mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-10 10:11:58 +08:00
7bc95e2e43
- enhanced tracing: hf 14a list now shows meaningful timing information. With new option f it also shows the frame delay times (fdt) - small fix for hf 14b list - it used to run into the trace trailer - hf 14a sim now obeys iso14443 timing (fdt of 1172 or 1234 resp.) Note: you need to flash FPGA as well. More details in http://www.proxmark.org/forum/viewtopic.php?pid=9721#p9721
1479 lines
39 KiB
C
1479 lines
39 KiB
C
//-----------------------------------------------------------------------------
|
|
// Gerhard de Koning Gans - May 2008
|
|
// Hagen Fritsch - June 2010
|
|
// Gerhard de Koning Gans - May 2011
|
|
// Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Routines to support iClass.
|
|
//-----------------------------------------------------------------------------
|
|
// Based on ISO14443a implementation. Still in experimental phase.
|
|
// Contribution made during a security research at Radboud University Nijmegen
|
|
//
|
|
// Please feel free to contribute and extend iClass support!!
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FIX:
|
|
// ====
|
|
// We still have sometimes a demodulation error when snooping iClass communication.
|
|
// The resulting trace of a read-block-03 command may look something like this:
|
|
//
|
|
// + 22279: : 0c 03 e8 01
|
|
//
|
|
// ...with an incorrect answer...
|
|
//
|
|
// + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
|
|
//
|
|
// We still left the error signalling bytes in the traces like 0xbb
|
|
//
|
|
// A correct trace should look like this:
|
|
//
|
|
// + 21112: : 0c 03 e8 01
|
|
// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "util.h"
|
|
#include "string.h"
|
|
#include "common.h"
|
|
// Needed for CRC in emulation mode;
|
|
// same construction as in ISO 14443;
|
|
// different initial value (CRC_ICLASS)
|
|
#include "iso14443crc.h"
|
|
|
|
static int timeout = 4096;
|
|
|
|
// CARD TO READER
|
|
// Sequence D: 11110000 modulation with subcarrier during first half
|
|
// Sequence E: 00001111 modulation with subcarrier during second half
|
|
// Sequence F: 00000000 no modulation with subcarrier
|
|
// READER TO CARD
|
|
// Sequence X: 00001100 drop after half a period
|
|
// Sequence Y: 00000000 no drop
|
|
// Sequence Z: 11000000 drop at start
|
|
#define SEC_X 0x0c
|
|
#define SEC_Y 0x00
|
|
#define SEC_Z 0xc0
|
|
|
|
static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// The software UART that receives commands from the reader, and its state
|
|
// variables.
|
|
//-----------------------------------------------------------------------------
|
|
static struct {
|
|
enum {
|
|
STATE_UNSYNCD,
|
|
STATE_START_OF_COMMUNICATION,
|
|
STATE_RECEIVING
|
|
} state;
|
|
uint16_t shiftReg;
|
|
int bitCnt;
|
|
int byteCnt;
|
|
int byteCntMax;
|
|
int posCnt;
|
|
int nOutOfCnt;
|
|
int OutOfCnt;
|
|
int syncBit;
|
|
int parityBits;
|
|
int samples;
|
|
int highCnt;
|
|
int swapper;
|
|
int counter;
|
|
int bitBuffer;
|
|
int dropPosition;
|
|
uint8_t *output;
|
|
} Uart;
|
|
|
|
static RAMFUNC int OutOfNDecoding(int bit)
|
|
{
|
|
//int error = 0;
|
|
int bitright;
|
|
|
|
if(!Uart.bitBuffer) {
|
|
Uart.bitBuffer = bit ^ 0xFF0;
|
|
return FALSE;
|
|
}
|
|
else {
|
|
Uart.bitBuffer <<= 4;
|
|
Uart.bitBuffer ^= bit;
|
|
}
|
|
|
|
/*if(Uart.swapper) {
|
|
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.swapper = 0;
|
|
if(Uart.byteCnt > 15) { return TRUE; }
|
|
}
|
|
else {
|
|
Uart.swapper = 1;
|
|
}*/
|
|
|
|
if(Uart.state != STATE_UNSYNCD) {
|
|
Uart.posCnt++;
|
|
|
|
if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
|
|
bit = 0x00;
|
|
}
|
|
else {
|
|
bit = 0x01;
|
|
}
|
|
if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
|
|
bitright = 0x00;
|
|
}
|
|
else {
|
|
bitright = 0x01;
|
|
}
|
|
if(bit != bitright) { bit = bitright; }
|
|
|
|
|
|
// So, now we only have to deal with *bit*, lets see...
|
|
if(Uart.posCnt == 1) {
|
|
// measurement first half bitperiod
|
|
if(!bit) {
|
|
// Drop in first half means that we are either seeing
|
|
// an SOF or an EOF.
|
|
|
|
if(Uart.nOutOfCnt == 1) {
|
|
// End of Communication
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
if(Uart.byteCnt == 0) {
|
|
// Its not straightforward to show single EOFs
|
|
// So just leave it and do not return TRUE
|
|
Uart.output[Uart.byteCnt] = 0xf0;
|
|
Uart.byteCnt++;
|
|
|
|
// Calculate the parity bit for the client...
