proxmark3/armsrc/iso15693.c

1387 lines
34 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, split Nov 2006
// Modified by Greg Jones, Jan 2009
// Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 15693. This includes both the reader software and
// the `fake tag' modes, but at the moment I've implemented only the reader
// stuff, and that barely.
// Modified to perform modulation onboard in arm rather than on PC
// Also added additional reader commands (SELECT, READ etc.)
//-----------------------------------------------------------------------------
// The ISO 15693 describes two transmission modes from reader to tag, and 4
// transmission modes from tag to reader. As of Mar 2010 this code only
// supports one of each: "1of4" mode from reader to tag, and the highspeed
// variant with one subcarrier from card to reader.
// As long, as the card fully support ISO 15693 this is no problem, since the
// reader chooses both data rates, but some non-standard tags do not. Further for
// the simulation to work, we will need to support all data rates.
//
// VCD (reader) -> VICC (tag)
// 1 out of 256:
// data rate: 1,66 kbit/s (fc/8192)
// used for long range
// 1 out of 4:
// data rate: 26,48 kbit/s (fc/512)
// used for short range, high speed
//
// VICC (tag) -> VCD (reader)
// Modulation:
// ASK / one subcarrier (423,75 khz)
// FSK / two subcarriers (423,75 khz && 484,28 khz)
// Data Rates / Modes:
// low ASK: 6,62 kbit/s
// low FSK: 6.67 kbit/s
// high ASK: 26,48 kbit/s
// high FSK: 26,69 kbit/s
//-----------------------------------------------------------------------------
// added "1 out of 256" mode (for VCD->PICC) - atrox 20100911
// Random Remarks:
// *) UID is always used "transmission order" (LSB), which is reverse to display order
// TODO / BUGS / ISSUES:
// *) writing to tags takes longer: we miss the answer from the tag in most cases
// -> tweak the read-timeout times
// *) signal decoding from the card is still a bit shaky.
// *) signal decoding is unable to detect collissions.
// *) add anti-collission support for inventory-commands
// *) read security status of a block
// *) sniffing and simulation do only support one transmission mode. need to support
// all 8 transmission combinations
// *) remove or refactor code under "depricated"
// *) document all the functions
#include "../include/proxmark3.h"
#include "util.h"
#include "apps.h"
#include "string.h"
#include "../common/iso15693tools.h"
#include "../common/cmd.h"
#include "crapto1.h"
#include "mifareutil.h"
#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 2 - Air Interface
// This section basicly contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
#define FrameSOF Iso15693FrameSOF
#define Logic0 Iso15693Logic0
#define Logic1 Iso15693Logic1
#define FrameEOF Iso15693FrameEOF
#define Crc(data,datalen) Iso15693Crc(data,datalen)
#define AddCrc(data,datalen) Iso15693AddCrc(data,datalen)
#define sprintUID(target,uid) Iso15693sprintUID(target,uid)
int DEBUG=0;
// ---------------------------
// Signal Processing
// ---------------------------
// prepare data using "1 out of 4" code for later transmission
// resulting data rate is 26,48 kbit/s (fc/512)
// cmd ... data
// n ... length of data
static void CodeIso15693AsReader(uint8_t *cmd, int n)
{
int i, j;
ToSendReset();
// Give it a bit of slack at the beginning
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
// SOF for 1of4
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
for(i = 0; i < n; i++) {
for(j = 0; j < 8; j += 2) {
int these = (cmd[i] >> j) & 3;
switch(these) {
case 0:
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 1:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 2:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 3:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
break;
}
}
}
// EOF
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// And slack at the end, too.
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
}
// encode data using "1 out of 256" sheme
// data rate is 1,66 kbit/s (fc/8192)
// is designed for more robust communication over longer distances
static void CodeIso15693AsReader256(uint8_t *cmd, int n)
{
int i, j;
ToSendReset();
// Give it a bit of slack at the beginning
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
// SOF for 1of256
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
for(i = 0; i < n; i++) {
for (j = 0; j<=255; j++) {
if (cmd[i]==j) {
ToSendStuffBit(1);
ToSendStuffBit(0);
} else {
ToSendStuffBit(1);
ToSendStuffBit(1);
}
}
}
// EOF
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// And slack at the end, too.
