proxmark3/client/cmdhflegic.c
Chris 56f3ef2a55 chg: helptext (@drandreas)
chg: 'hf legic esave'  now saves to both BIN / EML
2018-09-08 12:38:36 +02:00

1260 lines
No EOL
35 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency Legic commands
//-----------------------------------------------------------------------------
#include "cmdhflegic.h"
static int CmdHelp(const char *Cmd);
#define MAX_LENGTH 1024
int usage_legic_calccrc(void){
PrintAndLogEx(NORMAL, "Calculates the legic crc8/crc16 on the given data.");
PrintAndLogEx(NORMAL, "There must be an even number of hexsymbols as input.");
PrintAndLogEx(NORMAL, "Usage: hf legic crc [h] d <data> u <uidcrc> c <8|16>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " d <data> : (hex symbols) bytes to calculate crc over");
PrintAndLogEx(NORMAL, " u <uidcrc> : MCC hexbyte");
PrintAndLogEx(NORMAL, " c <8|16> : Crc type");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic crc d deadbeef1122");
PrintAndLogEx(NORMAL, " hf legic crc d deadbeef1122 u 9A c 16");
return 0;
}
int usage_legic_rdmem(void){
PrintAndLogEx(NORMAL, "Read data from a legic tag.");
PrintAndLogEx(NORMAL, "Usage: hf legic rdmem [h] <offset> <length> <IV>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " <offset> : (hex) offset in data array to start download from");
PrintAndLogEx(NORMAL, " <length> : (hex) number of bytes to read");
PrintAndLogEx(NORMAL, " <IV> : (hex) (optional) Initialization vector to use. Must be odd and 7bits max");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic rdmem 0 16 - reads from byte[0] 0x16 bytes(system header)");
PrintAndLogEx(NORMAL, " hf legic rdmem 0 4 55 - reads from byte[0] 0x4 bytes with IV 0x55");
PrintAndLogEx(NORMAL, " hf legic rdmem 0 100 55 - reads 0x100 bytes with IV 0x55");
return 0;
}
int usage_legic_sim(void){
PrintAndLogEx(NORMAL, "Simulates a LEGIC Prime tag. MIM22, MIM256, MIM1024 types can be emulated");
PrintAndLogEx(NORMAL, "Use ELOAD/ESAVE to upload a dump into emulator memory");
PrintAndLogEx(NORMAL, "Usage: hf legic sim [h] <tagtype>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " <tagtype> : 0 = MIM22");
PrintAndLogEx(NORMAL, " : 1 = MIM256 (default)");
PrintAndLogEx(NORMAL, " : 2 = MIM1024");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic sim 2");
return 0;
}
int usage_legic_write(void){
PrintAndLogEx(NORMAL, "Write data to a LEGIC Prime tag. It autodetects tagsize to make sure size");
PrintAndLogEx(NORMAL, "Usage: hf legic write [h] o <offset> d <data (hex symbols)>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " o <offset> : (hex) offset in data array to start writing");
//PrintAndLogEx(NORMAL, " <IV> : (optional) Initialization vector to use (ODD and 7bits)");
PrintAndLogEx(NORMAL, " d <data> : (hex symbols) bytes to write ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic write o 10 d 11223344 - Write 0x11223344 starting from offset 0x10");
return 0;
}
int usage_legic_reader(void){
PrintAndLogEx(NORMAL, "Read UID and type information from a legic tag.");
PrintAndLogEx(NORMAL, "Usage: hf legic reader [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic reader");
return 0;
}
int usage_legic_info(void){
PrintAndLogEx(NORMAL, "Reads information from a legic prime tag.");
PrintAndLogEx(NORMAL, "Shows systemarea, user areas etc");
PrintAndLogEx(NORMAL, "Usage: hf legic info [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic info");
return 0;
}
int usage_legic_dump(void){
PrintAndLogEx(NORMAL, "Reads all pages from LEGIC Prime MIM22, MIM256, MIM1024");
PrintAndLogEx(NORMAL, "and saves binary dump into the file `filename.bin` or `cardUID.bin`");
PrintAndLogEx(NORMAL, "It autodetects card type.\n");
PrintAndLogEx(NORMAL, "Usage: hf legic dump [h] o <filename w/o .bin>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " o <filename> : filename w/o '.bin' to dump bytes");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic dump");
PrintAndLogEx(NORMAL, " hf legic dump o myfile");
return 0;
}
int usage_legic_restore(void){
PrintAndLogEx(NORMAL, "Reads binary file and it autodetects card type and verifies that the file has the same size");