|
|
Uart.parityBits = 1;
|
|
}
|
|
else {
|
|
return TRUE;
|
|
}
|
|
}
|
|
else if(Uart.state != STATE_START_OF_COMMUNICATION) {
|
|
// When not part of SOF or EOF, it is an error
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
//error = 4;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// measurement second half bitperiod
|
|
// Count the bitslot we are in... (ISO 15693)
|
|
Uart.nOutOfCnt++;
|
|
|
|
if(!bit) {
|
|
if(Uart.dropPosition) {
|
|
if(Uart.state == STATE_START_OF_COMMUNICATION) {
|
|
//error = 1;
|
|
}
|
|
else {
|
|
//error = 7;
|
|
}
|
|
// It is an error if we already have seen a drop in current frame
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
}
|
|
else {
|
|
Uart.dropPosition = Uart.nOutOfCnt;
|
|
}
|
|
}
|
|
|
|
Uart.posCnt = 0;
|
|
|
|
|
|
if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
|
|
Uart.nOutOfCnt = 0;
|
|
|
|
if(Uart.state == STATE_START_OF_COMMUNICATION) {
|
|
if(Uart.dropPosition == 4) {
|
|
Uart.state = STATE_RECEIVING;
|
|
Uart.OutOfCnt = 256;
|
|
}
|
|
else if(Uart.dropPosition == 3) {
|
|
Uart.state = STATE_RECEIVING;
|
|
Uart.OutOfCnt = 4;
|
|
//Uart.output[Uart.byteCnt] = 0xdd;
|
|
//Uart.byteCnt++;
|
|
}
|
|
else {
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
}
|
|
Uart.dropPosition = 0;
|
|
}
|
|
else {
|
|
// RECEIVING DATA
|
|
// 1 out of 4
|
|
if(!Uart.dropPosition) {
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
//error = 9;
|
|
}
|
|
else {
|
|
Uart.shiftReg >>= 2;
|
|
|
|
// Swap bit order
|
|
Uart.dropPosition--;
|
|
//if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
|
|
//else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
|
|
|
|
Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
|
|
Uart.bitCnt += 2;
|
|
Uart.dropPosition = 0;
|
|
|
|
if(Uart.bitCnt == 8) {
|
|
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
|
|
Uart.byteCnt++;
|
|
|
|
// Calculate the parity bit for the client...
|
|
Uart.parityBits <<= 1;
|
|
Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)];
|
|
|
|
Uart.bitCnt = 0;
|
|
Uart.shiftReg = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
|
|
// RECEIVING DATA
|
|
// 1 out of 256
|
|
if(!Uart.dropPosition) {
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
//error = 3;
|
|
}
|
|
else {
|
|
Uart.dropPosition--;
|
|
Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
|
|
Uart.byteCnt++;
|
|
|
|
// Calculate the parity bit for the client...
|
|
Uart.parityBits <<= 1;
|
|
Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)];
|
|
|
|
Uart.bitCnt = 0;
|
|
Uart.shiftReg = 0;
|
|
Uart.nOutOfCnt = 0;
|
|
Uart.dropPosition = 0;
|
|
}
|
|
}
|
|
|
|
/*if(error) {
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = error & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
return TRUE;
|
|
}*/
|
|
}
|
|
|
|
}
|
|
else {
|
|
bit = Uart.bitBuffer & 0xf0;
|
|
bit >>= 4;
|
|
bit ^= 0x0F; // drops become 1s ;-)
|
|
if(bit) {
|
|
// should have been high or at least (4 * 128) / fc
|
|
// according to ISO this should be at least (9 * 128 + 20) / fc
|
|
if(Uart.highCnt == 8) {
|
|
// we went low, so this could be start of communication
|
|
// it turns out to be safer to choose a less significant
|
|
// syncbit... so we check whether the neighbour also represents the drop
|
|
Uart.posCnt = 1; // apparently we are busy with our first half bit period
|
|
Uart.syncBit = bit & 8;
|
|
Uart.samples = 3;
|
|
if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
|
|
else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
|
|
if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
|
|
else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
|
|
if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
|
|
if(Uart.syncBit && (Uart.bitBuffer & 8)) {
|
|
Uart.syncBit = 8;
|
|
|
|
// the first half bit period is expected in next sample
|
|
Uart.posCnt = 0;
|
|
Uart.samples = 3;
|
|
}
|
|
}
|
|
else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
|
|
|
|
Uart.syncBit <<= 4;
|
|
Uart.state = STATE_START_OF_COMMUNICATION;
|
|
Uart.bitCnt = 0;
|
|
Uart.byteCnt = 0;
|
|
Uart.parityBits = 0;
|
|
Uart.nOutOfCnt = 0;
|
|
Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
|
|
Uart.dropPosition = 0;
|
|
Uart.shiftReg = 0;
|
|
//error = 0;
|
|
}
|
|
else {
|
|
Uart.highCnt = 0;
|
|
}
|
|
}
|
|
else {
|
|
if(Uart.highCnt < 8) {
|
|
Uart.highCnt++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
