0x08:
Demod.samples = 3;
break;
case 0x04:
Demod.samples = 2;
break;
case 0x02:
Demod.samples = 1;
break;
case 0x01:
Demod.samples = 0;
break;
}
// SOF must be long burst... otherwise stay unsynced!!!
if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit))
Demod.state = DEMOD_IC_UNSYNCD;
} else {
// SOF must be long burst... otherwise stay unsynced!!!
if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
Demod.state = DEMOD_IC_UNSYNCD;
error = 0x88;
uart_debug(error, bit);
return false;
}
}
}
return false;
}
// state is DEMOD is in SYNC from here on.
modulation = bit & Demod.syncBit;
modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
Demod.samples += 4;
if (Demod.posCount == 0) {
Demod.posCount = 1;
Demod.sub = (modulation) ? SUB_FIRST_HALF : SUB_NONE;
return false;
}
Demod.posCount = 0;
if (modulation) {
if (Demod.sub == SUB_FIRST_HALF)
Demod.sub = SUB_BOTH;
else
Demod.sub = SUB_SECOND_HALF;
}
if (Demod.sub == SUB_NONE) {
if (Demod.state == DEMOD_IC_SOF_COMPLETE) {
Demod.output[Demod.len] = 0x0f;
Demod.len++;
Demod.state = DEMOD_IC_UNSYNCD;
return true;
} else {
Demod.state = DEMOD_IC_ERROR_WAIT;
error = 0x33;
}
}
switch (Demod.state) {
case DEMOD_IC_START_OF_COMMUNICATION:
if (Demod.sub == SUB_BOTH) {
Demod.state = DEMOD_IC_START_OF_COMMUNICATION2;
Demod.posCount = 1;
Demod.sub = SUB_NONE;
} else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_IC_ERROR_WAIT;
error = 0xd2;
}
break;
case DEMOD_IC_START_OF_COMMUNICATION2:
if (Demod.sub == SUB_SECOND_HALF) {
Demod.state = DEMOD_IC_START_OF_COMMUNICATION3;
} else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_IC_ERROR_WAIT;
error = 0xd3;
}
break;
case DEMOD_IC_START_OF_COMMUNICATION3:
if (Demod.sub == SUB_SECOND_HALF) {
Demod.state = DEMOD_IC_SOF_COMPLETE;
} else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_IC_ERROR_WAIT;
error = 0xd4;
}
break;
case DEMOD_IC_SOF_COMPLETE:
case DEMOD_IC_MANCHESTER_D:
case DEMOD_IC_MANCHESTER_E:
// OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
// 00001111 = 1 (0 in 14443)
if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
Demod.state = DEMOD_IC_MANCHESTER_D;
} else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
Demod.bitCount++;
Demod.shiftReg >>= 1;
Demod.state = DEMOD_IC_MANCHESTER_E;
} else if (Demod.sub == SUB_BOTH) {
Demod.state = DEMOD_IC_MANCHESTER_F;
} else {
Demod.state = DEMOD_IC_ERROR_WAIT;
error = 0x55;
}
break;
case DEMOD_IC_MANCHESTER_F:
// Tag response does not need to be a complete byte!
if (Demod.len > 0 || Demod.bitCount > 0) {
if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
}
Demod.state = DEMOD_IC_UNSYNCD;
return true;
} else {
Demod.output[Demod.len] = 0xad;
Demod.state = DEMOD_IC_ERROR_WAIT;
error = 0x03;
}
break;
case DEMOD_IC_ERROR_WAIT:
Demod.state = DEMOD_IC_UNSYNCD;
break;
default:
Demod.output[Demod.len] = 0xdd;
Demod.state = DEMOD_IC_UNSYNCD;
break;
}
if (Demod.bitCount >= 8) {
Demod.shiftReg >>= 1;
Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
Demod.len++;
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
if (error) {
uart_debug(error, bit);
return true;
}
return false;
}
//=============================================================================
// Finally, a `sniffer' for iClass communication
// Both sides of communication!
//=============================================================================
static void iclass_setup_sniff(void) {
if (DBGLEVEL > 3) Dbprintf("iclass_setup_sniff Enter");
LEDsoff();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Set up the synchronous serial port
FpgaSetupSsc();
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
// Initialize Demod and Uart structs
DemodIcInit(BigBuf_malloc(ICLASS_BUFFER_SIZE));
uart_init(BigBuf_malloc(ICLASS_BUFFER_SIZE));
//UartIcInit(BigBuf_malloc(ICLASS_BUFFER_SIZE));
if (DBGLEVEL > 1) {
// Print debug information about the buffer sizes
Dbprintf("[+] Sniffing buffers initialized:");
Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
Dbprintf(" Reader -> tag: %i bytes", ICLASS_BUFFER_SIZE);
Dbprintf(" tag -> Reader: %i bytes", ICLASS_BUFFER_SIZE);
Dbprintf(" DMA: %i bytes", ICLASS_DMA_BUFFER_SIZE);
}
// Set FPGA in the appropriate mode
// put the FPGA in the appropriate mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
SpinDelay(200);
// Start the SSP timer
StartCountSspClk();
LED_A_ON();
if (DBGLEVEL > 3) Dbprintf("[+] iclass_setup_sniff Exit");
}
//-----------------------------------------------------------------------------
// Record the sequence of commands sent by the reader to the tag, with
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
// turn off afterwards
void RAMFUNC SniffIClass(void) {
//int datalen = 0;
uint32_t previous_data = 0;
uint32_t time_0 = 0, time_start = 0, time_stop;
uint32_t sniffCounter = 0;
bool TagIsActive = false;
bool ReaderIsActive = false;
iclass_setup_sniff();
// The DMA buffer, used to stream samples from the FPGA
// *dmaBuf is the start reference.
uint8_t *dmaBuf = BigBuf_malloc(ICLASS_DMA_BUFFER_SIZE);
// pointer to samples from fpga
uint8_t *data = dmaBuf;
// Setup and start DMA.
if (!FpgaSetupSscDma(dmaBuf, ICLASS_DMA_BUFFER_SIZE)) {
if (DBGLEVEL > 1) DbpString("[-] FpgaSetupSscDma failed. Exiting");
return;
}
// time ZERO, the point from which it all is calculated.