PrintAndLogEx(NORMAL, "Then write the data back to card. All bytes except the first 7bytes [UID(4) MCC(1) DCF(2)]\n");
PrintAndLogEx(NORMAL, "Usage: hf legic restore [h] i <filename w/o .bin>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " i <filename> : filename w/o '.bin' to restore bytes on to card from");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic restore i myfile");
return 0;
}
int usage_legic_eload(void){
PrintAndLogEx(NORMAL, "It loads binary dump from the file `filename.bin`");
PrintAndLogEx(NORMAL, "Usage: hf legic eload [h] [card memory] <file name w/o `.bin`>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " [card memory] : 0 = MIM22");
PrintAndLogEx(NORMAL, " : 1 = MIM256 (default)");
PrintAndLogEx(NORMAL, " : 2 = MIM1024");
PrintAndLogEx(NORMAL, " <filename> : filename w/o .bin to load");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic eload 2 myfile");
return 0;
}
int usage_legic_esave(void){
PrintAndLogEx(NORMAL, "It saves binary dump into the file `filename.bin` or `cardID.bin`");
PrintAndLogEx(NORMAL, " Usage: hf legic esave [h] [card memory] [file name w/o `.bin`]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " [card memory] : 0 = MIM22");
PrintAndLogEx(NORMAL, " : 1 = MIM256 (default)");
PrintAndLogEx(NORMAL, " : 2 = MIM1024");
PrintAndLogEx(NORMAL, " <filename> : filename w/o .bin to load");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic esave 2 myfile");
return 0;
}
int usage_legic_wipe(void){
PrintAndLogEx(NORMAL, "Fills a legic tag memory with zeros. From byte7 and to the end.");
PrintAndLogEx(NORMAL, " Usage: hf legic wipe [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf legic wipe");
return 0;
}
/*
* Output BigBuf and deobfuscate LEGIC RF tag data.
* This is based on information given in the talk held
* by Henryk Ploetz and Karsten Nohl at 26c3
*/
int CmdLegicInfo(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if ( cmdp == 'h' ) return usage_legic_info();
int i = 0, k = 0, segmentNum = 0, segment_len = 0, segment_flag = 0;
int crc = 0, wrp = 0, wrc = 0;
uint8_t stamp_len = 0;
uint16_t datalen = 0;
char token_type[5] = {0,0,0,0,0};
int dcf = 0;
int bIsSegmented = 0;
// tagtype
legic_card_select_t card;
if (legic_get_type(&card)) {
PrintAndLogEx(WARNING, "Failed to identify tagtype");
return 1;
}
PrintAndLogEx(NORMAL, "Reading tag memory %d b...", card.cardsize);
// allocate receiver buffer
uint8_t *data = malloc(card.cardsize);
if (!data) {
PrintAndLogEx(WARNING, "Cannot allocate memory");
return 2;
}
memset(data, 0, card.cardsize);
int status = legic_read_mem(0, card.cardsize, 0x55, data, &datalen);
if ( status > 0 ) {
PrintAndLogEx(WARNING, "Failed reading memory");
free(data);
return 3;
}
// Output CDF System area (9 bytes) plus remaining header area (12 bytes)
crc = data[4];
uint32_t calc_crc = CRC8Legic(data, 4);
PrintAndLogEx(NORMAL, "\nCDF: System Area");
PrintAndLogEx(NORMAL, "------------------------------------------------------");
PrintAndLogEx(NORMAL, "MCD: %02x, MSN: %02x %02x %02x, MCC: %02x %s",
data[0],
data[1],
data[2],
data[3],
data[4],
(calc_crc == crc) ? "OK":"Fail"
);
// MCD = Manufacturer ID (should be list meaning something?)
token_type[0] = 0;
dcf = ((int)data[6] << 8) | (int)data[5];
// New unwritten media?
if (dcf == 0xFFFF) {
PrintAndLogEx(NORMAL, "DCF: %d (%02x %02x), Token Type=NM (New Media)",
dcf,
data[5],
data[6]
);
} else if (dcf > 60000) { // Master token?
int fl = 0;
if (data[6] == 0xec) {
strncpy(token_type, "XAM", sizeof(token_type));
fl = 1;
stamp_len = 0x0c - (data[5] >> 4);
} else {
switch (data[5] & 0x7f) {
case 0x00 ... 0x2f:
strncpy(token_type, "IAM", sizeof(token_type));
fl = (0x2f - (data[5] & 0x7f)) + 1;
break;
case 0x30 ... 0x6f:
strncpy(token_type, "SAM", sizeof(token_type));
fl = (0x6f - (data[5] & 0x7f)) + 1;
break;
case 0x70 ... 0x7f:
strncpy(token_type, "GAM", sizeof(token_type));
fl = (0x7f - (data[5] & 0x7f)) + 1;
break;
}
stamp_len = 0xfc - data[6];
}
PrintAndLogEx(NORMAL, "DCF: %d (%02x %02x), Token Type=%s (OLE=%01u), OL=%02u, FL=%02u",
dcf,
data[5],
data[6],
token_type,
(data[5] & 0x80 )>> 7,
stamp_len,
fl
);
} else { // Is IM(-S) type of card...
