proxmark3/armsrc/Standalone/lf_tharexde.c
2020-10-03 22:59:21 +02:00

413 lines
13 KiB
C

//-----------------------------------------------------------------------------
// Tharexde, 2020
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// main code for EM4x50 simulator and collector aka THAREXDE
//-----------------------------------------------------------------------------
#include <inttypes.h>
#include "standalone.h"
#include "proxmark3_arm.h"
#include "appmain.h"
#include "BigBuf.h"
#include "fpgaloader.h"
#include "util.h"
#include "dbprint.h"
#include "spiffs.h"
#include "../em4x50.h"
/*
* `lf_tharexde` simulates hardcoded words/blocks, reads words of standard read
* mode of EM4x50 tags and stores them in internal flash.
* It requires RDV4 hardware (for flash and battery).
*
* On entering stand-alone mode, this module will start reading/record EM4x50 data.
* Every found / collected data will be written/appended to the logfile in flash
* as a text string.
*
* LEDs:
* - LED A: simulating
* - LED B: reading / record
* - LED C: writing to flash
* - LED D: unmounting/sync'ing flash (normally < 100ms)
*
* To retrieve log file from flash:
*
* 1. mem spiffs dump o lf_em4x50collect.log f lf_em4x50collect.log
* Copies log file from flash to your client.
*
* 2. exit the Proxmark3 client
*
* 3. more lf_tharexdecollect.log
*
* This module emits debug strings during normal operation -- so try it out in
* the lab connected to PM3 client before taking it into the field.
*
* To delete the log file from flash:
*
* 1. mem spiffs remove lf_tharexdecollect.log
*/
#define STATE_SIM 0
#define STATE_READ 1
#define STATE_BRUTE 2
#define EM4X50_TAG_WORD 45
#define EM4X50_PWD_SPEED 27
#define LF_EM4X50SIMULATE_INPUTFILE "lf_em4x50simulate.eml"
#define LF_EM4X50COLLECT_LOGFILE "lf_em4x50collect.log"
#define LF_EM4X50BRUTE_INPUTFILE "lf_em4x50brute.eml"
#define LF_EM4X50BRUTE_LOGFILE "lf_em4x50brute.log"
bool input_exists;
bool log_exists;
static void LoadDataInstructions(const char *inputfile) {
Dbprintf("");
Dbprintf("To load datafile into flash and display it:");
Dbprintf(_YELLOW_("1.") " edit inputfile %s", inputfile);
Dbprintf(_YELLOW_("2.") " start proxmark3 client");
Dbprintf(_YELLOW_("3.") " mem spiffs load f %s o %s", inputfile, inputfile);
Dbprintf(_YELLOW_("4.") " start standalone mode");
}
static void DownloadLogInstructions(const char *logfile) {
Dbprintf("");
Dbprintf("To get the logfile from flash and display it:");
Dbprintf(_YELLOW_("1.") " mem spiffs dump o %s f %s", logfile, logfile);
Dbprintf(_YELLOW_("2.") " exit proxmark3 client");
Dbprintf(_YELLOW_("3.") " cat %s", logfile);
}
static bool strip_check_parities(uint64_t data, uint32_t *word) {
uint8_t rparity = 0, cparity = 0;
uint8_t rparity_m = 0, cparity_m = 0, stop_bit_m = 0;
// strip parities
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 8; j++) {
*word <<= 1;
*word += (data >> (EM4X50_TAG_WORD - 1 - 9 * i - j)) & 1;
}
}
// calculate row parities
for (int i = 0; i < 4; i++) {
rparity <<= 1;
for (int j = 0; j < 8; j++) {
rparity ^= (*word >> (31 - 8 * i - j)) & 1;
}
}
// calculate column parities
for (int i = 0; i < 8; i++) {
cparity <<= 1;
for (int j = 0; j < 4; j++) {
cparity ^= (*word >> (31 - 8 * j - i)) & 1;