time_0 = GetCountSspClk();
// loop and listen
// every sample (1byte in data),
// contains HIGH nibble = reader data
// contains LOW nibble = tag data
// so two bytes are needed in order to get 1byte of either reader or tag data. (ie 2 sample bytes)
// since reader data is manchester encoded, we need 2bytes of data in order to get one demoded byte. (ie: 4 sample bytes)
uint16_t checked = 0;
for (;;) {
WDT_HIT();
if (checked == 1000) {
if (BUTTON_PRESS() || data_available()) break;
checked = 0;
}
++checked;
previous_data <<= 8;
previous_data |= *data;
sniffCounter++;
data++;
if (data == dmaBuf + ICLASS_DMA_BUFFER_SIZE) {
data = dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNCR = ICLASS_DMA_BUFFER_SIZE;
}
// every odd sample
if (sniffCounter & 0x01) {
// no need to try decoding reader data if the tag is sending
// READER TO CARD
if (!TagIsActive) {
LED_C_INV();
// HIGH nibble is always reader data.
uint8_t reader_byte = (previous_data & 0xF0) | (*data >> 4);
uart_samples(reader_byte);
if (Uart.frame_done) {
time_stop = GetCountSspClk() - time_0;
LogTrace(Uart.buf, Uart.len, time_start, time_stop, NULL, true);
DemodIcReset();
uart_reset();
} else {
time_start = GetCountSspClk() - time_0;
}
ReaderIsActive = Uart.frame_done;
}
}
// every four sample
if ((sniffCounter % 4) == 0) {
// need two samples to feed Manchester
// no need to try decoding tag data if the reader is sending - and we cannot afford the time
// CARD TO READER
if (!ReaderIsActive) {
LED_C_INV();
// LOW nibble is always tag data.
/*
uint32_t tag_byte =
((previous_data & 0x0F000000) >> 8 ) |
((previous_data & 0x000F0000) >> 4 ) |
((previous_data & 0x00000F00) ) |
((previous_data & 0x0000000F) << 4 ) |
(*data & 0xF);
*/
uint8_t tag_byte = ((previous_data & 0xF) << 4) | (*data & 0xF);
if (ManchesterDecoding_iclass(tag_byte)) {
time_stop = GetCountSspClk() - time_0;
LogTrace(Demod.output, Demod.len, time_start, time_stop, NULL, false);
DemodIcReset();
uart_reset();
} else {
time_start = GetCountSspClk() - time_0;
}
TagIsActive = (Demod.state != DEMOD_IC_UNSYNCD);
}
}
} // end main loop
/*
if (DBGLEVEL >= 1) {
DbpString("[+] Sniff statistics:");
Dbhexdump(ICLASS_DMA_BUFFER_SIZE, data, false);
}
*/
switch_off();
}
static void rotateCSN(uint8_t *originalCSN, uint8_t *rotatedCSN) {
int i;
for (i = 0; i < 8; i++)
rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i + 1) % 8] << 5);
}
//-----------------------------------------------------------------------------
// SIMULATION
// Wait for commands from reader
// Stop when button is pressed
// Or return TRUE when command is captured
//-----------------------------------------------------------------------------
static bool GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) {
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
uart_init(received);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
(void)b;
uint16_t checked = 0;
for (;;) {
WDT_HIT();
if (checked == 1000) {
if (BUTTON_PRESS() || data_available()) return false;
checked = 0;
}
++checked;
// keep tx buffer in a defined state anyway.
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
AT91C_BASE_SSC->SSC_THR = 0x00;
// wait for byte to become available in rx holding register
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
uart_samples(b);
if (Uart.frame_done) {
*len = Uart.len;
return true;
}
}
}
return false;
}
/*
static uint8_t encode4Bits(const uint8_t b) {
// OTA, the least significant bits first
// Manchester encoding added
// The columns are
// 1 - Bit value to send
// 2 - Reversed (big-endian)
// 3 - Machester Encoded
// 4 - Hex values
uint8_t c = b & 0xF;
switch (c) {
// 1 2 3 4
case 15:
return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
case 14:
return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
case 13:
return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
case 12:
return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
case 11:
return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
case 10:
return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
case 9:
return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
case 8:
return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
case 7:
return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
case 6:
return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
case 5:
return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
case 4:
return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
case 3:
return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
case 2:
return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
case 1:
return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
default:
return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
}
}
*/
static uint8_t lut_enc[] = { 0xAA, 0x6A, 0x9A, 0x5A, 0xA6, 0x66, 0x96, 0x56, 0xA9, 0x69, 0x99, 0x59, 0xA5, 0x65, 0x95, 0x55 };
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
static void CodeIClassTagAnswer(const uint8_t *cmd, int len) {
/*
* SOF comprises 3 parts;
* * An unmodulated time of 56.64 us
* * 24 pulses of 423.75 kHz (fc/32)
* * A logic 1, which starts with an unmodulated time of 18.88us
* followed by 8 pulses of 423.75kHz (fc/32)
*
*
* EOF comprises 3 parts:
* - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
* time of 18.88us.
* - 24 pulses of fc/32
* - An unmodulated time of 56.64 us
*
*
* A logic 0 starts with 8 pulses of fc/32
* followed by an unmodulated time of 256/fc (~18,88us).
*
* A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
* 8 pulses of fc/32 (also 18.88us)
*
* The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
* works like this.
* - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
* - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
*
* In this mode
* SOF can be written as 00011101 = 0x1D
* EOF can be written as 10111000 = 0xb8
* logic 1 be written as 01 = 0x1
* logic 0 be written as 10 = 0x2
*
* */
ToSendReset();
// Send SOF
ToSend[++ToSendMax] = 0x1D;
int i;
for (i = 0; i < len; i++) {
uint8_t b = cmd[i];
ToSend[++ToSendMax] = lut_enc[b & 0xF]; // least significant half
ToSend[++ToSendMax] = lut_enc[(b >> 4) & 0xF]; // most significant half
}
// Send EOF
ToSend[++ToSendMax] = 0xB8;
//lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
// Convert from last byte pos to length
ToSendMax++;
}
// Only SOF
static void CodeIClassTagSOF(void) {
//So far a dummy implementation, not used
//int lastProxToAirDuration =0;
ToSendReset();
// Send SOF
ToSend[++ToSendMax] = 0x1D;
// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
// Convert from last byte pos to length
ToSendMax++;
}
/**
* @brief SimulateIClass simulates an iClass card.
