proxmark3/armsrc/lfops.c
2015-01-03 14:29:07 +01:00

1860 lines
60 KiB
C

//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Miscellaneous routines for low frequency tag operations.
// Tags supported here so far are Texas Instruments (TI), HID
// Also routines for raw mode reading/simulating of LF waveform
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "hitag2.h"
#include "crc16.h"
#include "string.h"
#include "lfdemod.h"
/**
* Does the sample acquisition. If threshold is specified, the actual sampling
* is not commenced until the threshold has been reached.
* @param trigger_threshold - the threshold
* @param silent - is true, now outputs are made. If false, dbprints the status
*/
void DoAcquisition125k_internal(int trigger_threshold,bool silent)
{
uint8_t *dest = (uint8_t *)BigBuf;
int n = sizeof(BigBuf);
int i;
memset(dest, 0, n);
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
LED_D_OFF();
if (trigger_threshold != -1 && dest[i] < trigger_threshold)
continue;
else
trigger_threshold = -1;
if (++i >= n) break;
}
}
if(!silent)
{
Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
}
}
/**
* Perform sample aquisition.
*/
void DoAcquisition125k(int trigger_threshold)
{
DoAcquisition125k_internal(trigger_threshold, false);
}
/**
* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
* if not already loaded, sets divisor and starts up the antenna.
* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
* 0 or 95 ==> 125 KHz
*
**/
void LFSetupFPGAForADC(int divisor, bool lf_field)
{
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
else if (divisor == 0)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
else
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(50);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
}
/**
* Initializes the FPGA, and acquires the samples.
**/
void AcquireRawAdcSamples125k(int divisor)
{
LFSetupFPGAForADC(divisor, true);
// Now call the acquisition routine
DoAcquisition125k_internal(-1,false);
}
/**
* Initializes the FPGA for snoop-mode, and acquires the samples.
**/
void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
{
LFSetupFPGAForADC(divisor, false);
DoAcquisition125k(trigger_threshold);
}
void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
{
/* Make sure the tag is reset */
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(2500);
int divisor_used = 95; // 125 KHz
// see if 'h' was specified
if (command[strlen((char *) command) - 1] == 'h')
divisor_used = 88; // 134.8 KHz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(50);
// And a little more time for the tag to fully power up
SpinDelay(2000);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
// now modulate the reader field
while(*command != '\0' && *command != ' ') {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
if(*(command++) == '0')
SpinDelayUs(period_0);
else
SpinDelayUs(period_1);
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
DoAcquisition125k(-1);
}
/* blank r/w tag data stream
...0000000000000000 01111111
1010101010101010101010101010101010101010101010101010101010101010
0011010010100001
01111111
101010101010101[0]000...
[5555fe852c5555555555555555fe0000]
*/
void ReadTItag(void)
{
// some hardcoded initial params
// when we read a TI tag we sample the zerocross line at 2Mhz
// TI tags modulate a 1 as 16 cycles of 123.2Khz
// TI tags modulate a 0 as 16 cycles of 134.2Khz
#define FSAMPLE 2000000
#define FREQLO 123200
#define FREQHI 134200
signed char *dest = (signed char *)BigBuf;
int n = sizeof(BigBuf);
// int *dest = GraphBuffer;
// int n = GraphTraceLen;
// 128 bit shift register [shift3:shift2:shift1:shift0]
uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
int i, cycles=0, samples=0;
// how many sample points fit in 16 cycles of each frequency
uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
// when to tell if we're close enough to one freq or another
uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
// TI tags charge at 134.2Khz
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// connects to SSP_DIN and the SSP_DOUT logic level controls
// whether we're modulating the antenna (high)
// or listening to the antenna (low)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
// get TI tag data into the buffer
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
for (i=0; i<n-1; i++) {
// count cycles by looking for lo to hi zero crossings
if ( (dest[i]<0) && (dest[i+1]>0) ) {
cycles++;
// after 16 cycles, measure the frequency
if (cycles>15) {
cycles=0;
samples=i-samples; // number of samples in these 16 cycles
// TI bits are coming to us lsb first so shift them
// right through our 128 bit right shift register
shift0 = (shift0>>1) | (shift1 << 31);
shift1 = (shift1>>1) | (shift2 << 31);
shift2 = (shift2>>1) | (shift3 << 31);
shift3 >>= 1;
// check if the cycles fall close to the number
// expected for either the low or high frequency