if (data[7] == 0x9F && data[8] == 0xFF) {
bIsSegmented = 1;
strncpy(token_type, "IM-S", sizeof(token_type));
} else {
strncpy(token_type, "IM", sizeof(token_type));
}
PrintAndLogEx(NORMAL, "DCF: %d (%02x %02x), Token Type=%s (OLE=%01u)",
dcf,
data[5],
data[6],
token_type,
(data[5]&0x80) >> 7
);
}
// Makes no sence to show this on blank media...
if (dcf != 0xFFFF) {
if (bIsSegmented) {
PrintAndLogEx(NORMAL, "WRP=%02u, WRC=%01u, RD=%01u, SSC=%02x",
data[7] & 0x0f,
(data[7] & 0x70) >> 4,
(data[7] & 0x80) >> 7,
data[8]
);
}
// Header area is only available on IM-S cards, on master tokens this data is the master token data itself
if (bIsSegmented || dcf > 60000) {
if (dcf > 60000) {
PrintAndLogEx(NORMAL, "Master token data");
PrintAndLogEx(NORMAL, "%s", sprint_hex(data+8, 14));
} else {
PrintAndLogEx(NORMAL, "Remaining Header Area");
PrintAndLogEx(NORMAL, "%s", sprint_hex(data+9, 13));
}
}
}
uint8_t segCrcBytes[8] = {0,0,0,0,0,0,0,0};
uint32_t segCalcCRC = 0;
uint32_t segCRC = 0;
// Not Data card?
if (dcf > 60000)
goto out;
PrintAndLogEx(NORMAL, "\nADF: User Area");
PrintAndLogEx(NORMAL, "------------------------------------------------------");
if(bIsSegmented) {
// Data start point on segmented cards
i = 22;
// decode segments
for (segmentNum=1; segmentNum < 128; segmentNum++ )
{
segment_len = ((data[i+1] ^ crc) & 0x0f) * 256 + (data[i] ^ crc);
segment_flag = ((data[i+1] ^ crc) & 0xf0) >> 4;
wrp = (data[i+2] ^ crc);
wrc = ((data[i+3] ^ crc) & 0x70) >> 4;
bool hasWRC = (wrc > 0);
bool hasWRP = (wrp > wrc);
int wrp_len = (wrp - wrc);
int remain_seg_payload_len = (segment_len - wrp - 5);
// validate segment-crc
segCrcBytes[0]=data[0]; //uid0
segCrcBytes[1]=data[1]; //uid1
segCrcBytes[2]=data[2]; //uid2
segCrcBytes[3]=data[3]; //uid3
segCrcBytes[4]=(data[i] ^ crc); //hdr0
segCrcBytes[5]=(data[i+1] ^ crc); //hdr1
segCrcBytes[6]=(data[i+2] ^ crc); //hdr2
segCrcBytes[7]=(data[i+3] ^ crc); //hdr3
segCalcCRC = CRC8Legic(segCrcBytes, 8);
segCRC = data[i+4] ^ crc;
PrintAndLogEx(NORMAL, "Segment %02u \nraw header | 0x%02X 0x%02X 0x%02X 0x%02X \nSegment len: %u, Flag: 0x%X (valid:%01u, last:%01u), WRP: %02u, WRC: %02u, RD: %01u, CRC: 0x%02X (%s)",
segmentNum,
data[i] ^ crc,
data[i+1] ^ crc,
data[i+2] ^ crc,
data[i+3] ^ crc,
segment_len,
segment_flag,
(segment_flag & 0x4) >> 2,
(segment_flag & 0x8) >> 3,
wrp,
wrc,
((data[i+3]^crc) & 0x80) >> 7,
segCRC,
( segCRC == segCalcCRC ) ? "OK" : "fail"
);
i += 5;
if ( hasWRC ) {
PrintAndLogEx(NORMAL, "WRC protected area: (I %d | K %d| WRC %d)", i, k, wrc);
PrintAndLogEx(NORMAL, "\nrow | data");
PrintAndLogEx(NORMAL, "-----+------------------------------------------------");
for ( k=i; k < (i + wrc); ++k)
data[k] ^= crc;
print_hex_break( data+i, wrc, 16);
i += wrc;
}
if ( hasWRP ) {
PrintAndLogEx(NORMAL, "Remaining write protected area: (I %d | K %d | WRC %d | WRP %d WRP_LEN %d)",i, k, wrc, wrp, wrp_len);
PrintAndLogEx(NORMAL, "\nrow | data");
PrintAndLogEx(NORMAL, "-----+------------------------------------------------");
for (k=i; k < (i+wrp_len); ++k)
data[k] ^= crc;
print_hex_break( data+i, wrp_len, 16);
i += wrp_len;
// does this one work? (Answer: Only if KGH/BGH is used with BCD encoded card number! So maybe this will show just garbage...)