* @param arg0 type of simulation
* - 0 uses the first 8 bytes in usb data as CSN
* - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
* in the usb data. This mode collects MAC from the reader, in order to do an offline
* attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
* - Other : Uses the default CSN (031fec8af7ff12e0)
* @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
* @param arg2
* @param datain
*/
// turn off afterwards
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
if (DBGLEVEL > 3) Dbprintf("[+] iClass_simulate Enter");
LEDsoff();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// this will clear out bigbuf memory, the eload command must select this before!
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaSetupSsc();
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Enable and clear the trace
clear_trace();
set_tracing(true);
uint32_t simType = arg0;
uint32_t numberOfCSNS = arg1;
//Use the emulator memory for SIM
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t mac_responses[PM3_CMD_DATA_SIZE] = { 0 };
if (simType == 0) {
// Use the CSN from commandline
memcpy(emulator, datain, 8);
doIClassSimulation(MODE_SIM_CSN, NULL);
} else if (simType == 1) {
//Default CSN
uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
// Use the CSN from commandline
memcpy(emulator, csn_crc, 8);
doIClassSimulation(MODE_SIM_CSN, NULL);
} else if (simType == 2) {
Dbprintf("[+] going into attack mode, %d CSNS sent", numberOfCSNS);
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
// in order to collect MAC's from the reader. This can later be used in an offlne-attack
// in order to obtain the keys, as in the "dismantling iclass"-paper.
#define EPURSE_MAC_SIZE 16
int i = 0;
for (; i < numberOfCSNS && i * EPURSE_MAC_SIZE + 8 < PM3_CMD_DATA_SIZE; i++) {
// The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
memcpy(emulator, datain + (i * 8), 8);
if (doIClassSimulation(MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) {
// Button pressed
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i, 0, mac_responses, i * EPURSE_MAC_SIZE);
goto out;
}
}
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i, 0, mac_responses, i * EPURSE_MAC_SIZE);
} else if (simType == 3) {
//This is 'full sim' mode, where we use the emulator storage for data.
//ie: BigBuf_get_EM_addr should be previously filled with data from the "eload" command
doIClassSimulation(MODE_FULLSIM, NULL);
} else if (simType == 4) {
// This is the KEYROLL version of sim 2.
// the collected data (mac_response) is doubled out since we are trying to collect both keys in the keyroll process.
// Keyroll iceman 9 csns * 8 * 2 = 144
// keyroll CARL55 15csns * 8 * 2 = 15 * 8 * 2 = 240
Dbprintf("[+] going into attack keyroll mode, %d CSNS sent", numberOfCSNS);
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
// in order to collect MAC's from the reader. This can later be used in an offlne-attack
// in order to obtain the keys, as in the "dismantling iclass"-paper.
// keyroll mode, reader swaps between old key and new key alternatively when fail a authentication.
// attack below is same as SIM 2, but we run the CSN twice to collected the mac for both keys.
int i = 0;
// The usb data is 512 bytes, fitting 65 8-byte CSNs in there. iceman fork uses 9 CSNS
for (; i < numberOfCSNS && i * EPURSE_MAC_SIZE + 8 < PM3_CMD_DATA_SIZE; i++) {
memcpy(emulator, datain + (i * 8), 8);
// keyroll 1
if (doIClassSimulation(MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) {
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2);
// Button pressed
goto out;
}
// keyroll 2
if (doIClassSimulation(MODE_EXIT_AFTER_MAC, mac_responses + (i + numberOfCSNS) * EPURSE_MAC_SIZE)) {
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2);
// Button pressed
goto out;
}
}
// double the amount of collected data.
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2);
} else {
// We may want a mode here where we hardcode the csns to use (from proxclone).
// That will speed things up a little, but not required just yet.
DbpString("[-] the mode is not implemented, reserved for future use");
}
out:
switch_off();
BigBuf_free_keep_EM();
}
/**
* @brief Does the actual simulation
* @param csn - csn to use
* @param breakAfterMacReceived if true, returns after reader MAC has been received.
*/
int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
State cipher_state;
uint8_t *csn = BigBuf_get_EM_addr();
uint8_t *emulator = csn;
uint8_t sof_data[] = { 0x0F} ;
// CSN followed by two CRC bytes
uint8_t anticoll_data[10] = { 0 };
uint8_t csn_data[10] = { 0 };
memcpy(csn_data, csn, sizeof(csn_data));
// Construct anticollision-CSN
rotateCSN(csn_data, anticoll_data);
// Compute CRC on both CSNs
AddCrc(anticoll_data, 8);
AddCrc(csn_data, 8);
uint8_t diversified_key[8] = { 0 };
// e-Purse
uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
//uint8_t card_challenge_data[8] = { 0 };
if (simulationMode == MODE_FULLSIM) {
//The diversified key should be stored on block 3
//Get the diversified key from emulator memory
memcpy(diversified_key, emulator + (8 * 3), 8);
//Card challenge, a.k.a e-purse is on block 2
memcpy(card_challenge_data, emulator + (8 * 2), 8);
//Precalculate the cipher state, feeding it the CC
cipher_state = opt_doTagMAC_1(card_challenge_data, diversified_key);
}
// set epurse of sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
}
int exitLoop = 0;
// Reader 0a
// Tag 0f
// Reader 0c
// Tag anticoll. CSN
// Reader 81 anticoll. CSN
// Tag CSN
uint8_t *modulated_response = NULL;
int modulated_response_size = 0;
uint8_t *trace_data = NULL;
int trace_data_size = 0;
// Respond SOF -- takes 1 bytes
uint8_t *resp_sof = BigBuf_malloc(2);
int resp_sof_Len;
// Anticollision CSN (rotated CSN)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_anticoll = BigBuf_malloc(28);
int resp_anticoll_len;
// CSN
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_csn = BigBuf_malloc(28);
int resp_csn_len;
// configuration Picopass 2ks
uint8_t *resp_conf = BigBuf_malloc(28);
int resp_conf_len;
uint8_t conf_data[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
AddCrc(conf_data, 8);
// e-Purse
// 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
uint8_t *resp_cc = BigBuf_malloc(28);
int resp_cc_len;
// Application Issuer Area
uint8_t *resp_aia = BigBuf_malloc(28);
int resp_aia_len;
uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
if (simulationMode == MODE_FULLSIM) {
// (iceman) this only works for 2KS / 16KS tags.
