mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-10 18:24:27 +08:00
498 lines
15 KiB
C
498 lines
15 KiB
C
/* reveng.c
|
|
* Greg Cook, 26/Jul/2018
|
|
*/
|
|
|
|
/* CRC RevEng: arbitrary-precision CRC calculator and algorithm finder
|
|
* Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018
|
|
* Gregory Cook
|
|
*
|
|
* This file is part of CRC RevEng.
|
|
*
|
|
* CRC RevEng is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* CRC RevEng is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CRC RevEng. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* 2013-09-16: calini(), calout() work on shortest argument
|
|
* 2013-06-11: added sequence number to uprog() calls
|
|
* 2013-02-08: added polynomial range search
|
|
* 2013-01-18: refactored model checking to pshres(); renamed chkres()
|
|
* 2012-05-24: efficiently build Init contribution string
|
|
* 2012-05-24: removed broken search for crossed-endian algorithms
|
|
* 2012-05-23: rewrote engini() after Ewing; removed modini()
|
|
* 2011-01-17: fixed ANSI C warnings
|
|
* 2011-01-08: fixed calini(), modini() caters for crossed-endian algos
|
|
* 2011-01-04: renamed functions, added calini(), factored pshres();
|
|
* rewrote engini() and implemented quick Init search
|
|
* 2011-01-01: reveng() initialises terminating entry, addparms()
|
|
* initialises all fields
|
|
* 2010-12-26: renamed CRC RevEng. right results, rejects polys faster
|
|
* 2010-12-24: completed, first tests (unsuccessful)
|
|
* 2010-12-21: completed modulate(), partial sketch of reveng()
|
|
* 2010-12-19: started reveng
|
|
*/
|
|
|
|
/* reveng() can in theory be modified to search for polynomials shorter
|
|
* than the full width as well, but this imposes a heavy time burden on
|
|
* the full width search, which is the primary use case, as well as
|
|
* complicating the search range function introduced in version 1.1.0.
|
|
* It is more effective to search for each shorter width directly.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#define FILE void
|
|
#include "reveng.h"
|
|
|
|
static poly_t *modpol(const poly_t init, int rflags, int args, const poly_t *argpolys);
|
|
static void engini(int *resc, model_t **result, const poly_t divisor, int flags, int args, const poly_t *argpolys);
|
|
static void calout(int *resc, model_t **result, const poly_t divisor, const poly_t init, int flags, int args, const poly_t *argpolys);
|
|
static void calini(int *resc, model_t **result, const poly_t divisor, int flags, const poly_t xorout, int args, const poly_t *argpolys);
|
|
static void chkres(int *resc, model_t **result, const poly_t divisor, const poly_t init, int flags, const poly_t xorout, int args, const poly_t *argpolys);
|
|
|
|
static const poly_t pzero = PZERO;
|
|
|
|
model_t *
|
|
reveng(const model_t *guess, const poly_t qpoly, int rflags, int args, const poly_t *argpolys) {
|
|
/* Complete the parameters of a model by calculation or brute search. */
|
|
poly_t *pworks, *wptr, rem, gpoly;
|
|
model_t *result = NULL, *rptr;
|
|
int resc = 0;
|
|
unsigned long spin = 0, seq = 0;
|
|
|
|
if(~rflags & R_HAVEP) {
|
|
/* The poly is not known.
|
|
* Produce a list of differences between the arguments.
|
|
*/
|
|
pworks = modpol(guess->init, rflags, args, argpolys);
|
|
if(!pworks || !plen(*pworks)) {
|
|
free(pworks);
|
|
goto requit;
|
|
}
|
|
/* Initialise the guessed poly to the starting value. */
|
|
gpoly = pclone(guess->spoly);
|
|
/* Clear the least significant term, to be set in the
|
|
* loop. qpoly does not need fixing as it is only
|
|
* compared with odd polys.
|
|
*/
|
|
if(plen(gpoly))
|
|
pshift(&gpoly, gpoly, 0UL, 0UL, plen(gpoly) - 1UL, 1UL);
|
|
|
|
while(piter(&gpoly) && (~rflags & R_HAVEQ || pcmp(&gpoly, &qpoly) < 0)) {
|
|
/* For each possible poly of this size, try
|
|
* dividing all the differences in the list.
