mirror of
				https://github.com/RfidResearchGroup/proxmark3.git
				synced 2025-11-01 00:46:39 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			540 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			540 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*  crapto1.c
 | |
| 
 | |
| 	This program is free software; you can redistribute it and/or
 | |
| 	modify it under the terms of the GNU General Public License
 | |
| 	as published by the Free Software Foundation; either version 2
 | |
| 	of the License, or (at your option) any later version.
 | |
| 
 | |
| 	This program is distributed in the hope that it will be useful,
 | |
| 	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| 	GNU General Public License for more details.
 | |
| 
 | |
| 	You should have received a copy of the GNU General Public License
 | |
| 	along with this program; if not, write to the Free Software
 | |
| 	Foundation, Inc., 51 Franklin Street, Fifth Floor,
 | |
| 	Boston, MA  02110-1301, US$
 | |
| 
 | |
|     Copyright (C) 2008-2014 bla <blapost@gmail.com>
 | |
| */
 | |
| #include "crapto1.h"
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include "parity.h"
 | |
| 
 | |
| #if !defined LOWMEM && defined __GNUC__
 | |
| static uint8_t filterlut[1 << 20];
 | |
| static void __attribute__((constructor)) fill_lut()
 | |
| {
 | |
| 		uint32_t i;
 | |
| 		for(i = 0; i < 1 << 20; ++i)
 | |
| 				filterlut[i] = filter(i);
 | |
| }
 | |
| #define filter(x) (filterlut[(x) & 0xfffff])
 | |
| #endif
 | |
| 
 | |
| /** binsearch
 | |
|  * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
 | |
|  */
 | |
| /* static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
 | |
| {
 | |
| 	uint32_t mid, val = *stop & 0xff000000;
 | |
| 	while(start != stop)
 | |
| 		if(start[mid = (stop - start) >> 1] > val)
 | |
| 			stop = &start[mid];
 | |
| 		else
 | |
| 			start += mid + 1;
 | |
| 
 | |
| 	return start;
 | |
| }
 | |
|  */
 | |
| /** update_contribution
 | |
|  * helper, calculates the partial linear feedback contributions and puts in MSB
 | |
|  */
 | |
| static inline void update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
 | |
| {
 | |
| 	uint32_t p = *item >> 25;
 | |
| 
 | |
| 	p = p << 1 | evenparity32(*item & mask1);
 | |
| 	p = p << 1 | evenparity32(*item & mask2);
 | |
| 	*item = p << 24 | (*item & 0xffffff);
 | |
| }
 | |
| 
 | |
| /** extend_table
 | |
|  * using a bit of the keystream extend the table of possible lfsr states
 | |
|  */
 | |
| static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
 | |
| {
 | |
| 	in <<= 24;
 | |
| 	for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
 | |
| 		if(filter(*tbl) ^ filter(*tbl | 1)) {
 | |
| 			*tbl |= filter(*tbl) ^ bit;
 | |
| 			update_contribution(tbl, m1, m2);
 | |
| 			*tbl ^= in;
 | |
| 		} else if(filter(*tbl) == bit) {
 | |
| 			*++*end = tbl[1];
 | |
| 			tbl[1] = tbl[0] | 1;
 | |
| 			update_contribution(tbl, m1, m2);
 | |
| 			*tbl++ ^= in;
 | |
| 			update_contribution(tbl, m1, m2);
 | |
| 			*tbl ^= in;
 | |
| 		} else
 | |
| 			*tbl-- = *(*end)--;
 | |
| }
 | |
| /** extend_table_simple
 | |
|  * using a bit of the keystream extend the table of possible lfsr states
 | |
|  */
 | |
| static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
 | |
| {
 | |
| 	for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) {
 | |
| 		if(filter(*tbl) ^ filter(*tbl | 1)) {	// replace
 | |
| 			*tbl |= filter(*tbl) ^ bit;
 | |
| 		} else if(filter(*tbl) == bit) {		// insert
 | |
| 			*++*end = *++tbl;
 | |
| 			*tbl = tbl[-1] | 1;
 | |
| 		} else	{								// drop
 | |
| 			*tbl-- = *(*end)--;
 | |