//=============================================================================
|
|
// Manchester
|
|
//=============================================================================
|
|
|
|
static struct {
|
|
enum {
|
|
DEMOD_UNSYNCD,
|
|
DEMOD_START_OF_COMMUNICATION,
|
|
DEMOD_START_OF_COMMUNICATION2,
|
|
DEMOD_START_OF_COMMUNICATION3,
|
|
DEMOD_SOF_COMPLETE,
|
|
DEMOD_MANCHESTER_D,
|
|
DEMOD_MANCHESTER_E,
|
|
DEMOD_END_OF_COMMUNICATION,
|
|
DEMOD_END_OF_COMMUNICATION2,
|
|
DEMOD_MANCHESTER_F,
|
|
DEMOD_ERROR_WAIT
|
|
} state;
|
|
int bitCount;
|
|
int posCount;
|
|
int syncBit;
|
|
int parityBits;
|
|
uint16_t shiftReg;
|
|
int buffer;
|
|
int buffer2;
|
|
int buffer3;
|
|
int buff;
|
|
int samples;
|
|
int len;
|
|
enum {
|
|
SUB_NONE,
|
|
SUB_FIRST_HALF,
|
|
SUB_SECOND_HALF,
|
|
SUB_BOTH
|
|
} sub;
|
|
uint8_t *output;
|
|
} Demod;
|
|
|
|
static RAMFUNC int ManchesterDecoding(int v)
|
|
{
|
|
int bit;
|
|
int modulation;
|
|
int error = 0;
|
|
|
|
bit = Demod.buffer;
|
|
Demod.buffer = Demod.buffer2;
|
|
Demod.buffer2 = Demod.buffer3;
|
|
Demod.buffer3 = v;
|
|
|
|
if(Demod.buff < 3) {
|
|
Demod.buff++;
|
|
return FALSE;
|
|
}
|
|
|
|
if(Demod.state==DEMOD_UNSYNCD) {
|
|
Demod.output[Demod.len] = 0xfa;
|
|
Demod.syncBit = 0;
|
|
//Demod.samples = 0;
|
|
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
|
|
|
|
if(bit & 0x08) {
|
|
Demod.syncBit = 0x08;
|
|
}
|
|
|
|
if(bit & 0x04) {
|
|
if(Demod.syncBit) {
|
|
bit <<= 4;
|
|
}
|
|
Demod.syncBit = 0x04;
|
|
}
|
|
|
|
if(bit & 0x02) {
|
|
if(Demod.syncBit) {
|
|
bit <<= 2;
|
|
}
|
|
Demod.syncBit = 0x02;
|
|
}
|
|
|
|
if(bit & 0x01 && Demod.syncBit) {
|
|
Demod.syncBit = 0x01;
|
|
}
|
|
|
|
if(Demod.syncBit) {
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_START_OF_COMMUNICATION;
|
|
Demod.sub = SUB_FIRST_HALF;
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
Demod.parityBits = 0;
|
|
Demod.samples = 0;
|
|
if(Demod.posCount) {
|
|
//if(trigger) LED_A_OFF(); // Not useful in this case...
|
|
switch(Demod.syncBit) {
|
|
case 0x08: Demod.samples = 3; break;
|
|
case 0x04: Demod.samples = 2; break;
|
|
case 0x02: Demod.samples = 1; break;
|
|
case 0x01: Demod.samples = 0; break;
|
|
}
|
|
// SOF must be long burst... otherwise stay unsynced!!!
|
|
if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
}
|
|
else {
|
|
// SOF must be long burst... otherwise stay unsynced!!!
|
|
if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
error = 0x88;
|
|
}
|
|
|
|
}
|
|
error = 0;
|
|
|
|
}
|
|
}
|
|
else {
|
|
modulation = bit & Demod.syncBit;
|
|
modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
|
|
//modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
|
|
|
|
Demod.samples += 4;
|
|
|
|
if(Demod.posCount==0) {
|
|
Demod.posCount = 1;
|
|
if(modulation) {
|
|
Demod.sub = SUB_FIRST_HALF;
|
|
}
|
|
else {
|
|
Demod.sub = SUB_NONE;
|
|
}
|
|
}
|
|
else {
|
|
Demod.posCount = 0;
|
|
/*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
|
|
if(Demod.state!=DEMOD_ERROR_WAIT) {
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
Demod.output[Demod.len] = 0xaa;
|
|
error = 0x01;
|
|
}
|
|
}*/
|
|
//else if(modulation) {
|
|
if(modulation) {
|
|
if(Demod.sub == SUB_FIRST_HALF) {
|
|
Demod.sub = SUB_BOTH;
|
|
}
|
|
else {
|
|
Demod.sub = SUB_SECOND_HALF;
|
|
}
|
|
}
|
|
else if(Demod.sub == SUB_NONE) {
|
|
if(Demod.state == DEMOD_SOF_COMPLETE) {
|
|
Demod.output[Demod.len] = 0x0f;
|
|
Demod.len++;
|
|
Demod.parityBits <<= 1;
|
|
Demod.parityBits ^= OddByteParity[0x0f];
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
// error = 0x0f;
|
|
return TRUE;
|
|
}
|
|
else {
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0x33;
|
|
}
|
|
/*if(Demod.state!=DEMOD_ERROR_WAIT) {
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
Demod.output[Demod.len] = 0xaa;
|
|
error = 0x01;
|
|
}*/
|
|
}
|
|
|
|
switch(Demod.state) {
|
|
case DEMOD_START_OF_COMMUNICATION:
|
|
if(Demod.sub == SUB_BOTH) {
|
|
//Demod.state = DEMOD_MANCHESTER_D;
|
|
Demod.state = DEMOD_START_OF_COMMUNICATION2;
|
|
Demod.posCount = 1;
|
|
Demod.sub = SUB_NONE;
|
|
}
|
|
else {
|
|
Demod.output[Demod.len] = 0xab;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0xd2;
|
|
}
|
|
break;
|
|
case DEMOD_START_OF_COMMUNICATION2:
|
|
if(Demod.sub == SUB_SECOND_HALF) {
|
|
Demod.state = DEMOD_START_OF_COMMUNICATION3;
|
|
}
|
|
else {