|
|
*/
|
|
if(!(spin++ & R_SPMASK)) {
|
|
uprog(gpoly, guess->flags, seq++);
|
|
}
|
|
for(wptr = pworks; plen(*wptr); ++wptr) {
|
|
/* straight divide message by poly, don't multiply by x^n */
|
|
rem = pcrc(*wptr, gpoly, pzero, pzero, 0);
|
|
if(ptst(rem)) {
|
|
pfree(&rem);
|
|
break;
|
|
} else
|
|
pfree(&rem);
|
|
}
|
|
/* If gpoly divides all the differences, it is a
|
|
* candidate. Search for an Init value for this
|
|
* poly or if Init is known, log the result.
|
|
*/
|
|
if(!plen(*wptr)) {
|
|
/* gpoly is a candidate poly */
|
|
if(rflags & R_HAVEI && rflags & R_HAVEX)
|
|
chkres(&resc, &result, gpoly, guess->init, guess->flags, guess->xorout, args, argpolys);
|
|
else if(rflags & R_HAVEI)
|
|
calout(&resc, &result, gpoly, guess->init, guess->flags, args, argpolys);
|
|
else if(rflags & R_HAVEX)
|
|
calini(&resc, &result, gpoly, guess->flags, guess->xorout, args, argpolys);
|
|
else
|
|
engini(&resc, &result, gpoly, guess->flags, args, argpolys);
|
|
}
|
|
if(!piter(&gpoly))
|
|
break;
|
|
}
|
|
/* Finished with gpoly and the differences list, free them.
|
|
*/
|
|
pfree(&gpoly);
|
|
for(wptr = pworks; plen(*wptr); ++wptr)
|
|
pfree(wptr);
|
|
free(pworks);
|
|
}
|
|
else if(rflags & R_HAVEI && rflags & R_HAVEX)
|
|
/* All parameters are known! Submit the result if we get here */
|
|
chkres(&resc, &result, guess->spoly, guess->init, guess->flags, guess->xorout, args, argpolys);
|
|
else if(rflags & R_HAVEI)
|
|
/* Poly and Init are known, calculate XorOut */
|
|
calout(&resc, &result, guess->spoly, guess->init, guess->flags, args, argpolys);
|
|
else if(rflags & R_HAVEX)
|
|
/* Poly and XorOut are known, calculate Init */
|
|
calini(&resc, &result, guess->spoly, guess->flags, guess->xorout, args, argpolys);
|
|
else
|
|
/* Poly is known but not Init; search for Init. */
|
|
engini(&resc, &result, guess->spoly, guess->flags, args, argpolys);
|
|
|
|
requit:
|
|
if(!(result = realloc(result, ++resc * sizeof(model_t)))) {
|
|
uerror("cannot reallocate result array");
|
|
return NULL;
|
|
}
|
|
rptr = result + resc - 1;
|
|
rptr->spoly = pzero;
|
|
rptr->init = pzero;
|
|
rptr->flags = 0;
|
|
rptr->xorout = pzero;
|
|
rptr->check = pzero;
|
|
rptr->magic = pzero;
|
|
rptr->name = NULL;
|
|
|
|
return(result);
|
|
}
|
|
|
|
static poly_t *
|
|
modpol(const poly_t init, int rflags, int args, const poly_t *argpolys) {
|
|
/* Produce, in ascending length order, a list of differences
|
|
* between the arguments in the list by summing pairs of arguments.
|
|
* If R_HAVEI is not set in rflags, only pairs of equal length are
|
|
* summed.
|
|
* Otherwise, sums of right-aligned pairs are also returned, with
|
|
* the supplied init poly added to the leftmost terms of each
|
|
* poly of the pair.