// Use application data from block 5
memcpy(aia_data, emulator + (8 * 5), 8);
// older 2K / 16K tags has its application issuer data on block 2
}
AddCrc(aia_data, 8);
// receive command
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
int len = 0;
// Prepare card messages
ToSendMax = 0;
// First card answer: SOF
CodeIClassTagSOF();
memcpy(resp_sof, ToSend, ToSendMax);
resp_sof_Len = ToSendMax;
// Anticollision CSN
CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
memcpy(resp_anticoll, ToSend, ToSendMax);
resp_anticoll_len = ToSendMax;
// CSN
CodeIClassTagAnswer(csn_data, sizeof(csn_data));
memcpy(resp_csn, ToSend, ToSendMax);
resp_csn_len = ToSendMax;
// Configuration
CodeIClassTagAnswer(conf_data, sizeof(conf_data));
memcpy(resp_conf, ToSend, ToSendMax);
resp_conf_len = ToSendMax;
// e-Purse
CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ToSend, ToSendMax);
resp_cc_len = ToSendMax;
// Application Issuer Area
CodeIClassTagAnswer(aia_data, sizeof(aia_data));
memcpy(resp_aia, ToSend, ToSendMax);
resp_aia_len = ToSendMax;
//This is used for responding to READ-block commands or other data which is dynamically generated
//First the 'trace'-data, not encoded for FPGA
uint8_t *data_generic_trace = BigBuf_malloc((8 * 4) + 2);//8 bytes data + 2byte CRC is max tag answer
//Then storage for the modulated data
//Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
uint8_t *data_response = BigBuf_malloc(((8 * 4) + 2) * 2 + 2);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
SpinDelay(100);
StartCountSspClk();
// To control where we are in the protocol
uint32_t time_0 = GetCountSspClk();
uint32_t t2r_stime = 0, t2r_etime = 0;
uint32_t r2t_stime, r2t_etime = 0;
LED_A_ON();
bool buttonPressed = false;
uint8_t cmd, options, block;
while (!exitLoop) {
WDT_HIT();
//Signal tracer, can be used to get a trigger for an oscilloscope..
LED_B_OFF();
LED_C_OFF();
r2t_stime = (GetCountSspClk() - time_0) << 4;
if (!GetIClassCommandFromReader(receivedCmd, &len, 0)) {
buttonPressed = true;
exitLoop = true;
continue;
}
r2t_etime = ((GetCountSspClk() - time_0) << 4) - r2t_stime;
// 330us normal wait, adjusted for our execution
LED_C_ON(); //Signal tracer
cmd = receivedCmd[0] & 0xF;
options = (receivedCmd[0] >> 4) & 0xFF;
block = receivedCmd[1];
if (cmd == ICLASS_CMD_ACTALL) { // 0x0A
// Reader in anticollission phase
modulated_response = resp_sof;
modulated_response_size = resp_sof_Len; //order = 1;
trace_data = sof_data;
trace_data_size = sizeof(sof_data);
// adjusted for 330 + (160*num of slot)
goto send;
} else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY) { // 0x0C
if (len == 1) {
// Reader asks for anticollission CSN
modulated_response = resp_anticoll;
modulated_response_size = resp_anticoll_len; //order = 2;
trace_data = anticoll_data;
trace_data_size = sizeof(anticoll_data);
goto send;
}
if (len == 4) {
// block0,1,2,5 is always readable.
switch (block) {
case 0: // csn (0c 00)
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
goto send;
case 1: // configuration (0c 01)
modulated_response = resp_conf;
modulated_response_size = resp_conf_len;
trace_data = conf_data;
trace_data_size = sizeof(conf_data);
goto send;
case 2: // e-purse (0c 02)
modulated_response = resp_cc;
modulated_response_size = resp_cc_len;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
// set epurse of sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
}
goto send;
case 5:// Application Issuer Area (0c 05)
modulated_response = resp_aia;
modulated_response_size = resp_aia_len;
trace_data = aia_data;
trace_data_size = sizeof(aia_data);
goto send;
default : {
if (simulationMode == MODE_FULLSIM) { // 0x0C
//Read block
//Take the data...
memcpy(data_generic_trace, emulator + (block << 3), 8);
AddCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIClassTagAnswer(trace_data, trace_data_size);
memcpy(modulated_response, ToSend, ToSendMax);
modulated_response_size = ToSendMax;
goto send;
}
break;
}
}//swith
}// if 4
} else if (cmd == ICLASS_CMD_SELECT) { // 0x81
// Reader selects anticollission CSN.
// Tag sends the corresponding real CSN
modulated_response = resp_csn;
modulated_response_size = resp_csn_len; //order = 3;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
goto send;
} else if (cmd == ICLASS_CMD_READCHECK) { // 0x88
// Read e-purse KD (88 02) KC (18 02)
modulated_response = resp_cc;
modulated_response_size = resp_cc_len; //order = 4;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
LED_B_ON();
goto send;
} else if (cmd == ICLASS_CMD_CHECK) { // 0x05
// Reader random and reader MAC!!!
if (simulationMode == MODE_FULLSIM) {
// NR, from reader, is in receivedCmd +1
opt_doTagMAC_2(cipher_state, receivedCmd + 1, data_generic_trace, diversified_key);
trace_data = data_generic_trace;
trace_data_size = 4;
CodeIClassTagAnswer(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
} else {
// Not fullsim, we don't respond
// We do not know what to answer, so lets keep quiet
modulated_response = resp_sof;
modulated_response_size = 0;
trace_data = NULL;
trace_data_size = 0;
if (simulationMode == MODE_EXIT_AFTER_MAC) {
if (DBGLEVEL == DBG_EXTENDED) {
Dbprintf("[+] CSN: %02x %02x %02x %02x %02x %02x %02x %02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]);
Dbprintf("[+] RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", len,
receivedCmd[0], receivedCmd[1], receivedCmd[2],
receivedCmd[3], receivedCmd[4], receivedCmd[5],
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
} else {
Dbprintf("[+] CSN: %02x .... %02x OK", csn[0], csn[7]);
}
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf + 8, receivedCmd + 1, 8);
}
exitLoop = true;
}
}
goto send;
} else if (cmd == ICLASS_CMD_HALT && options == 0 && len == 1) {
// Reader ends the session
modulated_response = resp_sof;
modulated_response_size = 0; //order = 0;
trace_data = NULL;
trace_data_size = 0;
goto send;
} else if (simulationMode == MODE_FULLSIM && cmd == ICLASS_CMD_READ4 && len == 4) { // 0x06
//Read block
//Take the data...
memcpy(data_generic_trace, emulator + (block << 3), 8 * 4);
AddCrc(data_generic_trace, 8 * 4);
trace_data = data_generic_trace;
trace_data_size = 34;
CodeIClassTagAnswer(trace_data, trace_data_size);
memcpy(modulated_response, ToSend, ToSendMax);
modulated_response_size = ToSendMax;
goto send;
} else if (simulationMode == MODE_FULLSIM && cmd == ICLASS_CMD_UPDATE) {
//Probably the reader wants to update the nonce. Let's just ignore that for now.