if( wrp_len == 8 )
PrintAndLogEx(NORMAL, "Card ID: %2X%02X%02X", data[i-4]^crc, data[i-3]^crc, data[i-2]^crc);
}
PrintAndLogEx(NORMAL, "Remaining segment payload: (I %d | K %d | Remain LEN %d)", i, k, remain_seg_payload_len);
PrintAndLogEx(NORMAL, "\nrow | data");
PrintAndLogEx(NORMAL, "-----+------------------------------------------------");
for ( k=i; k < (i+remain_seg_payload_len); ++k)
data[k] ^= crc;
print_hex_break( data+i, remain_seg_payload_len, 16);
i += remain_seg_payload_len;
PrintAndLogEx(NORMAL, "-----+------------------------------------------------\n");
// end with last segment
if (segment_flag & 0x8)
goto out;
} // end for loop
} else {
// Data start point on unsegmented cards
i = 8;
wrp = data[7] & 0x0F;
wrc = (data[7] & 0x70) >> 4;
bool hasWRC = (wrc > 0);
bool hasWRP = (wrp > wrc);
int wrp_len = (wrp - wrc);
int remain_seg_payload_len = (1024 - 22 - wrp); // Any chance to get physical card size here!?
PrintAndLogEx(NORMAL, "Unsegmented card - WRP: %02u, WRC: %02u, RD: %01u",
wrp,
wrc,
(data[7] & 0x80) >> 7
);
if ( hasWRC ) {
PrintAndLogEx(NORMAL, "WRC protected area: (I %d | WRC %d)", i, wrc);
PrintAndLogEx(NORMAL, "\nrow | data");
PrintAndLogEx(NORMAL, "-----+------------------------------------------------");
print_hex_break( data+i, wrc, 16);
i += wrc;
}
if ( hasWRP ) {
PrintAndLogEx(NORMAL, "Remaining write protected area: (I %d | WRC %d | WRP %d | WRP_LEN %d)", i, wrc, wrp, wrp_len);
PrintAndLogEx(NORMAL, "\nrow | data");
PrintAndLogEx(NORMAL, "-----+------------------------------------------------");
print_hex_break( data + i, wrp_len, 16);
i += wrp_len;
// does this one work? (Answer: Only if KGH/BGH is used with BCD encoded card number! So maybe this will show just garbage...)
if( wrp_len == 8 )
PrintAndLogEx(NORMAL, "Card ID: %2X%02X%02X", data[i-4], data[i-3], data[i-2]);
}
PrintAndLogEx(NORMAL, "Remaining segment payload: (I %d | Remain LEN %d)", i, remain_seg_payload_len);
PrintAndLogEx(NORMAL, "\nrow | data");
PrintAndLogEx(NORMAL, "-----+------------------------------------------------");
print_hex_break( data + i, remain_seg_payload_len, 16);
i += remain_seg_payload_len;
PrintAndLogEx(NORMAL, "-----+------------------------------------------------\n");
}
out:
free(data);
return 0;
}
// params:
// offset in data memory
// number of bytes to read
int CmdLegicRdmem(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if ( cmdp == 'h' ) return usage_legic_rdmem();
uint32_t offset = 0, len = 0, iv = 1;
uint16_t datalen = 0;
sscanf(Cmd, "%x %x %x", &offset, &len, &iv);
PrintAndLogEx(NORMAL, "Reading %d bytes, from offset %d", len, offset);
// allocate receiver buffer
uint8_t *data = malloc(len);
if ( !data ){
PrintAndLogEx(WARNING, "Cannot allocate memory");
return 2;
}
memset(data, 0, len);
int status = legic_read_mem(offset, len, iv, data, &datalen);
if ( status == 0 ) {
PrintAndLogEx(NORMAL, "\n ## | 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F");
PrintAndLogEx(NORMAL, "-----+------------------------------------------------------------------------------------------------");
print_hex_break(data, datalen, 32);
}
free(data);
return status;
}
int CmdLegicRfSim(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if ( strlen(Cmd) == 0 || cmdp == 'h' ) return usage_legic_sim();
UsbCommand c = {CMD_SIMULATE_TAG_LEGIC_RF, {1}};
sscanf(Cmd, " %" SCNi64, &c.arg[0]);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdLegicRfWrite(const char *Cmd) {
uint8_t *data = NULL;
uint8_t cmdp = 0;
bool errors = false;
int len = 0, bg, en;
uint32_t offset = 0, IV = 0x55;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'd':
// peek at length of the input string so we can
// figure out how many elements to malloc in "data"
bg=en=0;
if (param_getptr(Cmd, &bg, &en, cmdp+1)) {
errors = true;
break;
}
len = (en - bg + 1);
// check that user entered even number of characters
// for hex data string
if (len & 1) {
errors = true;
break;
}
// limit number of bytes to write. This is not a 'restore' command.