|
|
Demod.output[Demod.len] = 0xab;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0xd3;
|
|
}
|
|
break;
|
|
case DEMOD_START_OF_COMMUNICATION3:
|
|
if(Demod.sub == SUB_SECOND_HALF) {
|
|
// Demod.state = DEMOD_MANCHESTER_D;
|
|
Demod.state = DEMOD_SOF_COMPLETE;
|
|
//Demod.output[Demod.len] = Demod.syncBit & 0xFF;
|
|
//Demod.len++;
|
|
}
|
|
else {
|
|
Demod.output[Demod.len] = 0xab;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0xd4;
|
|
}
|
|
break;
|
|
case DEMOD_SOF_COMPLETE:
|
|
case DEMOD_MANCHESTER_D:
|
|
case DEMOD_MANCHESTER_E:
|
|
// OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
|
|
// 00001111 = 1 (0 in 14443)
|
|
if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
|
|
Demod.bitCount++;
|
|
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
|
|
Demod.state = DEMOD_MANCHESTER_D;
|
|
}
|
|
else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
|
|
Demod.bitCount++;
|
|
Demod.shiftReg >>= 1;
|
|
Demod.state = DEMOD_MANCHESTER_E;
|
|
}
|
|
else if(Demod.sub == SUB_BOTH) {
|
|
Demod.state = DEMOD_MANCHESTER_F;
|
|
}
|
|
else {
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0x55;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_MANCHESTER_F:
|
|
// Tag response does not need to be a complete byte!
|
|
if(Demod.len > 0 || Demod.bitCount > 0) {
|
|
if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
|
|
Demod.shiftReg >>= (9 - Demod.bitCount);
|
|
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
|
|
Demod.len++;
|
|
// No parity bit, so just shift a 0
|
|
Demod.parityBits <<= 1;
|
|
}
|
|
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
return TRUE;
|
|
}
|
|
else {
|
|
Demod.output[Demod.len] = 0xad;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0x03;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_ERROR_WAIT:
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
break;
|
|
|
|
default:
|
|
Demod.output[Demod.len] = 0xdd;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
break;
|
|
}
|
|
|
|
/*if(Demod.bitCount>=9) {
|
|
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
|
|
Demod.len++;
|
|
|
|
Demod.parityBits <<= 1;
|
|
Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
|
|
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
}*/
|
|
if(Demod.bitCount>=8) {
|
|
Demod.shiftReg >>= 1;
|
|
Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
|
|
Demod.len++;
|
|
|
|
// FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT
|
|
Demod.parityBits <<= 1;
|
|
Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)];
|
|
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
}
|
|
|
|
if(error) {
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = error & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = bit & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = Demod.buffer & 0xFF;
|
|
Demod.len++;
|
|
// Look harder ;-)
|
|
Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
return TRUE;
|
|
}
|
|
|
|
}
|
|
|
|
} // end (state != UNSYNCED)
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
//=============================================================================
|
|
// Finally, a `sniffer' for iClass communication
|
|
// Both sides of communication!
|
|
//=============================================================================
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Record the sequence of commands sent by the reader to the tag, with
|
|
// triggering so that we start recording at the point that the tag is moved
|
|
// near the reader.
|
|
//-----------------------------------------------------------------------------
|
|
void RAMFUNC SnoopIClass(void)
|
|
{
|
|
// DEFINED ABOVE
|
|
// #define RECV_CMD_OFFSET 3032
|
|
// #define RECV_RES_OFFSET 3096
|
|
// #define DMA_BUFFER_OFFSET 3160
|
|
// #define DMA_BUFFER_SIZE 4096
|
|
// #define TRACE_SIZE 3000
|
|
|
|
// We won't start recording the frames that we acquire until we trigger;
|
|
// a good trigger condition to get started is probably when we see a
|
|
// response from the tag.
|
|
//int triggered = FALSE; // FALSE to wait first for card
|
|
|
|
// The command (reader -> tag) that we're receiving.
|
|
// The length of a received command will in most cases be no more than 18 bytes.
|
|
// So 32 should be enough!
|
|
uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
|
|
// The response (tag -> reader) that we're receiving.