// OBS! If this is implemented, don't forget to regenerate the cipher_state
//We're expected to respond with the data+crc, exactly what's already in the receivedcmd
//receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
//Take the data...
memcpy(data_generic_trace, receivedCmd + 2, 8);
AddCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIClassTagAnswer(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
// response_delay = 4600 * 1.5; // tPROG 4-15ms
goto send;
// } else if(receivedCmd[0] == ICLASS_CMD_PAGESEL) { // 0x84
//Pagesel
//Pagesel enables to select a page in the selected chip memory and return its configuration block
//Chips with a single page will not answer to this command
// It appears we're fine ignoring this.
//Otherwise, we should answer 8bytes (block) + 2bytes CRC
// } else if(receivedCmd[0] == ICLASS_CMD_DETECT) { // 0x0F
} else {
//#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
// Never seen this command before
if (DBGLEVEL == DBG_EXTENDED)
print_result("[-] Unhandled command received ", receivedCmd, len);
// Do not respond
modulated_response = resp_sof;
modulated_response_size = 0; //order = 0;
trace_data = NULL;
trace_data_size = 0;
}
send:
/**
A legit tag has about 330us delay between reader EOT and tag SOF.
**/
if (modulated_response_size > 0) {
t2r_stime = GetCountSspClkDelta(time_0) << 4;
SendIClassAnswer(modulated_response, modulated_response_size, 0);
t2r_etime = ((GetCountSspClk() - time_0) << 4) - t2r_stime;
}
LogTrace(receivedCmd, len, r2t_stime, r2t_etime, NULL, true);
if (trace_data != NULL)
LogTrace(trace_data, trace_data_size, t2r_stime, t2r_etime, NULL, false);
}
LEDsoff();
if (buttonPressed)
DbpString("[+] button pressed");
return buttonPressed;
}
/**
* @brief sends our simulated tag answer
* @param resp
* @param respLen
* @param delay
*/
static int SendIClassAnswer(uint8_t *resp, int respLen, uint16_t delay) {
int i = 0;
volatile uint8_t b;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
AT91C_BASE_SSC->SSC_THR = 0x00;
uint16_t checked = 0;
for (;;) {
if (checked == 1000) {
if (BUTTON_PRESS() || data_available()) return 0;
checked = 0;
}
++checked;
// Prevent rx holding register from overflowing
if ((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) {
b = AT91C_BASE_SSC->SSC_RHR;
(void) b;
}
// Put byte into tx holding register as soon as it is ready
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
b = 0x00;
if (i < respLen) {
b = resp[i];
//Hack
//b = 0xAC;
}
i++;
AT91C_BASE_SSC->SSC_THR = b;
}
// if (i > respLen + 4) break;
if (i > respLen + 1) break;
}
return 0;
}
/// THE READER CODE
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitIClassCommand(const uint8_t *cmd, int len, int *wait) {
int c = 0;
bool firstpart = true;
uint8_t sendbyte;
time_rdr = 0;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
AT91C_BASE_SSC->SSC_THR = 0x00;
// make sure we timeout previous comms.
if (*wait)
SpinDelayUs(*wait);
for (;;) {
WDT_HIT();
// Put byte into tx holding register as soon as it is ready
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
// DOUBLE THE SAMPLES!
if (firstpart) {
sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
} else {
sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
c++;
}
if (sendbyte == 0xff)
sendbyte = 0xfe;
AT91C_BASE_SSC->SSC_THR = sendbyte;
firstpart = !firstpart;
if (c >= len) break;
}
}
time_rdr = GetCountSspClk();
}
//-----------------------------------------------------------------------------
// Prepare iClass reader command to send to FPGA
//-----------------------------------------------------------------------------
static void CodeIClassCommand(const uint8_t *cmd, int len) {
int i, j, k;
ToSendReset();
// (SOC) Start of Communication: 1 out of 4
ToSend[++ToSendMax] = 0xf0;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x0f;
ToSend[++ToSendMax] = 0x00;
// Modulate the bytes
for (i = 0; i < len; i++) {
uint8_t b = cmd[i];
for (j = 0; j < 4; j++) {
for (k = 0; k < 4; k++) {
if (k == (b & 3))
ToSend[++ToSendMax] = 0x0f;
else
ToSend[++ToSendMax] = 0x00;
}
b >>= 2;
}
}
// (EOC) End of Communication
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xf0;
ToSend[++ToSendMax] = 0x00;
// Convert from last character reference to length
ToSendMax++;
}
static void ReaderTransmitIClass_ext(uint8_t *frame, int len, int wait) {
// This is tied to other size changes
CodeIClassCommand(frame, len);
// Select the card
TransmitIClassCommand(ToSend, ToSendMax, &wait);
LED_A_ON();
LogTrace(frame, len, g_rsamples, g_rsamples, NULL, true);
}
static void ReaderTransmitIClass(uint8_t *frame, int len) {
ReaderTransmitIClass_ext(frame, len, 330);
}
//-----------------------------------------------------------------------------
// Wait a certain time for tag response
// If a response is captured return TRUE
// If it takes too long return FALSE
//-----------------------------------------------------------------------------
static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *wait) {
// buffer needs to be 512 bytes
// maxLen is not used...
bool skip = false;
LED_D_ON();
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
// Setup UART/DEMOD to receive
DemodIcInit(receivedResponse);
SpinDelayUs(g_wait); //310 Tout= 330us (iso15603-2) (330/21.3) take consideration for clock increments.