if ( (len>>1) > 100 ){
PrintAndLogEx(NORMAL, "Max bound on 100bytes to write a one time.");
PrintAndLogEx(NORMAL, "Use the 'hf legic restore' command if you want to write the whole tag at once");
errors = true;
}
// it's possible for user to accidentally enter "b" parameter
// more than once - we have to clean previous malloc
if (data)
free(data);
data = malloc(len >> 1);
if ( data == NULL ) {
PrintAndLogEx(WARNING, "Can't allocate memory. exiting");
errors = true;
break;
}
if (param_gethex(Cmd, cmdp+1, data, len)) {
errors = true;
break;
}
len >>= 1;
cmdp += 2;
break;
case 'o':
offset = param_get32ex(Cmd, cmdp+1, 4, 16);
cmdp += 2;
break;
case 'h':
errors = true;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0){
if (data)
free(data);
return usage_legic_write();
}
// tagtype
legic_card_select_t card;
if (legic_get_type(&card)) {
PrintAndLogEx(WARNING, "Failed to identify tagtype");
return -1;
}
legic_print_type(card.cardsize, 0);
// OUT-OF-BOUNDS checks
// UID 4+1 bytes can't be written to.
if ( offset < 5 ) {
PrintAndLogEx(NORMAL, "Out-of-bounds, bytes 0-1-2-3-4 can't be written to. Offset = %d", offset);
return -2;
}
if ( len + offset >= card.cardsize ) {
PrintAndLogEx(NORMAL, "Out-of-bounds, Cardsize = %d, [offset+len = %d ]", card.cardsize, len + offset);
return -2;
}
if (offset == 5 || offset == 6) {
PrintAndLogEx(NORMAL, "############# DANGER ################");
PrintAndLogEx(NORMAL, "# changing the DCF is irreversible #");
PrintAndLogEx(NORMAL, "#####################################");
char *answer = NULL;
answer = readline("do you really want to continue? y(es) n(o) : ");
bool overwrite = (answer[0] == 'y' || answer[0] == 'Y');
if (!overwrite){
PrintAndLogEx(NORMAL, "command cancelled");
return 0;
}
}
legic_chk_iv(&IV);
PrintAndLogEx(NORMAL, "Writing to tag");
UsbCommand c = {CMD_WRITER_LEGIC_RF, {offset, len, IV}};
memcpy(c.d.asBytes, data, len);
UsbCommand resp;
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
PrintAndLogEx(WARNING, "command execution time out");
return 1;
}
uint8_t isOK = resp.arg[0] & 0xFF;
if ( !isOK ) {
PrintAndLogEx(WARNING, "Failed writing tag");
return 1;
}
return 0;
}
int CmdLegicCalcCrc(const char *Cmd){
uint8_t *data = NULL;
uint8_t cmdp = 0, uidcrc = 0, type=0;
bool errors = false;
int len = 0;
int bg, en;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'd':
// peek at length of the input string so we can
// figure out how many elements to malloc in "data"
bg=en=0;
if (param_getptr(Cmd, &bg, &en, cmdp+1)) {
errors = true;
break;
}
len = (en - bg + 1);
// check that user entered even number of characters
// for hex data string
if (len & 1) {
errors = true;
break;
}
// it's possible for user to accidentally enter "b" parameter
// more than once - we have to clean previous malloc
if (data) free(data);
data = malloc(len >> 1);
if ( data == NULL ) {
PrintAndLogEx(WARNING, "Can't allocate memory. exiting");
errors = true;
break;
}
if (param_gethex(Cmd, cmdp+1, data, len)) {
errors = true;
break;
}
len >>= 1;
cmdp += 2;
break;
case 'u':
uidcrc = param_get8ex(Cmd, cmdp+1, 0, 16);
cmdp += 2;
break;
case 'c':
type = param_get8ex(Cmd, cmdp+1, 0, 10);
cmdp += 2;
break;
case 'h':
errors = true;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0){
if (data) free(data);
return usage_legic_calccrc();
}
switch (type){
case 16:
init_table(CRC_LEGIC);
PrintAndLogEx(NORMAL, "Legic crc16: %X", crc16_legic(data, len, uidcrc));
break;
default:
PrintAndLogEx(NORMAL, "Legic crc8: %X", CRC8Legic(data, len) );
break;
}
if (data) free(data);
return 0;
}
int legic_read_mem(uint32_t offset, uint32_t len, uint32_t iv, uint8_t *out, uint16_t *outlen) {
legic_chk_iv(&iv);
UsbCommand c = {CMD_READER_LEGIC_RF, {offset, len, iv}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if ( !WaitForResponseTimeout(CMD_ACK, &resp, 3000) ) {
PrintAndLogEx(WARNING, "command execution time out");
return 1;
}
uint8_t isOK = resp.arg[0] & 0xFF;
*outlen = resp.arg[1];
if ( !isOK ) {
PrintAndLogEx(WARNING, "Failed reading tag");