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
}
// Transmit the command (to the tag) that was placed in ToSend[].
static void TransmitTo15693Tag(const uint8_t *cmd, int len, int *samples, int *wait)
{
int c;
// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
if(*wait < 10) { *wait = 10; }
// for(c = 0; c < *wait;) {
// if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
// AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
// c++;
// }
// if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
// volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
// (void)r;
// }
// WDT_HIT();
// }
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
if(c >= len) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
*samples = (c + *wait) << 3;
}
//-----------------------------------------------------------------------------
// Transmit the command (to the reader) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitTo15693Reader(const uint8_t *cmd, int len, int *samples, int *wait)
{
int c = 0;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
if(*wait < 10) { *wait = 10; }
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
if(c >= len) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
*samples = (c + *wait) << 3;
}
// Read from Tag
// Parameters:
// receivedResponse
// maxLen
// samples
// elapsed
// returns:
// number of decoded bytes
static int GetIso15693AnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
{
int c = 0;
uint8_t *dest = (uint8_t *)BigBuf;
int getNext = 0;
int8_t prev = 0;
// NOW READ RESPONSE
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
//spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads
c = 0;
getNext = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
int8_t b;
b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
if(getNext) {
int8_t r;
if(b < 0) {
r = -b;
} else {
r = b;
}
if(prev < 0) {
r -= prev;
} else {
r += prev;
}
dest[c++] = (uint8_t)r;
if(c >= 2000) {
break;
}
} else {
prev = b;
}
getNext = !getNext;
}
}
//////////////////////////////////////////
/////////// DEMODULATE ///////////////////
//////////////////////////////////////////
int i, j;
int max = 0, maxPos=0;
int skip = 4;
// if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
// First, correlate for SOF
for(i = 0; i < 100; i++) {
int corr = 0;
for(j = 0; j < arraylen(FrameSOF); j += skip) {
corr += FrameSOF[j]*dest[i+(j/skip)];
}
if(corr > max) {
max = corr;
maxPos = i;
}
}
// DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
int k = 0; // this will be our return value
// greg - If correlation is less than 1 then there's little point in continuing
if ((max/(arraylen(FrameSOF)/skip)) >= 1)
{
i = maxPos + arraylen(FrameSOF)/skip;
uint8_t outBuf[20];
memset(outBuf, 0, sizeof(outBuf));
uint8_t mask = 0x01;
for(;;) {
int corr0 = 0, corr1 = 0, corrEOF = 0;
for(j = 0; j < arraylen(Logic0); j += skip) {
corr0 += Logic0[j]*dest[i+(j/skip)];
}
for(j = 0; j < arraylen(Logic1); j += skip) {
corr1 += Logic1[j]*dest[i+(j/skip)];
}
for(j = 0; j < arraylen(FrameEOF); j += skip) {
corrEOF += FrameEOF[j]*dest[i+(j/skip)];
}
// Even things out by the length of the target waveform.
corr0 *= 4;
corr1 *= 4;
if(corrEOF > corr1 && corrEOF > corr0) {
// DbpString("EOF at %d", i);
break;
} else if(corr1 > corr0) {
i += arraylen(Logic1)/skip;
outBuf[k] |= mask;
} else {
i += arraylen(Logic0)/skip;
}
mask <<= 1;
if(mask == 0) {
k++;
mask = 0x01;
}
if((i+(int)arraylen(FrameEOF)) >= 2000) {
DbpString("ran off end!");
break;
}
}
if(mask != 0x01) { // this happens, when we miss the EOF
// TODO: for some reason this happens quite often
if (DEBUG) Dbprintf("error, uneven octet! (extra bits!) mask=%02x", mask);
if (mask<0x08) k--; // discard the last uneven octet;
// 0x08 is an assumption - but works quite often
}
// uint8_t str1 [8];
// itoa(k,str1);
// strncat(str1," octets read",8);
// DbpString( str1); // DbpString("%d octets", k);
// for(i = 0; i < k; i+=3) {
// //DbpString("# %2d: %02x ", i, outBuf[i]);
// DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
// }
for(i = 0; i < k; i++) {
receivedResponse[i] = outBuf[i];
}
} // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
return k; // return the number of bytes demodulated
/// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
}
// Now the GetISO15693 message from sniffing command
static int GetIso15693AnswerFromSniff(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
{
int c = 0;
uint8_t *dest = (uint8_t *)BigBuf;
int getNext = 0;
int8_t prev = 0;
// NOW READ RESPONSE
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
//spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads
c = 0;
getNext = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
int8_t b;
b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
if(getNext) {
int8_t r;
if(b < 0) {
r = -b;
} else {
r = b;
}
if(prev < 0) {
r -= prev;
} else {
r += prev;
}
dest[c++] = (uint8_t)r;