| }
 | |
| 	}
 | |
| }
 | |
| /** recover
 | |
|  * recursively narrow down the search space, 4 bits of keystream at a time
 | |
|  */
 | |
| static struct Crypto1State*
 | |
| recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
 | |
| 	uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
 | |
| 	struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
 | |
| {
 | |
| 	uint32_t *o, *e;
 | |
| 	bucket_info_t bucket_info;
 | |
| 
 | |
| 	if(rem == -1) {
 | |
| 		for(e = e_head; e <= e_tail; ++e) {
 | |
| 			*e = *e << 1 ^ evenparity32(*e & LF_POLY_EVEN) ^ !!(in & 4);
 | |
| 			for(o = o_head; o <= o_tail; ++o, ++sl) {
 | |
| 				sl->even = *o;
 | |
| 				sl->odd = *e ^ evenparity32(*o & LF_POLY_ODD);
 | |
| 				sl[1].odd = sl[1].even = 0;
 | |
| 			}
 | |
| 		}
 | |
| 		return sl;
 | |
| 	}
 | |
| 
 | |
| 	for(uint32_t i = 0; i < 4 && rem--; i++) {
 | |
| 		oks >>= 1;
 | |
| 		eks >>= 1;
 | |
| 		in >>= 2;
 | |
| 		extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
 | |
| 		if(o_head > o_tail)
 | |
| 			return sl;
 | |
| 
 | |
| 		extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3);
 | |
| 		if(e_head > e_tail)
 | |
| 			return sl;
 | |
| 	}
 | |
| 
 | |
| 	bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
 | |
| 
 | |
| 	for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
 | |
| 		sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
 | |
| 					 bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
 | |
| 					 rem, sl, in, bucket);
 | |
| 	}
 | |
| 
 | |
| 	return sl;
 | |
| }
 | |
| /** lfsr_recovery
 | |
|  * recover the state of the lfsr given 32 bits of the keystream
 | |
|  * additionally you can use the in parameter to specify the value
 | |
|  * that was fed into the lfsr at the time the keystream was generated
 | |
|  */
 | |
| struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
 | |
| {
 | |
| 	struct Crypto1State *statelist;
 | |
| 	uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
 | |
| 	uint32_t *even_head = 0, *even_tail = 0, eks = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	// split the keystream into an odd and even part
 | |
| 	for (i = 31; i >= 0; i -= 2)
 | |
| 		oks = oks << 1 | BEBIT(ks2, i);
 | |
| 	for (i = 30; i >= 0; i -= 2)
 | |
|  		eks = eks << 1 | BEBIT(ks2, i);
 | |
| 
 | |
| 	odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
 | |
| 	even_head = even_tail = malloc(sizeof(uint32_t) << 21);
 | |
| 	statelist =  malloc(sizeof(struct Crypto1State) << 18);
 | |
| 	if (!odd_tail-- || !even_tail-- || !statelist) {
 | |
| 		free(statelist);
 | |
| 		statelist = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	statelist->odd = statelist->even = 0;
 | |
| 
 | |
| 	// allocate memory for out of place bucket_sort
 | |
| 	bucket_array_t bucket;
 | |
| 	
 | |
| 	for (uint32_t i = 0; i < 2; i++) {
 | |
| 		for (uint32_t j = 0; j <= 0xff; j++) {
 | |
| 			bucket[i][j].head = malloc(sizeof(uint32_t) << 14);
 | |
| 			if (!bucket[i][j].head) {
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
 | |
| 	for(i = 1 << 20; i >= 0; --i) {
 | |
| 		if(filter(i) == (oks & 1))
 | |
| 			*++odd_tail = i;
 | |
| 		if(filter(i) == (eks & 1))
 | |
| 			*++even_tail = i;
 | |
| 	}
 | |
| 
 | |
| 	// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
 | |
| 	for(i = 0; i < 4; i++) {
 | |
| 		extend_table_simple(odd_head,  &odd_tail, (oks >>= 1) & 1);
 | |
| 		extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
 | |
| 	}
 | |
| 
 | |
| 	// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
 | |
| 	// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
 | |
| 	// parameter into account.