return 2;
}
if ( *outlen != len )
PrintAndLogEx(WARNING, "Fail, only managed to read %u bytes", *outlen);
// copy data from device
if ( !GetFromDevice( BIG_BUF_EML, out, *outlen, 0, NULL, 2500, false) ) {
PrintAndLogEx(WARNING, "Fail, transfer from device time-out");
return 4;
}
return 0;
}
int legic_print_type(uint32_t tagtype, uint8_t spaces){
char spc[11] = " ";
spc[10]=0x00;
char *spacer = spc + (10-spaces);
if ( tagtype == 22 )
PrintAndLogEx(NORMAL, "%sTYPE : MIM%d card (outdated)", spacer, tagtype);
else if ( tagtype == 256 )
PrintAndLogEx(NORMAL, "%sTYPE : MIM%d card (234 bytes)", spacer, tagtype);
else if ( tagtype == 1024 )
PrintAndLogEx(NORMAL, "%sTYPE : MIM%d card (1002 bytes)", spacer, tagtype);
else
PrintAndLogEx(NORMAL, "%sTYPE : Unknown %06x", spacer, tagtype);
return 0;
}
int legic_get_type(legic_card_select_t *card){
if ( card == NULL ) return 1;
UsbCommand c = {CMD_LEGIC_INFO, {0,0,0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500))
return 2;
uint8_t isOK = resp.arg[0] & 0xFF;
if ( !isOK )
return 3;
memcpy(card, (legic_card_select_t *)resp.d.asBytes, sizeof(legic_card_select_t));
return 0;
}
void legic_chk_iv(uint32_t *iv){
if ( (*iv & 0x7F) != *iv ){
*iv &= 0x7F;
PrintAndLogEx(NORMAL, "Truncating IV to 7bits, %u", *iv);
}
// IV must be odd
if ( (*iv & 1) == 0 ){
*iv |= 0x01;
PrintAndLogEx(NORMAL, "LSB of IV must be SET %u", *iv);
}
}
void legic_seteml(uint8_t *src, uint32_t offset, uint32_t numofbytes) {
size_t len = 0;
UsbCommand c = {CMD_LEGIC_ESET, {0, 0, 0}};
for(size_t i = offset; i < numofbytes; i += USB_CMD_DATA_SIZE) {
len = MIN((numofbytes - i), USB_CMD_DATA_SIZE);
c.arg[0] = i; // offset
c.arg[1] = len; // number of bytes
memcpy(c.d.asBytes, src+i, len);
clearCommandBuffer();
SendCommand(&c);
}
}
int HFLegicReader(const char *Cmd, bool verbose) {
char cmdp = tolower(param_getchar(Cmd, 0));
if ( cmdp == 'h' ) return usage_legic_reader();
legic_card_select_t card;
switch (legic_get_type(&card)){
case 1:
return 2;
case 2:
if ( verbose ) PrintAndLogEx(WARNING, "command execution time out");
return 1;
case 3:
if ( verbose ) PrintAndLogEx(NORMAL, "legic card select failed");
return 2;
default: break;
}
PrintAndLogEx(NORMAL, " UID : %s", sprint_hex(card.uid, sizeof(card.uid)));
legic_print_type(card.cardsize, 0);
return 0;
}
int CmdLegicReader(const char *Cmd){
return HFLegicReader(Cmd, true);
}
int CmdLegicDump(const char *Cmd){
FILE *f;
char filename[FILE_PATH_SIZE] = {0x00};
char *fnameptr = filename;
size_t fileNlen = 0;
bool errors = false;
uint16_t dumplen;
uint8_t cmdp = 0;
memset(filename, 0, sizeof(filename));
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_legic_dump();
case 'o':
fileNlen = param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE);
if (!fileNlen)
errors = true;
if (fileNlen > FILE_PATH_SIZE-5)
fileNlen = FILE_PATH_SIZE-5;
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors) return usage_legic_dump();
// tagtype
legic_card_select_t card;
if (legic_get_type(&card)) {
PrintAndLogEx(WARNING, "Failed to identify tagtype");
return -1;
}
dumplen = card.cardsize;
legic_print_type(dumplen, 0);
PrintAndLogEx(NORMAL, "Reading tag memory %d b...", dumplen);
UsbCommand c = {CMD_READER_LEGIC_RF, {0x00, dumplen, 0x55}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
PrintAndLogEx(NORMAL, "Command execute time-out");
return 1;
}
uint8_t isOK = resp.arg[0] & 0xFF;
if ( !isOK ) {
PrintAndLogEx(WARNING, "Failed dumping tag data");
return 2;
}
uint16_t readlen = resp.arg[1];
uint8_t *data = malloc(readlen);
if (!data) {
PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
return 3;
}
memset(data, 0, readlen);
if ( readlen != dumplen )
PrintAndLogEx(WARNING, "Fail, only managed to read 0x%02X bytes of 0x%02X", readlen, dumplen);
// copy data from device
if (!GetFromDevice( BIG_BUF_EML, data, readlen, 0, NULL, 2500, false) ) {
PrintAndLogEx(WARNING, "Fail, transfer from device time-out");
free(data);
return 4;
}
// user supplied filename?