if(c >= 20000) {
break;
}
} else {
prev = b;
}
getNext = !getNext;
}
}
//////////////////////////////////////////
/////////// DEMODULATE ///////////////////
//////////////////////////////////////////
int i, j;
int max = 0, maxPos=0;
int skip = 4;
// if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
// First, correlate for SOF
for(i = 0; i < 19000; i++) {
int corr = 0;
for(j = 0; j < arraylen(FrameSOF); j += skip) {
corr += FrameSOF[j]*dest[i+(j/skip)];
}
if(corr > max) {
max = corr;
maxPos = i;
}
}
// DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
int k = 0; // this will be our return value
// greg - If correlation is less than 1 then there's little point in continuing
if ((max/(arraylen(FrameSOF)/skip)) >= 1) // THIS SHOULD BE 1
{
i = maxPos + arraylen(FrameSOF)/skip;
uint8_t outBuf[20];
memset(outBuf, 0, sizeof(outBuf));
uint8_t mask = 0x01;
for(;;) {
int corr0 = 0, corr1 = 0, corrEOF = 0;
for(j = 0; j < arraylen(Logic0); j += skip) {
corr0 += Logic0[j]*dest[i+(j/skip)];
}
for(j = 0; j < arraylen(Logic1); j += skip) {
corr1 += Logic1[j]*dest[i+(j/skip)];
}
for(j = 0; j < arraylen(FrameEOF); j += skip) {
corrEOF += FrameEOF[j]*dest[i+(j/skip)];
}
// Even things out by the length of the target waveform.
corr0 *= 4;
corr1 *= 4;
if(corrEOF > corr1 && corrEOF > corr0) {
// DbpString("EOF at %d", i);
break;
} else if(corr1 > corr0) {
i += arraylen(Logic1)/skip;
outBuf[k] |= mask;
} else {
i += arraylen(Logic0)/skip;
}
mask <<= 1;
if(mask == 0) {
k++;
mask = 0x01;
}
if((i+(int)arraylen(FrameEOF)) >= 2000) {
DbpString("ran off end!");
break;
}
}
if(mask != 0x01) {
DbpString("sniff: error, uneven octet! (discard extra bits!)");
/// DbpString(" mask=%02x", mask);
}
// uint8_t str1 [8];
// itoa(k,str1);
// strncat(str1," octets read",8);
// DbpString( str1); // DbpString("%d octets", k);
// for(i = 0; i < k; i+=3) {
// //DbpString("# %2d: %02x ", i, outBuf[i]);
// DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
// }
for(i = 0; i < k; i++) {
receivedResponse[i] = outBuf[i];
}
} // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
return k; // return the number of bytes demodulated
/// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
}
static void BuildIdentifyRequest(void);
//-----------------------------------------------------------------------------
// Start to read an ISO 15693 tag. We send an identify request, then wait
// for the response. The response is not demodulated, just left in the buffer
// so that it can be downloaded to a PC and processed there.
//-----------------------------------------------------------------------------
void AcquireRawAdcSamplesIso15693(void)
{
uint8_t *dest = mifare_get_bigbufptr();
int c = 0;
int getNext = 0;
int8_t prev = 0;
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
BuildIdentifyRequest();
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Give the tags time to energize
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(100);
// Now send the command
FpgaSetupSsc();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = ToSend[c];
c++;
if(c == ToSendMax+3) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
c = 0;
getNext = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
int8_t b;
b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
if(getNext) {
int8_t r;
if(b < 0) {
r = -b;
} else {
r = b;
}
if(prev < 0) {
r -= prev;
} else {
r += prev;
}
dest[c++] = (uint8_t)r;
if(c >= 2000) {
break;
}
} else {
prev = b;
}
getNext = !getNext;
}
}
}
void RecordRawAdcSamplesIso15693(void)
{
uint8_t *dest = mifare_get_bigbufptr();
int c = 0;
int getNext = 0;
int8_t prev = 0;
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Setup SSC
FpgaSetupSsc();
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
SpinDelay(100);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
c = 0;
getNext = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
int8_t b;
b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
if(getNext) {
int8_t r;
if(b < 0) {
r = -b;
} else {
r = b;
}
if(prev < 0) {
r -= prev;
} else {
r += prev;
}
dest[c++] = (uint8_t)r;
if(c >= 7000) {
break;
}
} else {
prev = b;
}
getNext = !getNext;
WDT_HIT();
}
}
Dbprintf("fin record");
}
// Initialize the proxmark as iso15k reader
// (this might produces glitches that confuse some tags
void Iso15693InitReader() {
LED_A_ON();
LED_B_ON();
LED_C_OFF();
LED_D_OFF();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Setup SSC
// FpgaSetupSsc();
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(10);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Give the tags time to energize
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(250);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 3 - Air Interface
// This section basicly contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
// Encode (into the ToSend buffers) an identify request, which is the first
// thing that you must send to a tag to get a response.