}
}
// measured row parities
for (int i = 0; i < 4; i++) {
rparity_m <<= 1;
rparity_m += (data >> (EM4X50_TAG_WORD - 9 * (i + 1))) & 1;
}
// measured column parities
cparity_m = (data >> 1) & 0xFF;
// measured stop bit
stop_bit_m = data & 1;
if ((cparity_m == cparity) && (rparity_m == rparity) && (stop_bit_m == 0))
return true;
return false;
}
static int get_input_data_from_file(uint32_t *words, char *inputfile) {
size_t now = 0;
if (exists_in_spiffs(inputfile)) {
uint32_t size = size_in_spiffs(inputfile);
uint8_t *mem = BigBuf_malloc(size);
Dbprintf(_YELLOW_("found input file %s"), inputfile);
rdv40_spiffs_read_as_filetype(inputfile, mem, size, RDV40_SPIFFS_SAFETY_SAFE);
now = size / 9;
for (int i = 0; i < now; i++)
for (int j = 0; j < 4; j++)
words[i] |= (hex2int(mem[2 * j + 9 * i]) << 4 | hex2int(mem[2 * j + 1 + 9 * i])) << ((3 - j) * 8);
Dbprintf(_YELLOW_("read data from input file"));
}
BigBuf_free();
return (now > 0) ? now : 0;
}
static void append(const char *filename, uint8_t *entry, size_t entry_len) {
LED_D_ON();
if (log_exists == false) {
rdv40_spiffs_write(filename, entry, entry_len, RDV40_SPIFFS_SAFETY_SAFE);
log_exists = true;
} else {
rdv40_spiffs_append(filename, entry, entry_len, RDV40_SPIFFS_SAFETY_SAFE);
}
LED_D_OFF();
}
void ModInfo(void) {
DbpString(_YELLOW_(" LF EM4x50 sim/collector/bruteforce mode") " - a.k.a tharexde");
}
void RunMod(void) {
bool state_change = true;//, password_found = false;
int pwd_found = false;
//int cnt = 0;
//int iterprint = 0;
uint8_t state = STATE_SIM;
// declarations for simulating
uint32_t words[33] = {0x0};
uint32_t pwd = 0x0;
uint32_t passwords[2] = {0x0};
size_t now = 0;
// declarations for reading
int no_words = 0;
uint64_t data[EM4X50_TAG_WORD];
uint32_t word = 0;//, pwd = 0x0, rpwd = 0x0;
uint8_t entry[81];
rdv40_spiffs_lazy_mount();
StandAloneMode();
Dbprintf(_YELLOW_("Standalone mode THAREXDE started"));
for (;;) {
WDT_HIT();
if (data_available()) break;
// press button - toggle between SIM, READ and BRUTE
// hold button - exit
int button_pressed = BUTTON_CLICKED(1000);
if (button_pressed == BUTTON_SINGLE_CLICK) {
SpinUp(100);
switch (state) {
case STATE_SIM:
state = STATE_READ;
break;
case STATE_READ:
state = STATE_BRUTE;
break;
case STATE_BRUTE:
state = STATE_SIM;
break;
default:
break;
}
state_change = true;
} else if (button_pressed == BUTTON_HOLD) {
SpinDown(100);
break;
}
if (state == STATE_SIM) {
if (state_change) {
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
LEDsoff();
LED_A_ON();
Dbprintf("");
Dbprintf(_YELLOW_("switched to EM4x50 simulating mode"));
now = get_input_data_from_file(words, LF_EM4X50SIMULATE_INPUTFILE);
if (now > 0) {
Dbprintf(_YELLOW_("simulating %i blocks"), now);
for (int i = 0; i < now; i++)
Dbprintf("%2i -> %lx", i + 1, words[i]);
} else {
Dbprintf(_RED_("error in input data"));
}
state_change = false;
}
em4x50_sim_send_listen_window();
for (int i = 0; i < now; i++) {
em4x50_sim_send_listen_window();
em4x50_sim_send_word(words[i]);
}
} else if (state == STATE_READ) {
if (state_change) {
LEDsoff();
LED_B_ON();
Dbprintf("");
Dbprintf(_YELLOW_("switched to EM4x50 reading mode"));
memset(entry, 0, sizeof(entry));
memset(data, 0, sizeof(data));