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
(void)b;
uint16_t checked = 0;
uint32_t card_start = GetCountSspClk();
for (;;) {
WDT_HIT();
if (checked == 1000) {
if (BUTTON_PRESS() || data_available()) return false;
checked = 0;
}
++checked;
// Wait for byte be become available in rx holding register
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
skip = !skip;
if (skip) continue;
if (ManchesterDecoding_iclass(b & 0x0f)) {
time_response = GetCountSspClk() - card_start;
return true;
} else if (GetCountSspClkDelta(card_start) > timeout && Demod.state == DEMOD_IC_UNSYNCD) {
return false;
}
}
}
return false;
}
static int ReaderReceiveIClass(uint8_t *receivedAnswer) {
if (GetIClassAnswer(receivedAnswer, 0, NULL) == false)
return 0;
LogTrace(receivedAnswer, Demod.len, g_rsamples, g_rsamples, NULL, false);
return Demod.len;
}
static void setupIclassReader(void) {
LEDsoff();
// Start from off (no field generated)
// Signal field is off with the appropriate LED
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaSetupSsc();
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
clear_trace();
set_tracing(true);
// Now give it time to spin up.
// Signal field is on with the appropriate LED
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
SpinDelay(500);
StartCountSspClk();
LED_A_ON();
}
static bool sendCmdGetResponseWithRetries(uint8_t *command, size_t cmdsize, uint8_t *resp, uint8_t expected_size, int8_t retries) {
while (retries-- > 0) {
ReaderTransmitIClass(command, cmdsize);
//iceman - if received size is bigger than expected, we smash the stack here
// since its called with fixed sized arrays
// update/write command takes 4ms to 15ms before responding
int old_wait = g_wait;
if ((command[0] & 0xF) == ICLASS_CMD_UPDATE)
g_wait = 3900;
uint8_t got_n = ReaderReceiveIClass(resp);
g_wait = old_wait;
// 0xBB is the internal debug separator byte..
if (expected_size != got_n || (resp[0] == 0xBB || resp[7] == 0xBB || resp[2] == 0xBB)) {
//try again
// SpinDelayUs(360);
continue;
}
if (got_n == expected_size)
return true;
}
return false;
}
/**
* @brief Talks to an iclass tag, sends the commands to get CSN and CC.
* @param card_data where the CSN and CC are stored for return
* @return 0 = fail
* 1 = Got CSN
* 2 = Got CSN and CC
*/
static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
// act_all...
static uint8_t act_all[] = { ICLASS_CMD_ACTALL };
static uint8_t identify[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x00, 0x73, 0x33 };
static uint8_t select[] = { 0x80 | ICLASS_CMD_SELECT, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t readcheck_cc[] = { 0x80 | ICLASS_CMD_READCHECK, 0x02 };
// Bit 4: K.If this bit equals to one, the READCHECK will use the Credit Key (Kc); if equals to zero, Debit Key (Kd) willbe used
// bit 7: parity.
if (use_credit_key)
readcheck_cc[0] = 0x10 | ICLASS_CMD_READCHECK;
uint8_t resp[ICLASS_BUFFER_SIZE] = {0};
// Send act_all ( 330 timeout + 160 timeslot);
ReaderTransmitIClass_ext(act_all, 1, 330 + 180);
// Card present?
if (ReaderReceiveIClass(resp) == 0)
return 0;
//Send Identify
ReaderTransmitIClass(identify, 1);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
if (ReaderReceiveIClass(resp) != 10)
return 0;
//Copy the Anti-collision CSN to our select-packet
memcpy(&select[1], resp, 8);
//Select the card
ReaderTransmitIClass(select, sizeof(select));
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
if (ReaderReceiveIClass(resp) != 10)
return 0;
// Card selected, now read e-purse (cc) (block2) (only 8 bytes no CRC)
// ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
// if (ReaderReceiveIClass(resp) == 8) {
// //Save CC (e-purse) in response data
// memcpy(card_data+8, resp, 8);
// read_status++;
// }
//Success - level 1, we got CSN
//Save CSN in response data
memcpy(card_data, resp, 8);
bool isBlk_2 = sendCmdGetResponseWithRetries(readcheck_cc, sizeof(readcheck_cc), resp, 8, 3);
//Flag that we got to at least stage 1, read CSN
if (isBlk_2 == false) {
return 1;
}
//Save CC (e-purse) in response data
memcpy(card_data + 8, resp, 8);
// we got all data;
return 2;
}
static uint8_t handshakeIclassTag(uint8_t *card_data) {
return handshakeIclassTag_ext(card_data, false);
}
// Reader iClass Anticollission
// turn off afterwards
void ReaderIClass(uint8_t arg0) {
uint8_t card_data[6 * 8] = {0};
uint8_t last_csn[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint8_t resp[ICLASS_BUFFER_SIZE];
memset(card_data, 0xFF, sizeof(card_data));
memset(resp, 0xFF, sizeof(resp));
//Read conf block CRC(0x01) => 0xfa 0x22
uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
//Read App Issuer Area block CRC(0x05) => 0xde 0x64
uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
uint16_t tryCnt = 0;
bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; // flag to read until one tag is found successfully
bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; // flag to not to loop continuously, looking for tag
bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY; // flag to use credit key
bool flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF; // flag to read block1, configuration
bool flagReadCC = arg0 & FLAG_ICLASS_READER_CC; // flag to read block2, e-purse
bool flagReadAIA = arg0 & FLAG_ICLASS_READER_AIA; // flag to read block5, application issuer area
setupIclassReader();
uint16_t checked = 0;
bool userCancelled = BUTTON_PRESS() || data_available();
while (!userCancelled) {
WDT_HIT();
// if only looking for one card try 2 times if we missed it the first time
if (try_once && tryCnt > 10) {
if (DBGLEVEL > 1) DbpString("Failed to find a tag");
break;
}
tryCnt++;
uint8_t result_status = 0;
int read_status = handshakeIclassTag_ext(card_data, use_credit_key);
if (read_status == 0) continue;
if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC;
// handshakeIclass returns CSN|CC, but the actual block
// layout is CSN|CONFIG|CC, so here we reorder the data,
// moving CC forward 8 bytes
memcpy(card_data + 16, card_data + 8, 8);
//Read block 1, config
if (flagReadConfig) {
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 5)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data + 8, resp, 8);
} else {
if (DBGLEVEL > 1) DbpString("Failed to dump config block");
}
}
//Read block 5, AIA
if (flagReadAIA) {
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 5)) {
result_status |= FLAG_ICLASS_READER_AIA;
memcpy(card_data + (8 * 5), resp, 8);
} else {
if (DBGLEVEL > 1) DbpString("Failed to dump AA block");
}
}
// 0 : CSN
// 1 : Configuration
// 2 : e-purse
// 3 : kd / debit / aa2 (write-only)
// 4 : kc / credit / aa1 (write-only)
// 5 : AIA, Application issuer area
//
//Then we can 'ship' back the 6 * 8 bytes of data,
// with 0xFF:s in block 3 and 4.