|
|
uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
|
|
|
|
// As we receive stuff, we copy it from receivedCmd or receivedResponse
|
|
// into trace, along with its length and other annotations.
|
|
//uint8_t *trace = (uint8_t *)BigBuf;
|
|
|
|
// reset traceLen to 0
|
|
iso14a_set_tracing(TRUE);
|
|
iso14a_clear_trace();
|
|
iso14a_set_trigger(FALSE);
|
|
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
|
|
int lastRxCounter;
|
|
int8_t *upTo;
|
|
int smpl;
|
|
int maxBehindBy = 0;
|
|
|
|
// Count of samples received so far, so that we can include timing
|
|
// information in the trace buffer.
|
|
int samples = 0;
|
|
rsamples = 0;
|
|
|
|
memset(trace, 0x44, RECV_CMD_OFFSET);
|
|
|
|
// Set up the demodulator for tag -> reader responses.
|
|
Demod.output = receivedResponse;
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
|
|
// Setup for the DMA.
|
|
FpgaSetupSsc();
|
|
upTo = dmaBuf;
|
|
lastRxCounter = DMA_BUFFER_SIZE;
|
|
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
|
|
|
|
// And the reader -> tag commands
|
|
memset(&Uart, 0, sizeof(Uart));
|
|
Uart.output = receivedCmd;
|
|
Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
|
|
Uart.state = STATE_UNSYNCD;
|
|
|
|
// And put the FPGA in the appropriate mode
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
int div = 0;
|
|
//int div2 = 0;
|
|
int decbyte = 0;
|
|
int decbyter = 0;
|
|
|
|
// And now we loop, receiving samples.
|
|
for(;;) {
|
|
LED_A_ON();
|
|
WDT_HIT();
|
|
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
|
|
(DMA_BUFFER_SIZE-1);
|
|
if(behindBy > maxBehindBy) {
|
|
maxBehindBy = behindBy;
|
|
if(behindBy > 400) {
|
|
Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
|
|
goto done;
|
|
}
|
|
}
|
|
if(behindBy < 1) continue;
|
|
|
|
LED_A_OFF();
|
|
smpl = upTo[0];
|
|
upTo++;
|
|
lastRxCounter -= 1;
|
|
if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
|
|
upTo -= DMA_BUFFER_SIZE;
|
|
lastRxCounter += DMA_BUFFER_SIZE;
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
|
|
}
|
|
|
|
//samples += 4;
|
|
samples += 1;
|
|
//div2++;
|
|
|
|
//if(div2 > 3) {
|
|
//div2 = 0;
|
|
//decbyte ^= ((smpl & 0x01) << (3 - div));
|
|
//decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1)) << (3 - div)); // better already...
|
|
//decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1) | ((smpl & 0x04) >> 2)) << (3 - div)); // even better...
|
|
if(smpl & 0xF) {
|
|
decbyte ^= (1 << (3 - div));
|
|
}
|
|
//decbyte ^= (MajorityNibble[(smpl & 0x0F)] << (3 - div));
|
|
|
|
// FOR READER SIDE COMMUMICATION...
|
|
//decbyte ^= ((smpl & 0x10) << (3 - div));
|
|
decbyter <<= 2;
|
|
decbyter ^= (smpl & 0x30);
|
|
|
|
div++;
|
|
|
|
if((div + 1) % 2 == 0) {
|
|
smpl = decbyter;
|
|
if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
|
|
rsamples = samples - Uart.samples;
|
|
LED_C_ON();
|
|
//if(triggered) {
|
|
trace[traceLen++] = ((rsamples >> 0) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 8) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 16) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 24) & 0xff);
|
|
trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
|
|
trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
|
|
trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
|
|
trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
|
|
trace[traceLen++] = Uart.byteCnt;
|
|
memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
|
|
traceLen += Uart.byteCnt;
|
|
if(traceLen > TRACE_SIZE) break;
|
|
//}
|
|
/* And ready to receive another command. */
|
|
Uart.state = STATE_UNSYNCD;
|
|
/* And also reset the demod code, which might have been */
|
|
/* false-triggered by the commands from the reader. */
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_B_OFF();
|
|
Uart.byteCnt = 0;
|
|
}
|
|
decbyter = 0;
|
|
}
|
|
|
|
if(div > 3) {
|
|
smpl = decbyte;
|
|
if(ManchesterDecoding(smpl & 0x0F)) {
|
|
rsamples = samples - Demod.samples;
|
|
LED_B_ON();
|
|
|
|
// timestamp, as a count of samples
|
|
trace[traceLen++] = ((rsamples >> 0) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 8) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 16) & 0xff);
|
|
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
|
|
// length
|
|
trace[traceLen++] = Demod.len;
|
|
memcpy(trace+traceLen, receivedResponse, Demod.len);
|
|
traceLen += Demod.len;
|
|
if(traceLen > TRACE_SIZE) break;
|
|
|
|
//triggered = TRUE;
|
|
|
|
// And ready to receive another response.