|
|
*/
|
|
poly_t work, swap, *result, *rptr, *iptr;
|
|
const poly_t *aptr, *bptr, *eptr = argpolys + args;
|
|
unsigned long alen, blen;
|
|
|
|
if(args < 2) return(NULL);
|
|
|
|
if(!(result = malloc(((((args - 1) * args) >> 1) + 1) * sizeof(poly_t))))
|
|
uerror("cannot allocate memory for codeword table");
|
|
|
|
rptr = result;
|
|
|
|
for(aptr = argpolys; aptr < eptr; ++aptr) {
|
|
alen = plen(*aptr);
|
|
for(bptr = aptr + 1; bptr < eptr; ++bptr) {
|
|
blen = plen(*bptr);
|
|
if(alen == blen) {
|
|
work = pclone(*aptr);
|
|
psum(&work, *bptr, 0UL);
|
|
} else if(rflags & R_HAVEI && alen < blen) {
|
|
work = pclone(*bptr);
|
|
psum(&work, *aptr, blen - alen);
|
|
psum(&work, init, 0UL);
|
|
psum(&work, init, blen - alen);
|
|
} else if(rflags & R_HAVEI /* && alen > blen */) {
|
|
work = pclone(*aptr);
|
|
psum(&work, *bptr, alen - blen);
|
|
psum(&work, init, 0UL);
|
|
psum(&work, init, alen - blen);
|
|
} else
|
|
work = pzero;
|
|
|
|
if(plen(work))
|
|
pnorm(&work);
|
|
if((blen = plen(work))) {
|
|
/* insert work into result[] in ascending order of length */
|
|
for(iptr = result; iptr < rptr; ++iptr) {
|
|
if(plen(work) < plen(*iptr)) {
|
|
swap = *iptr;
|
|
*iptr = work;
|
|
work = swap;
|
|
}
|
|
else if(plen(*iptr) == blen && !pcmp(&work, iptr)) {
|
|
pfree(&work);
|
|
work = *--rptr;
|
|
break;
|
|
}
|
|
}
|
|
*rptr++ = work;
|
|
}
|
|
}
|
|
}
|
|
*rptr = pzero;
|
|
return(result);
|
|
}
|
|
|
|
static void
|
|
engini(int *resc, model_t **result, const poly_t divisor, int flags, int args, const poly_t *argpolys) {
|
|
/* Search for init values implied by the arguments.
|
|
* Method from: Ewing, Gregory C. (March 2010).
|
|
* "Reverse-Engineering a CRC Algorithm". Christchurch:
|
|
* University of Canterbury.
|
|
* <http://www.cosc.canterbury.ac.nz/greg.ewing/essays/
|
|
* CRC-Reverse-Engineering.html>
|
|
*/
|
|
poly_t apoly = PZERO, bpoly, pone = PZERO, *mat, *jptr;
|
|
const poly_t *aptr, *bptr, *iptr;
|
|
unsigned long alen, blen, dlen, ilen, i, j;
|
|
int cy;
|
|
|
|
dlen = plen(divisor);
|
|
|
|
/* Allocate the CRC matrix */
|
|
if(!(mat = (poly_t *) malloc((dlen << 1) * sizeof(poly_t))))
|
|
uerror("cannot allocate memory for CRC matrix");
|
|
|
|
/* Find arguments of the two shortest lengths */
|
|
alen = blen = plen(*(aptr = bptr = iptr = argpolys));
|
|
for(++iptr; iptr < argpolys + args; ++iptr) {
|
|
ilen = plen(*iptr);
|
|
if(ilen < alen) {
|
|
bptr = aptr; blen = alen;
|
|
aptr = iptr; alen = ilen;
|
|
} else if(ilen > alen && (aptr == bptr || ilen < blen)) {
|
|
bptr = iptr; blen = ilen;
|
|
}
|
|
}
|
|
if(aptr == bptr) {
|
|
/* if no arguments are suitable, calculate Init with an
|
|
* assumed XorOut of 0. Create a padded XorOut
|
|
*/
|
|
palloc(&apoly, dlen);
|
|
calini(resc, result, divisor, flags, apoly, args, argpolys);
|
|
pfree(&apoly);
|
|
free(mat);
|
|
return;
|
|
}
|
|
|
|
/* Find the potential contribution of the bottom bit of Init */
|
|
palloc(&pone, 1UL);
|
|
piter(&pone);
|
|
if(blen < (dlen << 1)) {
|
|
palloc(&apoly, dlen); /* >= 1 */
|
|
psum(&apoly, pone, (dlen << 1) - 1UL - blen); /* >= 0 */
|
|
psum(&apoly, pone, (dlen << 1) - 1UL - alen); /* >= 1 */
|
|
} else {
|
|
palloc(&apoly, blen - dlen + 1UL); /* > dlen */
|
|