LED_B_ON();
//Send back to client, but don't bother if we already sent this -
// only useful if looping in arm (not try_once && not abort_after_read)
if (memcmp(last_csn, card_data, 8) != 0) {
// If caller requires that we get Conf, CC, AA, continue until we got it
if (DBGLEVEL >= DBG_EXTENDED) {
Dbprintf("STATUS %02X | CSN %c | CONF %c | CC %c | AIA %c | ONCE %c | 1TRY %c",
result_status,
(result_status & FLAG_ICLASS_READER_CSN) ? 'Y' : 'N',
(result_status & FLAG_ICLASS_READER_CONF) ? 'Y' : 'N',
(result_status & FLAG_ICLASS_READER_CC) ? 'Y' : 'N',
(result_status & FLAG_ICLASS_READER_AIA) ? 'Y' : 'N'
);
Dbprintf(" aar %c | to %c, | uc %c | frc %c | fra %c | cc %c",
abort_after_read ? 'Y' : 'N',
try_once ? 'Y' : 'N',
use_credit_key ? 'Y' : 'N',
flagReadConfig ? 'Y' : 'N',
flagReadAIA ? 'Y' : 'N',
flagReadCC ? 'Y' : 'N'
);
}
bool send = (result_status & FLAG_ICLASS_READER_CSN);
if (flagReadCC)
send |= (result_status & FLAG_ICLASS_READER_CC);
if (flagReadAIA)
send |= (result_status & FLAG_ICLASS_READER_AIA);
if (flagReadConfig)
send |= (result_status & FLAG_ICLASS_READER_CONF);
if (DBGLEVEL >= DBG_EXTENDED) Dbprintf("SEND %c", send ? 'y' : 'n');
if (send) {
reply_mix(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
if (abort_after_read) {
LED_B_OFF();
return;
}
//Save that we already sent this....
memcpy(last_csn, card_data, 8);
}
}
LED_B_OFF();
if (checked == 1000) {
userCancelled = BUTTON_PRESS() || data_available();
checked = 0;
}
++checked;
}
if (userCancelled) {
reply_mix(CMD_ACK, 0xFF, 0, 0, card_data, 0);
switch_off();
} else {
reply_mix(CMD_ACK, 0, 0, 0, card_data, 0);
}
}
// turn off afterwards
void ReaderIClass_Replay(uint8_t arg0, uint8_t *mac) {
uint8_t cardsize = 0;
uint8_t mem = 0;
uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
uint8_t card_data[PM3_CMD_DATA_SIZE] = {0};
uint8_t resp[ICLASS_BUFFER_SIZE] = {0};
static struct memory_t {
int k16;
int book;
int k2;
int lockauth;
int keyaccess;
} memory;
setupIclassReader();
while (!BUTTON_PRESS()) {
WDT_HIT();
uint8_t read_status = handshakeIclassTag(card_data);
if (read_status < 2) continue;
//for now replay captured auth (as cc not updated)
memcpy(check + 5, mac, 4);
if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) {
DbpString("Error: Authentication Fail!");
continue;
}
//first get configuration block (block 1)
read[1] = 1;
AddCrc(read + 1, 1);
if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 5)) {
DbpString("Dump config (block 1) failed");
continue;
}
mem = resp[5];
memory.k16 = (mem & 0x80);
memory.book = (mem & 0x20);
memory.k2 = (mem & 0x8);
memory.lockauth = (mem & 0x2);
memory.keyaccess = (mem & 0x1);
cardsize = memory.k16 ? 255 : 32;
WDT_HIT();
//Set card_data to all zeroes, we'll fill it with data
memset(card_data, 0x0, PM3_CMD_DATA_SIZE);
uint8_t failedRead = 0;
uint32_t stored_data_length = 0;
//then loop around remaining blocks
for (uint16_t block = 0; block < cardsize; block++) {
read[1] = block;
AddCrc(read + 1, 1);
if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 5)) {
Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
block, resp[0], resp[1], resp[2],
resp[3], resp[4], resp[5],
resp[6], resp[7]
);
//Fill up the buffer
memcpy(card_data + stored_data_length, resp, 8);
stored_data_length += 8;
if (stored_data_length + 8 > PM3_CMD_DATA_SIZE) {
//Time to send this off and start afresh
reply_old(CMD_ACK,
stored_data_length,//data length
failedRead,//Failed blocks?
0,//Not used ATM
card_data,
stored_data_length
);
//reset
stored_data_length = 0;
failedRead = 0;
}
} else {
failedRead = 1;
stored_data_length += 8;//Otherwise, data becomes misaligned
Dbprintf("Failed to dump block %d", block);
}
}
//Send off any remaining data
if (stored_data_length > 0) {
reply_old(CMD_ACK,
stored_data_length,//data length
failedRead,//Failed blocks?
0,//Not used ATM
card_data,
stored_data_length
);
}
//If we got here, let's break
break;
}
//Signal end of transmission
reply_old(CMD_ACK,
0,//data length
0,//Failed blocks?
0,//Not used ATM
card_data,
0
);
switch_off();
}
// not used. ?!? ( CMD_HF_ICLASS_READCHECK)
// turn off afterwards
void iClass_ReadCheck(uint8_t blockno, uint8_t keytype) {
uint8_t readcheck[] = { keytype, blockno };
uint8_t resp[] = {0, 0, 0, 0, 0, 0, 0, 0};
size_t isOK = 0;
isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
reply_mix(CMD_ACK, isOK, 0, 0, 0, 0);
switch_off();
}
// used with function select_and_auth (cmdhficlass.c)
// which needs to authenticate before doing more things like read/write
void iClass_Authentication(uint8_t *mac) {
uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t resp[ICLASS_BUFFER_SIZE];
// copy MAC to check command (readersignature)
check[5] = mac[0];
check[6] = mac[1];
check[7] = mac[2];
check[8] = mac[3];
//memcpy(check+5, mac, 4);
// 6 retries
uint8_t isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
reply_ng(CMD_HF_ICLASS_AUTH, PM3_SUCCESS, (uint8_t *)&isOK, sizeof(uint8_t));
}
typedef struct iclass_premac {
uint8_t mac[4];
} iclass_premac_t;
/* this function works on the following assumptions.