|
|
memset(&Demod, 0, sizeof(Demod));
|
|
Demod.output = receivedResponse;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
}
|
|
|
|
div = 0;
|
|
decbyte = 0x00;
|
|
}
|
|
//}
|
|
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("cancelled_a");
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
DbpString("COMMAND FINISHED");
|
|
|
|
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
|
|
Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
|
|
|
|
done:
|
|
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
|
|
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
|
|
Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
|
|
LED_A_OFF();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
LED_D_OFF();
|
|
}
|
|
|
|
void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
|
|
int i;
|
|
for(i = 0; i < 8; i++) {
|
|
rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait for commands from reader
|
|
// Stop when button is pressed
|
|
// Or return TRUE when command is captured
|
|
//-----------------------------------------------------------------------------
|
|
static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
|
|
{
|
|
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
|
|
|
|
// Now run a `software UART' on the stream of incoming samples.
|
|
Uart.output = received;
|
|
Uart.byteCntMax = maxLen;
|
|
Uart.state = STATE_UNSYNCD;
|
|
|
|
for(;;) {
|
|
WDT_HIT();
|
|
|
|
if(BUTTON_PRESS()) return FALSE;
|
|
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
/*if(OutOfNDecoding((b & 0xf0) >> 4)) {
|
|
*len = Uart.byteCnt;
|
|
return TRUE;
|
|
}*/
|
|
if(OutOfNDecoding(b & 0x0f)) {
|
|
*len = Uart.byteCnt;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Prepare tag messages
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
|
|
{
|
|
int i;
|
|
|
|
ToSendReset();
|
|
|
|
// Send SOF
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
|
|
for(i = 0; i < len; i++) {
|
|
int j;
|
|
uint8_t b = cmd[i];
|
|
|
|
// Data bits
|
|
for(j = 0; j < 8; j++) {
|
|
if(b & 1) {
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
} else {
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
}
|
|
b >>= 1;
|
|
}
|
|
}
|
|
|
|
// Send EOF
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
// Only SOF
|
|
static void CodeIClassTagSOF()
|
|
{
|
|
ToSendReset();
|
|
|
|
// Send SOF
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0xff;
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Simulate iClass Card
|
|
// Only CSN (Card Serial Number)
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void SimulateIClass(uint8_t arg0, uint8_t *datain)
|
|
{
|
|
uint8_t simType = arg0;
|
|
|
|
// Enable and clear the trace
|
|
tracing = TRUE;
|
|
traceLen = 0;
|
|
memset(trace, 0x44, TRACE_SIZE);
|
|
|
|
// CSN followed by two CRC bytes
|
|
uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
uint8_t response3[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
|
|
|
|
// e-Purse
|
|
uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
|
|
if(simType == 0) {
|
|
// Use the CSN from commandline
|
|
memcpy(response3, datain, 8);
|
|
}
|
|
|
|
// Construct anticollision-CSN
|
|
rotateCSN(response3,response2);
|
|
|
|
// Compute CRC on both CSNs
|
|
ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]);
|
|
ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]);
|
|
|
|
// Reader 0a
|
|
// Tag 0f
|
|
// Reader 0c
|
|
// Tag anticoll. CSN
|
|
// Reader 81 anticoll. CSN
|
|
// Tag CSN
|
|
|
|
uint8_t *resp;
|
|
int respLen;
|
|
uint8_t* respdata = NULL;
|
|
int respsize = 0;
|
|
uint8_t sof = 0x0f;
|
|
|
|
// Respond SOF -- takes 8 bytes
|
|
uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
|
|
int resp1Len;
|
|
|
|
// Anticollision CSN (rotated CSN)
|
|
// 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
|
|
uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10);
|
|
int resp2Len;
|
|
|
|
// CSN
|
|
// 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
|
|
uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190);
|
|
int resp3Len;
|
|
|
|
// e-Purse
|
|
// 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
|
|
uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370);
|
|
int resp4Len;
|
|
|
|
// + 1720..
|
|
uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
|
|
memset(receivedCmd, 0x44, RECV_CMD_SIZE);
|
|
int len;
|
|
|
|
// Prepare card messages
|
|
ToSendMax = 0;
|
|
|
|
// First card answer: SOF
|
|
CodeIClassTagSOF();
|
|
memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
|
|
|
|
// Anticollision CSN
|
|
CodeIClassTagAnswer(response2, sizeof(response2));
|
|
memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
|
|
|
|
// CSN
|
|
CodeIClassTagAnswer(response3, sizeof(response3));
|
|
memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
|
|
|
|
// e-Purse
|
|
CodeIClassTagAnswer(response4, sizeof(response4));
|
|
memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
|
|
|
|
// We need to listen to the high-frequency, peak-detected path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc();
|
|
|
|
// To control where we are in the protocol
|
|
int cmdsRecvd = 0;
|
|
|
|
LED_A_ON();
|
|
for(;;) {
|
|
LED_B_OFF();
|
|
if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
|
|
DbpString("button press");
|
|
break;
|
|
}
|
|
|
|
// Okay, look at the command now.