psum(&apoly, pone, 0UL);
|
|
psum(&apoly, pone, blen - alen); /* >= 1 */
|
|
}
|
|
if(plen(apoly) > dlen) {
|
|
mat[dlen] = pcrc(apoly, divisor, pzero, pzero, 0);
|
|
pfree(&apoly);
|
|
} else {
|
|
mat[dlen] = apoly;
|
|
}
|
|
|
|
/* Find the actual contribution of Init */
|
|
apoly = pcrc(*aptr, divisor, pzero, pzero, 0);
|
|
bpoly = pcrc(*bptr, divisor, pzero, apoly, 0);
|
|
|
|
/* Populate the matrix */
|
|
palloc(&apoly, 1UL);
|
|
for(jptr=mat; jptr<mat+dlen; ++jptr)
|
|
*jptr = pzero;
|
|
for(iptr = jptr++; jptr < mat + (dlen << 1); iptr = jptr++)
|
|
*jptr = pcrc(apoly, divisor, *iptr, pzero, P_MULXN);
|
|
pfree(&apoly);
|
|
|
|
/* Transpose the matrix, augment with the Init contribution
|
|
* and convert to row echelon form
|
|
*/
|
|
for(i=0UL; i<dlen; ++i) {
|
|
apoly = pzero;
|
|
iptr = mat + (dlen << 1);
|
|
for(j=0UL; j<dlen; ++j)
|
|
ppaste(&apoly, *--iptr, i, j, j + 1UL, dlen + 1UL);
|
|
if(ptst(apoly))
|
|
ppaste(&apoly, bpoly, i, dlen, dlen + 1UL, dlen + 1UL);
|
|
j = pfirst(apoly);
|
|
while(j < dlen && !pident(mat[j], pzero)) {
|
|
psum(&apoly, mat[j], 0UL); /* pfirst(apoly) > j */
|
|
j = pfirst(apoly);
|
|
}
|
|
if(j < dlen)
|
|
mat[j] = apoly; /* pident(mat[j], pzero) || pfirst(mat[j]) == j */
|
|
else
|
|
pfree(&apoly);
|
|
}
|
|
palloc(&bpoly, dlen + 1UL);
|
|
psum(&bpoly, pone, dlen);
|
|
|
|
/* Iterate through all solutions */
|
|
do {
|
|
/* Solve the matrix by Gaussian elimination.
|
|
* The parity of the result, masked by each row, should be even.
|
|
*/
|
|
cy = 1;
|
|
apoly = pclone(bpoly);
|
|
jptr = mat + dlen;
|
|
for(i=0UL; i<dlen; ++i) {
|
|
/* Compute next bit of Init */
|
|
if(pmpar(apoly, *--jptr))
|
|
psum(&apoly, pone, dlen - 1UL - i);
|
|
/* Toggle each zero row with carry, for next iteration */
|
|
if(cy) {
|
|
if(pident(*jptr, pzero)) {
|
|
/* 0 to 1, no carry */
|
|
*jptr = bpoly;
|
|
cy = 0;
|
|
} else if(pident(*jptr, bpoly)) {
|
|
/* 1 to 0, carry forward */
|
|
*jptr = pzero;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Trim the augment mask bit */
|
|
praloc(&apoly, dlen);
|
|
|
|
/* Test the Init value and add to results if correct */
|
|
calout(resc, result, divisor, apoly, flags, args, argpolys);
|
|
pfree(&apoly);
|
|
} while(!cy);
|
|
pfree(&pone);
|
|
pfree(&bpoly);
|
|
|
|
/* Free the matrix. */
|
|
for(jptr=mat; jptr < mat + (dlen << 1); ++jptr)
|
|
pfree(jptr);
|
|
free(mat);
|
|
}
|
|
|
|
static void
|
|
calout(int *resc, model_t **result, const poly_t divisor, const poly_t init, int flags, int args, const poly_t *argpolys) {
|
|
/* Calculate Xorout, check it against all the arguments and
|
|
* add to results if consistent.
|
|
*/
|
|
poly_t xorout;
|
|
const poly_t *aptr, *iptr;
|
|
unsigned long alen, ilen;
|
|
|
|
if(args < 1) return;
|
|
|
|
/* find argument of the shortest length */
|
|
alen = plen(*(aptr = iptr = argpolys));
|
|
for(++iptr; iptr < argpolys + args; ++iptr) {
|
|
ilen = plen(*iptr);
|
|
if(ilen < alen) {
|
|
aptr = iptr; alen = ilen;
|
|
}
|
|
}
|
|
|
|
xorout = pcrc(*aptr, divisor, init, pzero, 0);
|
|
/* On little-endian algorithms, the calculations yield
|
|
* the reverse of the actual xorout: in the Williams
|
|
* model, the refout stage intervenes between init and
|
|
* xorout.