static void BuildIdentifyRequest(void)
{
uint8_t cmd[5];
uint16_t crc;
// one sub-carrier, inventory, 1 slot, fast rate
// AFI is at bit 5 (1<<4) when doing an INVENTORY
cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
// inventory command code
cmd[1] = 0x01;
// no mask
cmd[2] = 0x00;
//Now the CRC
crc = Crc(cmd, 3);
cmd[3] = crc & 0xff;
cmd[4] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// uid is in transmission order (which is reverse of display order)
static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
{
uint8_t cmd[13];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit
// READ BLOCK command code
cmd[1] = 0x20;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = uid[0];
cmd[3] = uid[1];
cmd[4] = uid[2];
cmd[5] = uid[3];
cmd[6] = uid[4];
cmd[7] = uid[5];
cmd[8] = uid[6];
cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
// Block number to read
cmd[10] = blockNumber;//0x00;
//Now the CRC
crc = Crc(cmd, 11); // the crc needs to be calculated over 12 bytes
cmd[11] = crc & 0xff;
cmd[12] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// Now the VICC>VCD responses when we are simulating a tag
static void BuildInventoryResponse( uint8_t *uid)
{
uint8_t cmd[12];
uint16_t crc;
// one sub-carrier, inventory, 1 slot, fast rate
// AFI is at bit 5 (1<<4) when doing an INVENTORY
cmd[0] = 0; //(1 << 2) | (1 << 5) | (1 << 1);
cmd[1] = 0;
// 64-bit UID
cmd[2] = uid[7]; //0x32;
cmd[3] = uid[6]; //0x4b;
cmd[4] = uid[5]; //0x03;
cmd[5] = uid[4]; //0x01;
cmd[6] = uid[3]; //0x00;
cmd[7] = uid[2]; //0x10;
cmd[8] = uid[1]; //0x05;
cmd[9] = uid[0]; //0xe0;
//Now the CRC
crc = Crc(cmd, 10);
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// Universal Method for sending to and recv bytes from a tag
// init ... should we initialize the reader?
// speed ... 0 low speed, 1 hi speed
// **recv will return you a pointer to the received data
// If you do not need the answer use NULL for *recv[]
// return: lenght of received data
int SendDataTag(uint8_t *send, int sendlen, int init, int speed, uint8_t **recv) {
int samples = 0;
int tsamples = 0;
int wait = 0;
int elapsed = 0;
LED_A_ON();
LED_B_ON();
LED_C_OFF();
LED_D_OFF();
int answerLen=0;
uint8_t *answer = (((uint8_t *)BigBuf) + 3660);
if (recv!=NULL) memset(BigBuf + 3660, 0, 100);
if (init) Iso15693InitReader();
if (!speed) {
// low speed (1 out of 256)
CodeIso15693AsReader256(send, sendlen);
} else {
// high speed (1 out of 4)
CodeIso15693AsReader(send, sendlen);
}
LED_A_ON();
LED_B_OFF();
TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
// Now wait for a response
if (recv!=NULL) {
LED_A_OFF();
LED_B_ON();
answerLen = GetIso15693AnswerFromTag(answer, 100, &samples, &elapsed) ;
*recv=answer;
}
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
return answerLen;
}
// --------------------------------------------------------------------
// Debug Functions
// --------------------------------------------------------------------
// Decodes a message from a tag and displays its metadata and content
#define DBD15STATLEN 48
void DbdecodeIso15693Answer(int len, uint8_t *d) {
char status[DBD15STATLEN+1]={0};
uint16_t crc;
if (len>3) {
if (d[0]&(1<<3))
strncat(status,"ProtExt ",DBD15STATLEN);
if (d[0]&1) {
// error
strncat(status,"Error ",DBD15STATLEN);
switch (d[1]) {
case 0x01:
strncat(status,"01:notSupp",DBD15STATLEN);
break;
case 0x02:
strncat(status,"02:notRecog",DBD15STATLEN);
break;
case 0x03:
strncat(status,"03:optNotSupp",DBD15STATLEN);
break;
case 0x0f:
strncat(status,"0f:noInfo",DBD15STATLEN);
break;
case 0x10:
strncat(status,"10:dontExist",DBD15STATLEN);
break;
case 0x11:
strncat(status,"11:lockAgain",DBD15STATLEN);
break;
case 0x12:
strncat(status,"12:locked",DBD15STATLEN);
break;
case 0x13:
strncat(status,"13:progErr",DBD15STATLEN);
break;
case 0x14:
strncat(status,"14:lockErr",DBD15STATLEN);
break;
default:
strncat(status,"unknownErr",DBD15STATLEN);
}
strncat(status," ",DBD15STATLEN);
} else {
strncat(status,"NoErr ",DBD15STATLEN);
}
crc=Crc(d,len-2);
if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
strncat(status,"CrcOK",DBD15STATLEN);