if (fileNlen < 1)
sprintf(fnameptr,"%02X%02X%02X%02X.bin", data[0], data[1], data[2], data[3]);
else
sprintf(fnameptr + fileNlen,".bin");
f = fopen(filename,"wb");
if (!f) {
PrintAndLogEx(WARNING, "Could not create file name %s", filename);
if (data)
free(data);
return 5;
}
fwrite(data, 1, readlen, f);
fflush(f);
fclose(f);
free(data);
PrintAndLogEx(NORMAL, "Wrote %d bytes to %s", readlen, filename);
return 0;
}
int CmdLegicRestore(const char *Cmd){
FILE *f;
char filename[FILE_PATH_SIZE] = {0x00};
char *fnameptr = filename;
size_t fileNlen = 0;
bool errors = false;
uint16_t numofbytes;
uint8_t cmdp = 0;
memset(filename, 0, sizeof(filename));
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
errors = true;
break;
case 'i':
fileNlen = param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE);
if (!fileNlen)
errors = true;
if (fileNlen > FILE_PATH_SIZE-5)
fileNlen = FILE_PATH_SIZE-5;
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_legic_restore();
// tagtype
legic_card_select_t card;
if (legic_get_type(&card)) {
PrintAndLogEx(WARNING, "Failed to identify tagtype");
return 1;
}
numofbytes = card.cardsize;
// set up buffer
uint8_t *data = malloc(numofbytes);
if (!data) {
PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
return 2;
}
memset(data, 0, numofbytes);
legic_print_type(numofbytes, 0);
// set up file
fnameptr += fileNlen;
sprintf(fnameptr, ".bin");
f = fopen(filename,"rb");
if (!f) {
PrintAndLogEx(NORMAL, "File %s not found or locked", filename);
return 3;
}
// verify size of dumpfile is the same as card.
fseek(f, 0, SEEK_END); // seek to end of file
size_t filesize = ftell(f); // get current file pointer
fseek(f, 0, SEEK_SET); // seek back to beginning of file
if ( filesize != numofbytes) {
PrintAndLogEx(WARNING, "Fail, filesize and cardsize is not equal. [%u != %u]", filesize, numofbytes);
free(data);
fclose(f);
return 4;
}
// load file
size_t bytes_read = fread(data, 1, numofbytes, f);
fclose(f);
if ( bytes_read == 0){
PrintAndLogEx(NORMAL, "File reading error");
free(data);
return 2;
}
PrintAndLogEx(NORMAL, "Restoring to card");
// transfer to device
size_t len = 0;
UsbCommand c = {CMD_WRITER_LEGIC_RF, {0, 0, 0x55}};
UsbCommand resp;
for(size_t i = 7; i < numofbytes; i += USB_CMD_DATA_SIZE) {
len = MIN((numofbytes - i), USB_CMD_DATA_SIZE);
c.arg[0] = i; // offset
c.arg[1] = len; // number of bytes
memcpy(c.d.asBytes, data+i, len);
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4000)) {
PrintAndLogEx(WARNING, "command execution time out");
free(data);
return 1;
}
uint8_t isOK = resp.arg[0] & 0xFF;
if ( !isOK ) {
PrintAndLogEx(WARNING, "Failed writing tag [msg = %u]", resp.arg[1] & 0xFF);
free(data);
return 1;
}
PrintAndLogEx(NORMAL, "Wrote chunk [offset %d | len %d | total %d", i, len, i+len);
}
free(data);
PrintAndLogEx(NORMAL, "\nWrote %d bytes to card from file %s", numofbytes, filename);
return 0;
}
int CmdLegicELoad(const char *Cmd) {
FILE * f;
char filename[FILE_PATH_SIZE];
char *fnameptr = filename;
int len, numofbytes;
int nameParamNo = 1;
char cmdp = tolower(param_getchar(Cmd, 0));
if ( cmdp == 'h' || cmdp == 0x00)
return usage_legic_eload();
switch (cmdp) {
case '0' : numofbytes = 22; break;
case '1' :
case '\0': numofbytes = 256; break;
case '2' : numofbytes = 1024; break;
default : numofbytes = 256; nameParamNo = 0;break;
}
// set up buffer
uint8_t *data = malloc(numofbytes);
if (!data) {
PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
return 3;
}
memset(data, 0, numofbytes);
// set up file
len = param_getstr(Cmd, nameParamNo, filename, FILE_PATH_SIZE);
if (len > FILE_PATH_SIZE - 5)
len = FILE_PATH_SIZE - 5;
fnameptr += len;
sprintf(fnameptr, ".bin");
// open file
f = fopen(filename,"rb");
if (!f) {
PrintAndLogEx(NORMAL, "File %s not found or locked", filename);
free(data);
return 1;
}
// load file
