mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-18 22:20:45 +08:00
316 lines
9 KiB
C
316 lines
9 KiB
C
//-----------------------------------------------------------------------------
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Compression tool for FPGA config files. Compress several *.bit files at
|
|
// compile time. Decompression is done at run time (see fpgaloader.c).
|
|
// This uses the zlib library tuned to this specific case. The small file sizes
|
|
// allow to use "insane" parameters for optimum compression ratio.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <inttypes.h>
|
|
#include "zlib.h"
|
|
|
|
#define MAX(a,b) ((a)>(b)?(a):(b))
|
|
|
|
// zlib configuration
|
|
#define COMPRESS_LEVEL 9 // use best possible compression
|
|
#define COMPRESS_WINDOW_BITS 15 // default = max = 15 for a window of 2^15 = 32KBytes
|
|
#define COMPRESS_MEM_LEVEL 9 // determines the amount of memory allocated during compression. Default = 8.
|
|
/* COMPRESS_STRATEGY can be
|
|
Z_DEFAULT_STRATEGY (the default),
|
|
Z_FILTERED (more huffmann, less string matching),
|
|
Z_HUFFMAN_ONLY (huffman only, no string matching)
|
|
Z_RLE (distances limited to one)
|
|
Z_FIXED (prevents the use of dynamic Huffman codes)
|
|
*/
|
|
#define COMPRESS_STRATEGY Z_DEFAULT_STRATEGY
|
|
// zlib tuning parameters:
|
|
#define COMPRESS_GOOD_LENGTH 258
|
|
#define COMPRESS_MAX_LAZY 258
|
|
#define COMPRESS_MAX_NICE_LENGTH 258
|
|
#define COMPRESS_MAX_CHAIN 8192
|
|
|
|
#define FPGA_INTERLEAVE_SIZE 288 // (the FPGA's internal config frame size is 288 bits. Interleaving with 288 bytes should give best compression)
|
|
#define FPGA_CONFIG_SIZE 42336L // our current fpga_[lh]f.bit files are 42175 bytes. Rounded up to next multiple of FPGA_INTERLEAVE_SIZE
|
|
#define HARDNESTED_TABLE_SIZE (sizeof(uint32_t) * ((1L<<19)+1))
|
|
|
|
static void usage(void)
|
|
{
|
|
fprintf(stdout, "Usage: fpga_compress <infile1> <infile2> ... <infile_n> <outfile>\n");
|
|
fprintf(stdout, " Combine n FPGA bitstream files and compress them into one.\n\n");
|
|
fprintf(stdout, " fpga_compress -d <infile> <outfile>");
|
|
fprintf(stdout, " Decompress <infile>. Write result to <outfile>");
|
|
fprintf(stdout, " fpga_compress -t <infile> <outfile>");
|
|
fprintf(stdout, " Compress hardnested table <infile>. Write result to <outfile>");
|
|
}
|
|
|
|
|
|
static voidpf fpga_deflate_malloc(voidpf opaque, uInt items, uInt size)
|
|
{
|
|
return malloc(items*size);
|
|
}
|
|
|
|
|
|
static void fpga_deflate_free(voidpf opaque, voidpf address)
|
|
{
|
|
return free(address);
|
|
}
|
|
|
|
|
|
static bool all_feof(FILE *infile[], uint8_t num_infiles)
|
|
{
|
|
for (uint16_t i = 0; i < num_infiles; i++) {
|
|
if (!feof(infile[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
int zlib_compress(FILE *infile[], uint8_t num_infiles, FILE *outfile, bool hardnested_mode)
|
|
{
|
|
uint8_t *fpga_config;
|
|
uint32_t i;
|
|
int32_t ret;
|
|
uint8_t c;
|
|
z_stream compressed_fpga_stream;
|
|
|
|
if (hardnested_mode) {
|
|
fpga_config = malloc(num_infiles * HARDNESTED_TABLE_SIZE);
|
|
} else {
|
|
fpga_config = malloc(num_infiles * FPGA_CONFIG_SIZE);
|
|
}
|
|