log_exists = exists_in_spiffs(LF_EM4X50COLLECT_LOGFILE);
state_change = false;
}
no_words = em4x50_standalone_read(data);
if (no_words > 0) {
memset(entry, 0, sizeof(entry));
sprintf((char *)entry, "found new EM4x50 tag:");
Dbprintf("%s", entry);
strcat((char *)entry, "\n");
append(LF_EM4X50COLLECT_LOGFILE, entry, strlen((char *)entry));
for (int i = 0; i < no_words; i++) {
if (strip_check_parities(data[i], &word))
sprintf((char *)entry, " %2i -> 0x%08"PRIx32" (parity check ok)", i + 1, word);
else
sprintf((char *)entry, " %2i -> 0x%08"PRIx32" (parity check failed)", i + 1, word);
Dbprintf("%s", entry);
strcat((char *)entry, "\n");
append(LF_EM4X50COLLECT_LOGFILE, entry, strlen((char *)entry));
}
}
} else if (state == STATE_BRUTE) {
if (state_change) {
LEDsoff();
LED_C_ON();
Dbprintf("");
Dbprintf(_YELLOW_("switched to EM4x50 brute force mode"));
log_exists = exists_in_spiffs(LF_EM4X50BRUTE_LOGFILE);
now = get_input_data_from_file(passwords, LF_EM4X50BRUTE_INPUTFILE);
if (now == 2) {
// print some information
int no_iter = passwords[1] - passwords[0] + 1;
int dur_s = no_iter / EM4X50_PWD_SPEED;
int dur_h = dur_s / 3600;
int dur_m = (dur_s - dur_h * 3600) / 60;
dur_s -= dur_h * 3600 + dur_m * 60;
//iterprint = no_iter/10;
Dbprintf(_YELLOW_("trying %i passwords in range [0x%08x, 0x%08x]"),
no_iter, passwords[0], passwords[1]);
Dbprintf(_YELLOW_("estimated duration: %ih%im%is"),
dur_h, dur_m, dur_s);
} else {
Dbprintf(_RED_("error in input data"));
break;
}
state_change = false;
}
pwd_found = em4x50_standalone_brute(passwords[0], passwords[1], &pwd);
if (pwd_found == PM3_ETIMEOUT) {
// timeout -> no EM4x50 tag on reader?
Dbprintf(_YELLOW_("timeout - no EM4x50 tag detected"));
} else if (pwd_found == true) {
// password found -> write to logfile
sprintf((char *)entry, "password found: 0x%08"PRIx32, pwd);
Dbprintf(_YELLOW_("%s"), entry);
strcat((char *)entry, "\n");
append(LF_EM4X50BRUTE_LOGFILE, entry, strlen((char *)entry));
break;
} else {
if (pwd == passwords[1] + 1) {
// finished without success -> write to logfile
sprintf((char *)entry, "no password found");
Dbprintf(_YELLOW_("%s"), entry);
strcat((char *)entry, "\n");
append(LF_EM4X50BRUTE_LOGFILE, entry, strlen((char *)entry));
} else {
// stopped -> write to logfile
sprintf((char *)entry, "stopped search - last password: 0x%08"PRIx32, pwd);
Dbprintf(_YELLOW_("%s"), entry);
strcat((char *)entry, "\n");
append(LF_EM4X50BRUTE_LOGFILE, entry, strlen((char *)entry));
// replace start password by last tested password in
// inputfile (spiffs) so that brute forcing process will
// be continued when envoking brute force mode again
sprintf((char *)entry, "%08"PRIx32"\n%08"PRIx32"\n", pwd, passwords[1]);
rdv40_spiffs_write(LF_EM4X50BRUTE_INPUTFILE,
entry,
strlen((char *)entry),
RDV40_SPIFFS_SAFETY_SAFE);
}
break;
}
}
}
if (state == STATE_READ) {
DownloadLogInstructions(LF_EM4X50COLLECT_LOGFILE);
} else if (state == STATE_BRUTE) {
LoadDataInstructions(LF_EM4X50BRUTE_INPUTFILE);
DownloadLogInstructions(LF_EM4X50BRUTE_LOGFILE);
} else {
LoadDataInstructions(LF_EM4X50SIMULATE_INPUTFILE);
}
LED_D_ON();
rdv40_spiffs_lazy_unmount();
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
Dbprintf("");
Dbprintf(_YELLOW_("[=] Standalone mode THAREXDE stopped"));
}