if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
// low frequency represents a 1
shift3 |= (1<<31);
} else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
// high frequency represents a 0
} else {
// probably detected a gay waveform or noise
// use this as gaydar or discard shift register and start again
shift3 = shift2 = shift1 = shift0 = 0;
}
samples = i;
// for each bit we receive, test if we've detected a valid tag
// if we see 17 zeroes followed by 6 ones, we might have a tag
// remember the bits are backwards
if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
// if start and end bytes match, we have a tag so break out of the loop
if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
cycles = 0xF0B; //use this as a flag (ugly but whatever)
break;
}
}
}
}
}
// if flag is set we have a tag
if (cycles!=0xF0B) {
DbpString("Info: No valid tag detected.");
} else {
// put 64 bit data into shift1 and shift0
shift0 = (shift0>>24) | (shift1 << 8);
shift1 = (shift1>>24) | (shift2 << 8);
// align 16 bit crc into lower half of shift2
shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
// if r/w tag, check ident match
if ( shift3&(1<<15) ) {
DbpString("Info: TI tag is rewriteable");
// only 15 bits compare, last bit of ident is not valid
if ( ((shift3>>16)^shift0)&0x7fff ) {
DbpString("Error: Ident mismatch!");
} else {
DbpString("Info: TI tag ident is valid");
}
} else {
DbpString("Info: TI tag is readonly");
}
// WARNING the order of the bytes in which we calc crc below needs checking
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
// bytes in reverse or something
// calculate CRC
uint32_t crc=0;
crc = update_crc16(crc, (shift0)&0xff);
crc = update_crc16(crc, (shift0>>8)&0xff);
crc = update_crc16(crc, (shift0>>16)&0xff);
crc = update_crc16(crc, (shift0>>24)&0xff);
crc = update_crc16(crc, (shift1)&0xff);
crc = update_crc16(crc, (shift1>>8)&0xff);
crc = update_crc16(crc, (shift1>>16)&0xff);
crc = update_crc16(crc, (shift1>>24)&0xff);
Dbprintf("Info: Tag data: %x%08x, crc=%x",
(unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
if (crc != (shift2&0xffff)) {
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
} else {
DbpString("Info: CRC is good");
}
}
}
void WriteTIbyte(uint8_t b)
{
int i = 0;
// modulate 8 bits out to the antenna
for (i=0; i<8; i++)
{
if (b&(1<<i)) {
// stop modulating antenna
LOW(GPIO_SSC_DOUT);
SpinDelayUs(1000);
// modulate antenna
HIGH(GPIO_SSC_DOUT);
SpinDelayUs(1000);
} else {
// stop modulating antenna
LOW(GPIO_SSC_DOUT);
SpinDelayUs(300);
// modulate antenna
HIGH(GPIO_SSC_DOUT);
SpinDelayUs(1700);
}
}
}
void AcquireTiType(void)
{
int i, j, n;
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
#define TIBUFLEN 1250
// clear buffer
memset(BigBuf,0,sizeof(BigBuf));
// Set up the synchronous serial port
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
// steal this pin from the SSP and use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
// 48/2 = 24 MHz clock must be divided by 12
AT91C_BASE_SSC->SSC_CMR = 12;
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
AT91C_BASE_SSC->SSC_TCMR = 0;
AT91C_BASE_SSC->SSC_TFMR = 0;
LED_D_ON();
// modulate antenna
HIGH(GPIO_SSC_DOUT);
// Charge TI tag for 50ms.
SpinDelay(50);
// stop modulating antenna and listen
LOW(GPIO_SSC_DOUT);
LED_D_OFF();
i = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
i++; if(i >= TIBUFLEN) break;
}
WDT_HIT();
}
// return stolen pin to SSP
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
char *dest = (char *)BigBuf;
n = TIBUFLEN*32;
// unpack buffer
for (i=TIBUFLEN-1; i>=0; i--) {
for (j=0; j<32; j++) {
if(BigBuf[i] & (1 << j)) {
dest[--n] = 1;
} else {
dest[--n] = -1;
}
}
}
}
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if crc provided, it will be written with the data verbatim (even if bogus)
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if(crc == 0) {
crc = update_crc16(crc, (idlo)&0xff);
crc = update_crc16(crc, (idlo>>8)&0xff);
crc = update_crc16(crc, (idlo>>16)&0xff);
crc = update_crc16(crc, (idlo>>24)&0xff);
crc = update_crc16(crc, (idhi)&0xff);
crc = update_crc16(crc, (idhi>>8)&0xff);
crc = update_crc16(crc, (idhi>>16)&0xff);
crc = update_crc16(crc, (idhi>>24)&0xff);
}
Dbprintf("Writing to tag: %x%08x, crc=%x",
(unsigned int) idhi, (unsigned int) idlo, crc);
// TI tags charge at 134.2Khz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// connects to SSP_DIN and the SSP_DOUT logic level controls
// whether we're modulating the antenna (high)
// or listening to the antenna (low)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
LED_A_ON();
// steal this pin from the SSP and use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
// writing algorithm:
// a high bit consists of a field off for 1ms and field on for 1ms
// a low bit consists of a field off for 0.3ms and field on for 1.7ms
// initiate a charge time of 50ms (field on) then immediately start writing bits