else
strncat(status,"CrcFail!",DBD15STATLEN);
Dbprintf("%s",status);
}
}
///////////////////////////////////////////////////////////////////////
// Functions called via USB/Client
///////////////////////////////////////////////////////////////////////
void SetDebugIso15693(uint32_t debug) {
DEBUG=debug;
Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
return;
}
//-----------------------------------------------------------------------------
// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector
// all demodulation performed in arm rather than host. - greg
//-----------------------------------------------------------------------------
void ReaderIso15693(uint32_t parameter )
{
LED_A_ON();
LED_B_ON();
LED_C_OFF();
LED_D_OFF();
uint8_t *answer1 = (((uint8_t *)BigBuf) + 3660); //
uint8_t *answer2 = (((uint8_t *)BigBuf) + 3760);
uint8_t *answer3 = (((uint8_t *)BigBuf) + 3860);
int answerLen1 = 0;
int answerLen2 = 0;
int answerLen3 = 0;
int i = 0;
int samples = 0;
int tsamples = 0;
int wait = 0;
int elapsed = 0;
uint8_t TagUID[8] = {0x00};
// Blank arrays
memset(BigBuf + 3660, 0x00, 300);
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Setup SSC
FpgaSetupSsc();
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
// Give the tags time to energize
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(200);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
// FIRST WE RUN AN INVENTORY TO GET THE TAG UID
// THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
// Now send the IDENTIFY command
BuildIdentifyRequest();
TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
// Now wait for a response
answerLen1 = GetIso15693AnswerFromTag(answer1, 100, &samples, &elapsed) ;
if (answerLen1 >=12) // we should do a better check than this
{
TagUID[0] = answer1[2];
TagUID[1] = answer1[3];
TagUID[2] = answer1[4];
TagUID[3] = answer1[5];
TagUID[4] = answer1[6];
TagUID[5] = answer1[7];
TagUID[6] = answer1[8]; // IC Manufacturer code
TagUID[7] = answer1[9]; // always E0
}
Dbprintf("%d octets read from IDENTIFY request:", answerLen1);
DbdecodeIso15693Answer(answerLen1,answer1);
Dbhexdump(answerLen1,answer1,true);
// UID is reverse
if (answerLen1 >= 12)
Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
TagUID[7],TagUID[6],TagUID[5],TagUID[4],
TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
Dbprintf("%d octets read from SELECT request:", answerLen2);
DbdecodeIso15693Answer(answerLen2,answer2);
Dbhexdump(answerLen2,answer2,true);
Dbprintf("%d octets read from XXX request:", answerLen3);
DbdecodeIso15693Answer(answerLen3,answer3);
Dbhexdump(answerLen3,answer3,true);
// read all pages
if (answerLen1 >= 12 && DEBUG) {
i=0;
while (i < 32) { // sanity check, assume max 32 pages
BuildReadBlockRequest(TagUID,i);
TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
answerLen2 = GetIso15693AnswerFromTag(answer2, 100, &samples, &elapsed);
if (answerLen2 > 0) {
Dbprintf("READ SINGLE BLOCK %d returned %d octets:",i,answerLen2);
DbdecodeIso15693Answer(answerLen2,answer2);
Dbhexdump(answerLen2,answer2,true);
if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr
}
i++;
}
}
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
// Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands
// all demodulation performed in arm rather than host. - greg
void SimTagIso15693(uint32_t parameter, uint8_t *uid)
{
LED_A_ON();
LED_B_ON();
LED_C_OFF();
LED_D_OFF();
uint8_t *buf = (((uint8_t *)BigBuf) + 3660); //
int answerLen1 = 0;
int samples = 0;
int tsamples = 0;
int wait = 0;
int elapsed = 0;
memset(buf, 0x00, 100);
// Inventory response
BuildInventoryResponse(uid);
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
LED_A_OFF();
LED_B_OFF();
LED_C_ON();
LED_D_OFF();
// Listen to reader
answerLen1 = GetIso15693AnswerFromSniff(buf, 100, &samples, &elapsed) ;
if (answerLen1 >=1) // we should do a better check than this
{
// Build a suitable reponse to the reader INVENTORY cocmmand
// not so obsvious, but in the call to BuildInventoryResponse, the command is copied to the global ToSend buffer used below.