|
|
*/
|
|
if(flags & P_REFOUT)
|
|
prev(&xorout);
|
|
|
|
/* Submit the model to the results table.
|
|
* Could skip the shortest argument but we wish to check our
|
|
* calculation.
|
|
*/
|
|
chkres(resc, result, divisor, init, flags, xorout, args, argpolys);
|
|
pfree(&xorout);
|
|
}
|
|
|
|
static void
|
|
calini(int *resc, model_t **result, const poly_t divisor, int flags, const poly_t xorout, int args, const poly_t *argpolys) {
|
|
/* Calculate Init, check it against all the arguments and add to
|
|
* results if consistent.
|
|
*/
|
|
poly_t rcpdiv, rxor, arg, init;
|
|
const poly_t *aptr, *iptr;
|
|
unsigned long alen, ilen;
|
|
|
|
if(args < 1) return;
|
|
|
|
/* find argument of the shortest length */
|
|
alen = plen(*(aptr = iptr = argpolys));
|
|
for(++iptr; iptr < argpolys + args; ++iptr) {
|
|
ilen = plen(*iptr);
|
|
if(ilen < alen) {
|
|
aptr = iptr; alen = ilen;
|
|
}
|
|
}
|
|
|
|
rcpdiv = pclone(divisor);
|
|
prcp(&rcpdiv);
|
|
/* If the algorithm is reflected, an ordinary CRC requires the
|
|
* model's XorOut to be reversed, as XorOut follows the RefOut
|
|
* stage. To reverse the CRC calculation we need rxor to be the
|
|
* mirror image of the forward XorOut.
|
|
*/
|
|
rxor = pclone(xorout);
|
|
if(~flags & P_REFOUT)
|
|
prev(&rxor);
|
|
arg = pclone(*aptr);
|
|
prev(&arg);
|
|
|
|
init = pcrc(arg, rcpdiv, rxor, pzero, 0);
|
|
pfree(&arg);
|
|
pfree(&rxor);
|
|
pfree(&rcpdiv);
|
|
prev(&init);
|
|
|
|
/* Submit the model to the results table.
|
|
* Could skip the shortest argument but we wish to check our
|
|
* calculation.
|
|
*/
|
|
chkres(resc, result, divisor, init, flags, xorout, args, argpolys);
|
|
pfree(&init);
|
|
}
|
|
|
|
static void
|
|
chkres(int *resc, model_t **result, const poly_t divisor, const poly_t init, int flags, const poly_t xorout, int args, const poly_t *argpolys) {
|
|
/* Checks a model against the argument list, and adds to the
|
|
* external results table if consistent.
|
|
* Extends the result array and updates the external pointer if
|
|
* necessary.
|
|
*/
|
|
model_t *rptr;
|
|
poly_t xor, crc;
|
|
const poly_t *aptr = argpolys, *const eptr = argpolys + args;
|
|
|
|
/* If the algorithm is reflected, an ordinary CRC requires the
|
|
* model's XorOut to be reversed, as XorOut follows the RefOut
|
|
* stage.
|
|
*/
|
|
xor = pclone(xorout);
|
|
if(flags & P_REFOUT)
|
|
prev(&xor);
|
|
|
|
for(; aptr < eptr; ++aptr) {
|
|
crc = pcrc(*aptr, divisor, init, xor, 0);
|
|
if(ptst(crc)) {
|
|
pfree(&crc);
|
|
break;
|
|
} else {
|
|
pfree(&crc);
|
|
}
|
|
}
|
|
pfree(&xor);
|
|
if(aptr != eptr) return;
|
|
|
|
*result = realloc(*result, ++*resc * sizeof(model_t));
|
|
if (!*result) {
|
|
uerror("cannot reallocate result array");
|
|
return;
|
|
}
|
|
|
|
rptr = *result + *resc - 1;
|
|
rptr->spoly = pclone(divisor);
|
|
rptr->init = pclone(init);
|
|
rptr->flags = flags;
|
|
rptr->xorout = pclone(xorout);
|
|
rptr->check = pzero;
|
|
rptr->magic = pzero;
|
|
rptr->name = NULL;
|
|
|
|
/* compute check value for this model */
|
|
mcheck(rptr);
|
|
|
|
/* callback to notify new model */
|
|
ufound(rptr);
|
|
}
|