|
|
if(receivedCmd[0] == 0x0a) {
|
|
// Reader in anticollission phase
|
|
resp = resp1; respLen = resp1Len; //order = 1;
|
|
respdata = &sof;
|
|
respsize = sizeof(sof);
|
|
//resp = resp2; respLen = resp2Len; order = 2;
|
|
//DbpString("Hello request from reader:");
|
|
} else if(receivedCmd[0] == 0x0c) {
|
|
// Reader asks for anticollission CSN
|
|
resp = resp2; respLen = resp2Len; //order = 2;
|
|
respdata = response2;
|
|
respsize = sizeof(response2);
|
|
//DbpString("Reader requests anticollission CSN:");
|
|
} else if(receivedCmd[0] == 0x81) {
|
|
// Reader selects anticollission CSN.
|
|
// Tag sends the corresponding real CSN
|
|
resp = resp3; respLen = resp3Len; //order = 3;
|
|
respdata = response3;
|
|
respsize = sizeof(response3);
|
|
//DbpString("Reader selects anticollission CSN:");
|
|
} else if(receivedCmd[0] == 0x88) {
|
|
// Read e-purse (88 02)
|
|
resp = resp4; respLen = resp4Len; //order = 4;
|
|
respdata = response4;
|
|
respsize = sizeof(response4);
|
|
LED_B_ON();
|
|
} else if(receivedCmd[0] == 0x05) {
|
|
// Reader random and reader MAC!!!
|
|
// Lets store this ;-)
|
|
/*
|
|
Dbprintf(" CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
response3[0], response3[1], response3[2],
|
|
response3[3], response3[4], response3[5],
|
|
response3[6], response3[7]);
|
|
*/
|
|
Dbprintf("READER AUTH (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
len,
|
|
receivedCmd[0], receivedCmd[1], receivedCmd[2],
|
|
receivedCmd[3], receivedCmd[4], receivedCmd[5],
|
|
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
|
|
|
|
// Do not respond
|
|
// We do not know what to answer, so lets keep quit
|
|
resp = resp1; respLen = 0; //order = 5;
|
|
respdata = NULL;
|
|
respsize = 0;
|
|
} else if(receivedCmd[0] == 0x00 && len == 1) {
|
|
// Reader ends the session
|
|
resp = resp1; respLen = 0; //order = 0;
|
|
respdata = NULL;
|
|
respsize = 0;
|
|
} else {
|
|
// Never seen this command before
|
|
Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
|
|
len,
|
|
receivedCmd[0], receivedCmd[1], receivedCmd[2],
|
|
receivedCmd[3], receivedCmd[4], receivedCmd[5],
|
|
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
|
|
// Do not respond
|
|
resp = resp1; respLen = 0; //order = 0;
|
|
respdata = NULL;
|
|
respsize = 0;
|
|
}
|
|
|
|
if(cmdsRecvd > 999) {
|
|
DbpString("1000 commands later...");
|
|
break;
|
|
}
|
|
else {
|
|
cmdsRecvd++;
|
|
}
|
|
|
|
if(respLen > 0) {
|
|
SendIClassAnswer(resp, respLen, 21);
|
|
}
|
|
|
|
if (tracing) {
|
|
LogTrace(receivedCmd,len, rsamples, Uart.parityBits, TRUE);
|
|
if (respdata != NULL) {
|
|
LogTrace(respdata,respsize, rsamples, SwapBits(GetParity(respdata,respsize),respsize), FALSE);
|
|
}
|
|
if(traceLen > TRACE_SIZE) {
|
|
DbpString("Trace full");
|
|
break;
|
|
}
|
|
}
|
|
|
|
memset(receivedCmd, 0x44, RECV_CMD_SIZE);
|
|
}
|
|
|
|
Dbprintf("%x", cmdsRecvd);
|
|
LED_A_OFF();
|
|
LED_B_OFF();
|
|
}
|
|
|
|
static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
|
|
{
|
|
int i = 0, u = 0, d = 0;
|
|
uint8_t b = 0;
|
|
// return 0;
|
|
// Modulate Manchester
|
|
// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD424);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
FpgaSetupSsc();
|
|
|
|
// send cycle
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
(void)b;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
if(d < delay) {
|
|
b = 0x00;
|
|
d++;
|
|
}
|
|
else if(i >= respLen) {
|
|
b = 0x00;
|
|
u++;
|
|
} else {
|
|
b = resp[i];
|
|
u++;
|
|
if(u > 1) { i++; u = 0; }
|
|
}
|
|
AT91C_BASE_SSC->SSC_THR = b;
|
|
|
|
if(u > 4) break;
|
|
}
|
|
if(BUTTON_PRESS()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// THE READER CODE
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Transmit the command (to the tag) that was placed in ToSend[].
|
|
//-----------------------------------------------------------------------------
|
|
static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
|
|
{
|
|
int c;
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
FpgaSetupSsc();
|
|
|
|
if (wait)
|
|
if(*wait < 10)
|
|
*wait = 10;
|
|
|
|
for(c = 0; c < *wait;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
|
|
c++;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
uint8_t sendbyte;
|
|
bool firstpart = TRUE;
|
|
c = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
|
|
// DOUBLE THE SAMPLES!