 | |
| 	in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);		// Byte swapping
 | |
| 	recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket);
 | |
| 
 | |
| out:
 | |
| 	for (uint32_t i = 0; i < 2; i++)
 | |
| 		for (uint32_t j = 0; j <= 0xff; j++)
 | |
| 			free(bucket[i][j].head);
 | |
| 	free(odd_head);
 | |
| 	free(even_head);
 | |
| 	return statelist;
 | |
| }
 | |
| 
 | |
| static const uint32_t S1[] = {     0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
 | |
| 	0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
 | |
| 	0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
 | |
| static const uint32_t S2[] = {  0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
 | |
| 	0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
 | |
| 	0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
 | |
| 	0x7EC7EE90, 0x7F63F748, 0x79117020};
 | |
| static const uint32_t T1[] = {
 | |
| 	0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
 | |
| 	0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
 | |
| 	0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
 | |
| 	0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
 | |
| static const uint32_t T2[] = {  0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
 | |
| 	0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
 | |
| 	0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
 | |
| 	0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
 | |
| 	0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
 | |
| 	0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
 | |
| static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
 | |
| static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
 | |
| /** Reverse 64 bits of keystream into possible cipher states
 | |
|  * Variation mentioned in the paper. Somewhat optimized version
 | |
|  */
 | |
| struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
 | |
| {
 | |
| 	struct Crypto1State *statelist, *sl;
 | |
| 	uint8_t oks[32], eks[32], hi[32];
 | |
| 	uint32_t low = 0,  win = 0;
 | |
| 	uint32_t *tail, table[1 << 16];
 | |
| 	int i, j;
 | |
| 
 | |
| 	sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
 | |
| 	if(!sl)
 | |
| 		return 0;
 | |
| 	sl->odd = sl->even = 0;
 | |
| 
 | |
| 	for(i = 30; i >= 0; i -= 2) {
 | |
| 		oks[i >> 1] = BEBIT(ks2, i);
 | |
| 		oks[16 + (i >> 1)] = BEBIT(ks3, i);
 | |
| 	}
 | |
| 	for(i = 31; i >= 0; i -= 2) {
 | |
| 		eks[i >> 1] = BEBIT(ks2, i);
 | |
| 		eks[16 + (i >> 1)] = BEBIT(ks3, i);
 | |
| 	}
 | |
| 
 | |
| 	for(i = 0xfffff; i >= 0; --i) {
 | |
| 		if (filter(i) != oks[0])
 | |
| 			continue;
 | |
| 
 | |
| 		*(tail = table) = i;
 | |
| 		for(j = 1; tail >= table && j < 29; ++j)
 | |
| 			extend_table_simple(table, &tail, oks[j]);
 | |
| 
 | |
| 		if(tail < table)
 | |
| 			continue;
 | |
| 
 | |
| 		for(j = 0; j < 19; ++j)
 | |
| 			low = low << 1 | evenparity32(i & S1[j]);
 | |
| 		for(j = 0; j < 32; ++j)
 | |
| 			hi[j] = evenparity32(i & T1[j]);
 | |
| 
 | |
| 		for(; tail >= table; --tail) {
 | |
| 			for(j = 0; j < 3; ++j) {
 | |
| 				*tail = *tail << 1;
 | |
| 				*tail |= evenparity32((i & C1[j]) ^ (*tail & C2[j]));
 | |
| 				if(filter(*tail) != oks[29 + j])
 | |
| 					goto continue2;
 | |
| 			}
 | |
| 
 | |
| 			for(j = 0; j < 19; ++j)
 | |
| 				win = win << 1 | evenparity32(*tail & S2[j]);
 | |
| 
 | |
| 			win ^= low;
 | |
| 			for(j = 0; j < 32; ++j) {
 | |
| 				win = win << 1 ^ hi[j] ^ evenparity32(*tail & T2[j]);
 | |
| 				if(filter(win) != eks[j])
 | |
| 					goto continue2;
 | |
| 			}
 | |
| 
 | |
| 			*tail = *tail << 1 | evenparity32(LF_POLY_EVEN & *tail);
 | |
| 			sl->odd = *tail ^ evenparity32(LF_POLY_ODD & win);
 | |
| 			sl->even = win;
 | |