// read the input files. Interleave them into fpga_config[]
|
|
i = 0;
|
|
do {
|
|
|
|
if (i >= num_infiles * (hardnested_mode?HARDNESTED_TABLE_SIZE:FPGA_CONFIG_SIZE)) {
|
|
if (hardnested_mode) {
|
|
fprintf(stderr, "Input file too big (> %lu bytes). This is probably not a hardnested bitflip state table.\n", HARDNESTED_TABLE_SIZE);
|
|
} else {
|
|
fprintf(stderr, "Input files too big (total > %lu bytes). These are probably not PM3 FPGA config files.\n", num_infiles*FPGA_CONFIG_SIZE);
|
|
}
|
|
for(uint16_t j = 0; j < num_infiles; j++) {
|
|
fclose(infile[j]);
|
|
}
|
|
free(fpga_config);
|
|
return(EXIT_FAILURE);
|
|
}
|
|
|
|
for(uint16_t j = 0; j < num_infiles; j++) {
|
|
for(uint16_t k = 0; k < FPGA_INTERLEAVE_SIZE; k++) {
|
|
c = fgetc(infile[j]);
|
|
if (!feof(infile[j])) {
|
|
fpga_config[i++] = c;
|
|
} else if (num_infiles > 1) {
|
|
fpga_config[i++] = '\0';
|
|
}
|
|
}
|
|
}
|
|
|
|
} while (!all_feof(infile, num_infiles));
|
|
|
|
// initialize zlib structures
|
|
compressed_fpga_stream.next_in = fpga_config;
|
|
compressed_fpga_stream.avail_in = i;
|
|
compressed_fpga_stream.zalloc = fpga_deflate_malloc;
|
|
compressed_fpga_stream.zfree = fpga_deflate_free;
|
|
compressed_fpga_stream.opaque = Z_NULL;
|
|
|
|
ret = deflateInit2(&compressed_fpga_stream,
|
|
COMPRESS_LEVEL,
|
|
Z_DEFLATED,
|
|
COMPRESS_WINDOW_BITS,
|
|
COMPRESS_MEM_LEVEL,
|
|
COMPRESS_STRATEGY);
|
|
|
|
// estimate the size of the compressed output
|
|
uint32_t outsize_max = deflateBound(&compressed_fpga_stream, compressed_fpga_stream.avail_in);
|
|
uint8_t *outbuf = malloc(outsize_max);
|
|
compressed_fpga_stream.next_out = outbuf;
|
|
compressed_fpga_stream.avail_out = outsize_max;
|
|
|
|
if (ret == Z_OK) {
|
|
ret = deflateTune(&compressed_fpga_stream,
|
|
COMPRESS_GOOD_LENGTH,
|
|
COMPRESS_MAX_LAZY,
|
|
COMPRESS_MAX_NICE_LENGTH,
|
|
COMPRESS_MAX_CHAIN);
|
|
}
|
|
|
|
if (ret == Z_OK) {
|
|
ret = deflate(&compressed_fpga_stream, Z_FINISH);
|
|
}
|
|
|
|
fprintf(stdout, "compressed %u input bytes to %lu output bytes\n", i, compressed_fpga_stream.total_out);
|
|
|
|
if (ret != Z_STREAM_END) {
|
|
fprintf(stderr, "Error in deflate(): %d %s\n", ret, compressed_fpga_stream.msg);
|
|
free(outbuf);
|
|
deflateEnd(&compressed_fpga_stream);
|
|
for(uint16_t j = 0; j < num_infiles; j++) {
|
|
fclose(infile[j]);
|
|
}
|
|
fclose(outfile);
|
|
free(infile);
|
|
free(fpga_config);
|
|
return(EXIT_FAILURE);
|
|
}
|
|
|
|
for (i = 0; i < compressed_fpga_stream.total_out; i++) {
|
|
fputc(outbuf[i], outfile);
|
|
}
|
|
|
|
free(outbuf);
|
|
deflateEnd(&compressed_fpga_stream);
|
|
for(uint16_t j = 0; j < num_infiles; j++) {
|
|
fclose(infile[j]);
|
|
}
|
|
fclose(outfile);
|
|
free(infile);
|
|
free(fpga_config);
|
|
|
|
return(EXIT_SUCCESS);
|
|
|
|
}
|
|
|
|
|
|
int zlib_decompress(FILE *infile, FILE *outfile)
|
|
{
|
|
#define DECOMPRESS_BUF_SIZE 1024
|
|
uint8_t outbuf[DECOMPRESS_BUF_SIZE];
|
|
uint8_t inbuf[DECOMPRESS_BUF_SIZE];
|
|
int32_t ret;
|
|
|
|
z_stream compressed_fpga_stream;
|
|
|
|
// initialize zlib structures
|
|
compressed_fpga_stream.next_in = inbuf;
|
|
compressed_fpga_stream.avail_in = 0;
|
|
compressed_fpga_stream.next_out = outbuf;
|
|
compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
|
|
compressed_fpga_stream.zalloc = fpga_deflate_malloc;
|
|
compressed_fpga_stream.zfree = fpga_deflate_free;
|
|
compressed_fpga_stream.opaque = Z_NULL;
|
|
|
|
ret = inflateInit2(&compressed_fpga_stream, 0);
|
|
|
|
do {
|
|
if (compressed_fpga_stream.avail_in == 0) {
|
|
compressed_fpga_stream.next_in = inbuf;
|
|
uint16_t i = 0;
|
|
do {
|
|
int32_t c = fgetc(infile);
|
|
if (!feof(infile)) {
|
|
inbuf[i++] = c & 0xFF;
|
|
compressed_fpga_stream.avail_in++;
|
|
} else {
|
|
break;
|
|
}
|
|
} while (i < DECOMPRESS_BUF_SIZE);
|
|
}
|
|
|
|
ret = inflate(&compressed_fpga_stream, Z_SYNC_FLUSH);
|
|
|
|
if (ret != Z_OK && ret != Z_STREAM_END) {
|
|
break;
|
|
}
|
|
|
|
if (compressed_fpga_stream.avail_out == 0) {
|
|
for (uint16_t i = 0; i < DECOMPRESS_BUF_SIZE; i++) {
|
|
fputc(outbuf[i], outfile);
|
|
}
|
|
compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
|
|
compressed_fpga_stream.next_out = outbuf;
|
|
}
|
|
} while (ret == Z_OK);
|
|
|
|
if (ret == Z_STREAM_END) { // reached end of input
|
|
uint16_t i = 0;
|
|
while (compressed_fpga_stream.avail_out < DECOMPRESS_BUF_SIZE) {
|
|
fputc(outbuf[i++], outfile);
|
|
compressed_fpga_stream.avail_out++;
|
|
}
|
|
fclose(outfile);
|
|
fclose(infile);
|
|
return(EXIT_SUCCESS);
|
|
} else {
|
|
fprintf(stderr, "Error. Inflate() returned error %d, %s", ret, compressed_fpga_stream.msg);
|
|
fclose(outfile);
|
|
fclose(infile);
|
|
return(EXIT_FAILURE);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
FILE **infiles;
|
|
FILE *outfile;
|
|
|
|
if (argc == 1 || argc == 2) {
|
|
usage();
|
|
return(EXIT_FAILURE);
|
|
}
|
|
|
|
if (!strcmp(argv[1], "-d")) { // Decompress
|
|
infiles = calloc(1, sizeof(FILE*));
|
|
if (argc != 4) {
|
|
usage();
|
|
return(EXIT_FAILURE);
|
|
}
|
|
infiles[0] = fopen(argv[2], "rb");
|
|
if (infiles[0] == NULL) {
|
|
fprintf(stderr, "Error. Cannot open input file %s", argv[2]);
|
|
return(EXIT_FAILURE);
|
|
}
|
|
outfile = fopen(argv[3], "wb");
|
|
if (outfile == NULL) {
|
|
fprintf(stderr, "Error. Cannot open output file %s", argv[3]);
|
|
return(EXIT_FAILURE);
|
|
}
|
|
return zlib_decompress(infiles[0], outfile);
|
|
|
|
} else { // Compress
|
|
|
|
bool hardnested_mode = false;
|
|
int num_input_files = 0;
|
|
if (!strcmp(argv[1], "-t")) { // hardnested table
|
|
if (argc != 4) {
|
|
usage();
|
|
return(EXIT_FAILURE);
|
|
}
|
|
hardnested_mode = true;
|
|
num_input_files = 1;
|
|
} else {
|
|
num_input_files = argc-2;
|
|
}
|
|
int adder = (hardnested_mode) ? 2 : 1;
|
|
|
|
infiles = calloc(num_input_files, sizeof(FILE*));
|
|
for (uint16_t i = 0; i < num_input_files; i++) {
|
|
infiles[i] = fopen(argv[i + adder ] , "rb");
|
|
if (infiles[i] == NULL) {
|
|
fprintf(stderr, "Error. Cannot open input file %s", argv[i + adder] );
|
|
return(EXIT_FAILURE);
|
|
} else {
|
|
printf("Opening %s %d \n", argv[i + adder], i+adder );
|
|
}
|
|
}
|
|
outfile = fopen(argv[argc-1], "wb");
|
|
if (outfile == NULL) {
|
|
fprintf(stderr, "Error. Cannot open output file %s", argv[argc-1]);
|
|
return(EXIT_FAILURE);
|
|
}
|
|
return zlib_compress(infiles, num_input_files, outfile, hardnested_mode);
|
|
}
|
|
}
|