|
|
if(firstpart) {
|
|
sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
|
|
}
|
|
else {
|
|
sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
|
|
c++;
|
|
}
|
|
if(sendbyte == 0xff) {
|
|
sendbyte = 0xfe;
|
|
}
|
|
AT91C_BASE_SSC->SSC_THR = sendbyte;
|
|
firstpart = !firstpart;
|
|
|
|
if(c >= len) {
|
|
break;
|
|
}
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
if (samples) *samples = (c + *wait) << 3;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Prepare iClass reader command to send to FPGA
|
|
//-----------------------------------------------------------------------------
|
|
void CodeIClassCommand(const uint8_t * cmd, int len)
|
|
{
|
|
int i, j, k;
|
|
uint8_t b;
|
|
|
|
ToSendReset();
|
|
|
|
// Start of Communication: 1 out of 4
|
|
ToSend[++ToSendMax] = 0xf0;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0x0f;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
|
|
// Modulate the bytes
|
|
for (i = 0; i < len; i++) {
|
|
b = cmd[i];
|
|
for(j = 0; j < 4; j++) {
|
|
for(k = 0; k < 4; k++) {
|
|
if(k == (b & 3)) {
|
|
ToSend[++ToSendMax] = 0x0f;
|
|
}
|
|
else {
|
|
ToSend[++ToSendMax] = 0x00;
|
|
}
|
|
}
|
|
b >>= 2;
|
|
}
|
|
}
|
|
|
|
// End of Communication
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
ToSend[++ToSendMax] = 0xf0;
|
|
ToSend[++ToSendMax] = 0x00;
|
|
|
|
// Convert from last character reference to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
void ReaderTransmitIClass(uint8_t* frame, int len)
|
|
{
|
|
int wait = 0;
|
|
int samples = 0;
|
|
int par = 0;
|
|
|
|
// This is tied to other size changes
|
|
// uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
|
|
CodeIClassCommand(frame,len);
|
|
|
|
// Select the card
|
|
TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
|
|
if(trigger)
|
|
LED_A_ON();
|
|
|
|
// Store reader command in buffer
|
|
if (tracing) LogTrace(frame,len,rsamples,par,TRUE);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait a certain time for tag response
|
|
// If a response is captured return TRUE
|
|
// If it takes too long return FALSE
|
|
//-----------------------------------------------------------------------------
|
|
static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
|
|
{
|
|
// buffer needs to be 512 bytes
|
|
int c;
|
|
|
|
// Set FPGA mode to "reader listen mode", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
// Now get the answer from the card
|
|
Demod.output = receivedResponse;
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
|
|
uint8_t b;
|
|
if (elapsed) *elapsed = 0;
|
|
|
|
bool skip = FALSE;
|
|
|
|
c = 0;
|
|
for(;;) {
|
|
WDT_HIT();
|
|
|
|
if(BUTTON_PRESS()) return FALSE;
|
|
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
|
|
if (elapsed) (*elapsed)++;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
if(c < timeout) { c++; } else { return FALSE; }
|
|
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
skip = !skip;
|
|
if(skip) continue;
|
|
/*if(ManchesterDecoding((b>>4) & 0xf)) {
|
|
*samples = ((c - 1) << 3) + 4;
|
|
return TRUE;
|
|
}*/
|
|
if(ManchesterDecoding(b & 0x0f)) {
|
|
*samples = c << 3;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int ReaderReceiveIClass(uint8_t* receivedAnswer)
|
|
{
|
|
int samples = 0;
|
|
if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
|
|
rsamples += samples;
|
|
if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE);
|
|
if(samples == 0) return FALSE;
|
|
return Demod.len;
|
|
}
|
|
|
|
// Reader iClass Anticollission
|
|
void ReaderIClass(uint8_t arg0) {
|
|
uint8_t act_all[] = { 0x0a };
|
|
uint8_t identify[] = { 0x0c };
|
|
uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
|
|
uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
|
|
|
|
// Reset trace buffer
|
|
memset(trace, 0x44, RECV_CMD_OFFSET);
|
|
traceLen = 0;
|
|
|
|
// Setup SSC
|
|
FpgaSetupSsc();
|
|
// Start from off (no field generated)
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// Now give it time to spin up.
|
|
// Signal field is on with the appropriate LED
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
SpinDelay(200);
|
|
|
|
LED_A_ON();
|
|
|
|
for(;;) {
|
|
|
|
if(traceLen > TRACE_SIZE) {
|
|
DbpString("Trace full");
|
|
break;
|
|
}
|
|
|
|
if (BUTTON_PRESS()) break;
|
|
|
|
// Send act_all
|
|
ReaderTransmitIClass(act_all, 1);
|
|
// Card present?
|
|
if(ReaderReceiveIClass(resp)) {
|
|
ReaderTransmitIClass(identify, 1);
|
|
if(ReaderReceiveIClass(resp) == 10) {
|
|
// Select card
|
|
memcpy(&select[1],resp,8);
|
|
ReaderTransmitIClass(select, sizeof(select));
|
|
|
|
if(ReaderReceiveIClass(resp) == 10) {
|
|
Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
resp[0], resp[1], resp[2],
|
|
resp[3], resp[4], resp[5],
|
|
resp[6], resp[7]);
|
|
}
|
|
// Card selected, whats next... ;-)
|
|
}
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
LED_A_OFF();
|
|
}
|
|
|
|
|