| 			++sl;
 | |
| 			sl->odd = sl->even = 0;
 | |
| 			continue2:;
 | |
| 		}
 | |
| 	}
 | |
| 	return statelist;
 | |
| }
 | |
| 
 | |
| /** lfsr_rollback_bit
 | |
|  * Rollback the shift register in order to get previous states
 | |
|  */
 | |
| uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
 | |
| {
 | |
| 	int out;
 | |
| 	uint8_t ret;
 | |
| 	uint32_t t;
 | |
| 	
 | |
| 	s->odd &= 0xffffff;
 | |
| 	t = s->odd, s->odd = s->even, s->even = t;
 | |
| 
 | |
| 	out = s->even & 1;
 | |
| 	out ^= LF_POLY_EVEN & (s->even >>= 1);
 | |
| 	out ^= LF_POLY_ODD & s->odd;
 | |
| 	out ^= !!in;
 | |
| 	out ^= (ret = filter(s->odd)) & !!fb;
 | |
| 
 | |
| 	s->even |= evenparity32(out) << 23;
 | |
| 	return ret;
 | |
| }
 | |
| /** lfsr_rollback_byte
 | |
|  * Rollback the shift register in order to get previous states
 | |
|  */
 | |
| uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
 | |
| {
 | |
| 	/*
 | |
| 	int i, ret=0;
 | |
| 	for (i = 7; i >= 0; --i)
 | |
| 		ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
 | |
| */
 | |
| // unfold loop 20160112
 | |
| 	uint8_t ret = 0;
 | |
| 	ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
 | |
| 	ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
 | |
| 	ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
 | |
| 	ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
 | |
| 	ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
 | |
| 	ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
 | |
| 	ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
 | |
| 	ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
 | |
| 	return ret;
 | |
| }
 | |
| /** lfsr_rollback_word
 | |
|  * Rollback the shift register in order to get previous states
 | |
|  */
 | |
| uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
 | |
| {
 | |
| 	/*
 | |
| 	int i;
 | |
| 	uint32_t ret = 0;
 | |
| 	for (i = 31; i >= 0; --i)
 | |
| 		ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
 | |
| */
 | |
| // unfold loop 20160112
 | |
| 	uint32_t ret = 0;
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
 | |
| 
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
 | |
| 	
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
 | |
| 	
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
 | |
| 	ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /** nonce_distance
 | |
|  * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
 | |
|  */
 | |
| static uint16_t *dist = 0;
 | |
| int nonce_distance(uint32_t from, uint32_t to)
 | |
| {
 | |
| 	uint16_t x, i;
 | |
| 	if(!dist) {
 | |
| 		dist = malloc(2 << 16);
 | |
| 		if(!dist)
 | |
| 			return -1;
 | |
| 		for (x = i = 1; i; ++i) {
 | |
| 			dist[(x & 0xff) << 8 | x >> 8] = i;
 | |
| 			x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
 | |
| 		}
 | |
| 	}
 | |
| 	return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
 | |
| }
 | |
| 
 | |
| /** validate_prng_nonce
 | |
|  * Determine if nonce is deterministic. ie: Suspectable to Darkside attack.
 | |
|  * returns
 | |
|  *   true = weak prng
 | |
|  *   false = hardend prng
 | |
|  */
 | |
| bool validate_prng_nonce(uint32_t nonce) {
 | |
| 	// init prng table:
 | |
| 	nonce_distance(nonce, nonce);
 | |
| 	return ((65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535) == 16;
 | |
| }
 | |
| 
 | |
| static uint32_t fastfwd[2][8] = {
 | |
| 	{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
 | |
| 	{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
 | |
| 
 | |
| /** lfsr_prefix_ks
 | |
|  *
 | |
|  * Is an exported helper function from the common prefix attack
 | |
|  * Described in the "dark side" paper. It returns an -1 terminated array
 | |
|  * of possible partial(21 bit) secret state.