* - one select first, to get CSN / CC (e-purse)
* - calculate before diversified keys and precalc mac based on CSN/KEY.
* - data in contains of diversified keys, mac
* - key loop only test one type of authtication key. Ie two calls needed
* to cover debit and credit key. (AA1/AA2)
*/
void iClass_Authentication_fast(uint64_t arg0, uint64_t arg1, uint8_t *datain) {
uint8_t i = 0, isOK = 0;
uint8_t lastChunk = ((arg0 >> 8) & 0xFF);
bool use_credit_key = ((arg0 >> 16) & 0xFF);
uint8_t keyCount = arg1 & 0xFF;
uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t resp[ICLASS_BUFFER_SIZE];
uint8_t readcheck_cc[] = { 0x80 | ICLASS_CMD_READCHECK, 0x02 };
if (use_credit_key)
readcheck_cc[0] = 0x10 | ICLASS_CMD_READCHECK;
// select card / e-purse
uint8_t card_data[6 * 8] = {0};
iclass_premac_t *keys = (iclass_premac_t *)datain;
LED_A_ON();
switch_off();
SpinDelay(20);
setupIclassReader();
uint16_t checked = 0;
int read_status = 0;
uint8_t startup_limit = 10;
while (read_status != 2) {
if (checked == 1000) {
if (BUTTON_PRESS() || !data_available()) goto out;
checked = 0;
}
++checked;
read_status = handshakeIclassTag_ext(card_data, use_credit_key);
if (startup_limit-- == 0) {
Dbprintf("[-] Handshake status | %d (fail 10)", read_status);
isOK = 99;
goto out;
}
};
// since handshakeIclassTag_ext call sends s readcheck, we start with sending first response.
checked = 0;
// Keychunk loop
for (i = 0; i < keyCount; i++) {
// Allow button press / usb cmd to interrupt device
if (checked == 1000) {
if (BUTTON_PRESS() || !data_available()) goto out;
checked = 0;
}
++checked;
WDT_HIT();
LED_B_ON();
// copy MAC to check command (readersignature)
check[5] = keys[i].mac[0];
check[6] = keys[i].mac[1];
check[7] = keys[i].mac[2];
check[8] = keys[i].mac[3];
// expect 4bytes, 3 retries times..
isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 3);
if (isOK)
goto out;
// Auth Sequence MUST begin with reading e-purse. (block2)
// Card selected, now read e-purse (cc) (block2) (only 8 bytes no CRC)
ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
LED_B_OFF();
}
out:
// send keyindex.
reply_mix(CMD_ACK, isOK, i, 0, 0, 0);
if (isOK >= 1 || lastChunk) {
switch_off();
LED_A_OFF();
}
LED_B_OFF();
LED_C_OFF();
}
// Tries to read block.
// retries 10times.
bool iClass_ReadBlock(uint8_t blockno, uint8_t *data, uint8_t len) {
uint8_t resp[10];
uint8_t cmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockno, 0x00, 0x00};
AddCrc(cmd + 1, 1);
// expect size 10, retry 5times
bool isOK = sendCmdGetResponseWithRetries(cmd, sizeof(cmd), resp, 10, 5);
memcpy(data, resp, len);
return isOK;
}
// turn off afterwards
// readblock 8 + 2. only want 8.
void iClass_ReadBlk(uint8_t blockno) {
struct p {
bool isOK;
uint8_t blockdata[8];
} PACKED result;
result.isOK = iClass_ReadBlock(blockno, result.blockdata, sizeof(result.blockdata));
switch_off();
reply_ng(CMD_HF_ICLASS_READBL, PM3_SUCCESS, (uint8_t *)&result, sizeof(result));
}
// turn off afterwards
void iClass_Dump(uint8_t blockno, uint8_t numblks) {
uint8_t blockdata[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
bool isOK = false;
uint8_t blkCnt = 0;
BigBuf_free();
uint8_t *dataout = BigBuf_malloc(255 * 8);
if (dataout == NULL) {
DbpString("[!] fail to allocate memory");
OnError(1);
return;
}
// fill mem with 0xFF
memset(dataout, 0xFF, 255 * 8);
for (; blkCnt < numblks; blkCnt++) {
isOK = iClass_ReadBlock(blockno + blkCnt, blockdata, sizeof(blockdata));
// 0xBB is the internal debug separator byte..
if (!isOK || (blockdata[0] == 0xBB || blockdata[7] == 0xBB || blockdata[2] == 0xBB)) { //try again
isOK = iClass_ReadBlock(blockno + blkCnt, blockdata, sizeof(blockdata));
if (!isOK) {
Dbprintf("[!] block %02X failed to read", blkCnt + blockno);
break;
}
}
memcpy(dataout + (blkCnt * 8), blockdata, 8);
}
switch_off();
//return pointer to dump memory in arg3
reply_mix(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0);
BigBuf_free();
}
static bool iClass_WriteBlock_ext(uint8_t blockno, uint8_t *data) {
uint8_t resp[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint8_t write[] = { 0x80 | ICLASS_CMD_UPDATE, blockno, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
memcpy(write + 2, data, 12); // data + mac
AddCrc(write + 1, 13);
return sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 5);
}
// turn off afterwards
void iClass_WriteBlock(uint8_t blockno, uint8_t *data) {
uint8_t isOK = iClass_WriteBlock_ext(blockno, data);
switch_off();
reply_ng(CMD_HF_ICLASS_WRITEBL, PM3_SUCCESS, (uint8_t *)&isOK, sizeof(uint8_t));
}
// turn off afterwards
void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
int i, written = 0;
int total_block = (endblock - startblock) + 1;
for (i = 0; i < total_block; i++) {
// block number
if (iClass_WriteBlock_ext(startblock + i, data + (i * 12))) {
Dbprintf("Write block [%02x] successful", startblock + i);
written++;
} else {
Dbprintf("Write block [%02x] failed", startblock + i);
}
}
switch_off();
uint8_t isOK = 0;
if (written == total_block)
isOK = 1;
reply_ng(CMD_HF_ICLASS_CLONE, PM3_SUCCESS, (uint8_t *)&isOK, sizeof(uint8_t));
}