size_t bytes_read = fread(data, 1, numofbytes, f);
if ( bytes_read == 0){
PrintAndLogEx(NORMAL, "File reading error");
free(data);
fclose(f);
f = NULL;
return 2;
}
fclose(f);
f = NULL;
// transfer to device
legic_seteml(data, 0, numofbytes);
free(data);
PrintAndLogEx(NORMAL, "\nLoaded %d bytes from file: %s to emulator memory", numofbytes, filename);
return 0;
}
int CmdLegicESave(const char *Cmd) {
char filename[FILE_PATH_SIZE];
char *fnameptr = filename;
int fileNlen, numofbytes, nameParamNo = 1;
memset(filename, 0, sizeof(filename));
char cmdp = tolower(param_getchar(Cmd, 0));
if ( cmdp == 'h' || cmdp == 0x00)
return usage_legic_esave();
switch (cmdp) {
case '0' : numofbytes = 22; break;
case '1' :
case '\0': numofbytes = 256; break;
case '2' : numofbytes = 1024; break;
default : numofbytes = 256; nameParamNo = 0; break;
}
fileNlen = param_getstr(Cmd, nameParamNo, filename, FILE_PATH_SIZE);
if (fileNlen > FILE_PATH_SIZE - 5)
fileNlen = FILE_PATH_SIZE - 5;
// set up buffer
uint8_t *data = malloc(numofbytes);
if (!data) {
PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
return 3;
}
memset(data, 0, numofbytes);
// download emulator memory
PrintAndLogEx(NORMAL, "Reading emulator memory...");
if (!GetFromDevice( BIG_BUF_EML, data, numofbytes, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "Fail, transfer from device time-out");
free(data);
return 4;
}
// user supplied filename?
if (fileNlen < 1)
sprintf(fnameptr,"%02X%02X%02X%02X.bin", data[0], data[1], data[2], data[3]);
else
sprintf(fnameptr + fileNlen,".bin");
saveFileEML(filename, "eml", data, numofbytes, 8);
saveFile(filename, "bin", data, numofbytes);
return 0;
}
int CmdLegicWipe(const char *Cmd){
char cmdp = tolower(param_getchar(Cmd, 0));
if ( cmdp == 'h') return usage_legic_wipe();
// tagtype
legic_card_select_t card;
if (legic_get_type(&card)) {
PrintAndLogEx(WARNING, "Failed to identify tagtype");
return 1;
}
// set up buffer
uint8_t *data = malloc(card.cardsize);
if (!data) {
PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
return 2;
}
memset(data, 0, card.cardsize);
legic_print_type(card.cardsize, 0);
PrintAndLogEx(NORMAL, "Erasing");
// transfer to device
size_t len = 0;
UsbCommand c = {CMD_WRITER_LEGIC_RF, {0, 0, 0x55}};
UsbCommand resp;
for(size_t i = 7; i < card.cardsize; i += USB_CMD_DATA_SIZE) {
printf("."); fflush(stdout);
len = MIN((card.cardsize - i), USB_CMD_DATA_SIZE);
c.arg[0] = i; // offset
c.arg[1] = len; // number of bytes
memcpy(c.d.asBytes, data+i, len);
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4000)) {
PrintAndLogEx(WARNING, "command execution time out");
free(data);
return 3;
}
uint8_t isOK = resp.arg[0] & 0xFF;
if ( !isOK ) {
PrintAndLogEx(WARNING, "Failed writing tag [msg = %u]", resp.arg[1] & 0xFF);
free(data);
return 4;
}
}
PrintAndLogEx(NORMAL, "ok\n");
return 0;
}
int CmdLegicList(const char *Cmd) {
CmdTraceList("legic");
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"reader", CmdLegicReader, 1, "LEGIC Prime Reader UID and tag info"},
{"info", CmdLegicInfo, 0, "Display deobfuscated and decoded LEGIC Prime tag data"},
{"dump", CmdLegicDump, 0, "Dump LEGIC Prime tag to binary file"},
{"restore", CmdLegicRestore, 0, "Restore a dump onto a LEGIC Prime tag"},
{"rdmem", CmdLegicRdmem, 0, "Read bytes from a LEGIC Prime tag"},
{"sim", CmdLegicRfSim, 0, "Start tag simulator"},
{"write", CmdLegicRfWrite, 0, "Write data to a LEGIC Prime tag"},
{"crc", CmdLegicCalcCrc, 1, "Calculate Legic CRC over given bytes"},
{"eload", CmdLegicELoad, 1, "Load binary dump to emulator memory"},
{"esave", CmdLegicESave, 1, "Save emulator memory to binary file"},
{"list", CmdLegicList, 1, "[Deprecated] List LEGIC history"},
{"wipe", CmdLegicWipe, 1, "Wipe a LEGIC Prime tag"},
{NULL, NULL, 0, NULL}
};
int CmdHFLegic(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}