 | |
|  * The required keystream(ks) needs to contain the keystream that was used to
 | |
|  * encrypt the NACK which is observed when varying only the 3 last bits of Nr
 | |
|  * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
 | |
|  */
 | |
| uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
 | |
| {
 | |
| 	uint32_t *candidates = malloc(4 << 10);
 | |
| 	if (!candidates) return 0;
 | |
| 	
 | |
| 	uint32_t c,  entry;
 | |
| 	int size = 0, i, good;
 | |
| 
 | |
| 	for (i = 0; i < 1 << 21; ++i) {
 | |
| 		for (c = 0, good = 1; good && c < 8; ++c) {
 | |
| 			entry = i ^ fastfwd[isodd][c];
 | |
| 			good &= (BIT(ks[c], isodd) == filter(entry >> 1));
 | |
| 			good &= (BIT(ks[c], isodd + 2) == filter(entry));
 | |
| 		}
 | |
| 		if (good)
 | |
| 			candidates[size++] = i;
 | |
| 	}
 | |
| 	
 | |
| 	candidates[size] = -1;
 | |
| 
 | |
| 	return candidates;
 | |
| }
 | |
| 
 | |
| /** check_pfx_parity
 | |
|  * helper function which eliminates possible secret states using parity bits
 | |
|  */
 | |
| static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl, uint32_t no_par)
 | |
| {
 | |
| 	uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
 | |
| 
 | |
| 	for(c = 0; good && c < 8; ++c) {
 | |
| 		sl->odd = odd ^ fastfwd[1][c];
 | |
| 		sl->even = even ^ fastfwd[0][c];
 | |
| 
 | |
| 		lfsr_rollback_bit(sl, 0, 0);
 | |
| 		lfsr_rollback_bit(sl, 0, 0);
 | |
| 
 | |
| 		ks3 = lfsr_rollback_bit(sl, 0, 0);
 | |
| 		ks2 = lfsr_rollback_word(sl, 0, 0);
 | |
| 		ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
 | |
| 
 | |
| 		if (no_par)
 | |
| 			break;
 | |
| 
 | |
| 		nr = ks1 ^ (prefix | c << 5);
 | |
| 		rr = ks2 ^ rresp;
 | |
| 
 | |
| 		good &= evenparity32(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
 | |
| 		good &= evenparity32(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
 | |
| 		good &= evenparity32(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2,  8);
 | |
| 		good &= evenparity32(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2,  0);
 | |
| 		good &= evenparity32(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
 | |
| 	}
 | |
| 
 | |
| 	return sl + good;
 | |
| }
 | |
| 
 | |
| 
 | |
| /** lfsr_common_prefix
 | |
|  * Implentation of the common prefix attack.
 | |
|  * Requires the 28 bit constant prefix used as reader nonce (pfx)
 | |
|  * The reader response used (rr)
 | |
|  * The keystream used to encrypt the observed NACK's (ks)
 | |
|  * The parity bits (par)
 | |
|  * It returns a zero terminated list of possible cipher states after the
 | |
|  * tag nonce was fed in
 | |
|  */
 | |
| 
 | |
| struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint32_t no_par)
 | |
| {
 | |
| 	struct Crypto1State *statelist, *s;
 | |
| 	uint32_t *odd, *even, *o, *e, top;
 | |
| 
 | |
| 	odd = lfsr_prefix_ks(ks, 1);
 | |
| 	even = lfsr_prefix_ks(ks, 0);
 | |
| 
 | |
| 	s = statelist = malloc((sizeof *statelist) << 24); // was << 20. Need more for no_par special attack. Enough???
 | |
| 	if (!s || !odd || !even) {
 | |
| 		free(statelist);
 | |
| 		statelist = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (o = odd; *o + 1; ++o)
 | |
| 		for (e = even; *e + 1; ++e)
 | |
| 			for (top = 0; top < 64; ++top) {
 | |
| 				*o += 1 << 21;
 | |
| 				*e += (!(top & 7) + 1) << 21;
 | |
| 				s = check_pfx_parity(pfx, rr, par, *o, *e, s, no_par);
 | |
| 			}
 | |
| 
 | |
| 	s->odd = s->even = 0;
 | |
| out:
 | |
| 	free(odd);
 | |
| 	free(even);
 | |
| 	return statelist;
 | |
| }
 |