TransmitTo15693Reader(ToSend, ToSendMax, &tsamples, &wait);
}
Dbprintf("%d octets read from reader command: %x %x %x %x %x %x %x %x %x", answerLen1,
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7], buf[8]);
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
// Since there is no standardized way of reading the AFI out of a tag, we will brute force it
// (some manufactures offer a way to read the AFI, though)
void BruteforceIso15693Afi(uint32_t speed)
{
uint8_t data[20];
uint8_t *recv=data;
int datalen=0, recvlen=0;
Iso15693InitReader();
// first without AFI
// Tags should respond wihtout AFI and with AFI=0 even when AFI is active
data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH |
ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1;
data[1]=ISO15_CMD_INVENTORY;
data[2]=0; // mask length
datalen=AddCrc(data,3);
recvlen=SendDataTag(data,datalen,0,speed,&recv);
WDT_HIT();
if (recvlen>=12) {
Dbprintf("NoAFI UID=%s",sprintUID(NULL,&recv[2]));
}
// now with AFI
data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH |
ISO15_REQ_INVENTORY | ISO15_REQINV_AFI | ISO15_REQINV_SLOT1;
data[1]=ISO15_CMD_INVENTORY;
data[2]=0; // AFI
data[3]=0; // mask length
for (int i=0;i<256;i++) {
data[2]=i & 0xFF;
datalen=AddCrc(data,4);
recvlen=SendDataTag(data,datalen,0,speed,&recv);
WDT_HIT();
if (recvlen>=12) {
Dbprintf("AFI=%i UID=%s",i,sprintUID(NULL,&recv[2]));
}
}
Dbprintf("AFI Bruteforcing done.");
}
// Allows to directly send commands to the tag via the client
void DirectTag15693Command(uint32_t datalen,uint32_t speed, uint32_t recv, uint8_t data[]) {
int recvlen=0;
uint8_t *recvbuf=(uint8_t *)BigBuf;
// UsbCommand n;
if (DEBUG) {
Dbprintf("SEND");
Dbhexdump(datalen,data,true);
}
recvlen=SendDataTag(data,datalen,1,speed,(recv?&recvbuf:NULL));
if (recv) {
LED_B_ON();
cmd_send(CMD_ACK,recvlen>48?48:recvlen,0,0,recvbuf,48);
LED_B_OFF();
if (DEBUG) {
Dbprintf("RECV");
DbdecodeIso15693Answer(recvlen,recvbuf);
Dbhexdump(recvlen,recvbuf,true);
}
}
}
// --------------------------------------------------------------------
// -- Misc & deprecated functions
// --------------------------------------------------------------------
/*
// do not use; has a fix UID
static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
{
uint8_t cmd[12];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// System Information command code
cmd[1] = 0x2B;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
//Now the CRC
crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// do not use; has a fix UID
static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
{
uint8_t cmd[14];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ Multi BLOCK command code
cmd[1] = 0x23;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// First Block number to read
cmd[10] = 0x00;
// Number of Blocks to read
cmd[11] = 0x2f; // read quite a few
//Now the CRC
crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// do not use; has a fix UID
static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
{
uint8_t cmd[14];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ BLOCK command code
cmd[1] = CmdCode;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// Parameter
cmd[10] = 0x00;
cmd[11] = 0x0a;
// cmd[12] = 0x00;
// cmd[13] = 0x00; //Now the CRC
crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// do not use; has a fix UID
static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
{
uint8_t cmd[14];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ BLOCK command code
cmd[1] = CmdCode;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// Parameter
cmd[10] = 0x05; // for custom codes this must be manufcturer code
cmd[11] = 0x00;
// cmd[12] = 0x00;
// cmd[13] = 0x00; //Now the CRC
crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
*/