// start by writing 0xBB (keyword) and 0xEB (password)
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
// finally end with 0x0300 (write frame)
// all data is sent lsb firts
// finish with 15ms programming time
// modulate antenna
HIGH(GPIO_SSC_DOUT);
SpinDelay(50); // charge time
WriteTIbyte(0xbb); // keyword
WriteTIbyte(0xeb); // password
WriteTIbyte( (idlo )&0xff );
WriteTIbyte( (idlo>>8 )&0xff );
WriteTIbyte( (idlo>>16)&0xff );
WriteTIbyte( (idlo>>24)&0xff );
WriteTIbyte( (idhi )&0xff );
WriteTIbyte( (idhi>>8 )&0xff );
WriteTIbyte( (idhi>>16)&0xff );
WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
WriteTIbyte( (crc )&0xff ); // crc lo
WriteTIbyte( (crc>>8 )&0xff ); // crc hi
WriteTIbyte(0x00); // write frame lo
WriteTIbyte(0x03); // write frame hi
HIGH(GPIO_SSC_DOUT);
SpinDelay(50); // programming time
LED_A_OFF();
// get TI tag data into the buffer
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Now use tiread to check");
}
void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
{
int i;
uint8_t *tab = (uint8_t *)BigBuf;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
i = 0;
for(;;) {
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
if(BUTTON_PRESS()) {
DbpString("Stopped");
return;
}
WDT_HIT();
}
if (ledcontrol)
LED_D_ON();
if(tab[i])
OPEN_COIL();
else
SHORT_COIL();
if (ledcontrol)
LED_D_OFF();
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
if(BUTTON_PRESS()) {
DbpString("Stopped");
return;
}
WDT_HIT();
}
i++;
if(i == period) {
i = 0;
if (gap) {
SHORT_COIL();
SpinDelayUs(gap);
}
}
}
}
#define DEBUG_FRAME_CONTENTS 1
void SimulateTagLowFrequencyBidir(int divisor, int t0)
{
}
// compose fc/8 fc/10 waveform
static void fc(int c, int *n) {
uint8_t *dest = (uint8_t *)BigBuf;
int idx;
// for when we want an fc8 pattern every 4 logical bits
if(c==0) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
// an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
if(c==8) {
for (idx=0; idx<6; idx++) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
}
// an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
if(c==10) {
for (idx=0; idx<5; idx++) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
}
}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
{
int n=0, i=0;
/*
HID tag bitstream format
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
A 1 bit is represented as 6 fc8 and 5 fc10 patterns
A 0 bit is represented as 5 fc10 and 6 fc8 patterns
A fc8 is inserted before every 4 bits
A special start of frame pattern is used consisting a0b0 where a and b are neither 0
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
*/
if (hi>0xFFF) {
DbpString("Tags can only have 44 bits.");
return;
}
fc(0,&n);
// special start of frame marker containing invalid bit sequences
fc(8, &n); fc(8, &n); // invalid
fc(8, &n); fc(10, &n); // logical 0
fc(10, &n); fc(10, &n); // invalid
fc(8, &n); fc(10, &n); // logical 0
WDT_HIT();
// manchester encode bits 43 to 32
for (i=11; i>=0; i--) {
if ((i%4)==3) fc(0,&n);
if ((hi>>i)&1) {
fc(10, &n); fc(8, &n); // low-high transition
} else {
fc(8, &n); fc(10, &n); // high-low transition
}
}
WDT_HIT();
// manchester encode bits 31 to 0
for (i=31; i>=0; i--) {
if ((i%4)==3) fc(0,&n);
if ((lo>>i)&1) {
fc(10, &n); fc(8, &n); // low-high transition
} else {
fc(8, &n); fc(10, &n); // high-low transition
}
}
if (ledcontrol)
LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
if (ledcontrol)
LED_A_OFF();
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0; //, found=0;
uint32_t hi2=0, hi=0, lo=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
if (size < 2000) continue;
// FSK demodulator
int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo);
WDT_HIT();
if (bitLen>0 && lo>0){
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
if (hi2 != 0){ //extra large HID tags
Dbprintf("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}else { //standard HID tags <38 bits
//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2>1){ //find last bit set to 1 (format len bit)
lo2=lo2>>1;
idx3++;
}
bitlen =idx3+19;
fc =0;
cardnum=0;
if(bitlen==26){
cardnum = (lo>>1)&0xFFFF;
fc = (lo>>17)&0xFF;
}
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
if(bitlen==34){
cardnum = (lo>>1)&0xFFFF;
fc= ((hi&1)<<15)|(lo>>17);
}
if(bitlen==35){
cardnum = (lo>>1)&0xFFFFF;
fc = ((hi&1)<<11)|(lo>>21);
}
}
else { //if bit 38 is not set then 37 bit format is used
bitlen= 37;
fc =0;
cardnum=0;
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
//Dbprintf("TAG ID: %x%08x (%d)",
// (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
}
if (findone){
if (ledcontrol) LED_A_OFF();
return;
}
// reset
hi2 = hi = lo = 0;
}
WDT_HIT();
//SpinDelay(50);
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0; //, found=0;
uint32_t bitLen=0;
int clk=0, invert=0, errCnt=0;
uint64_t lo=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
size = sizeof(BigBuf);
if (size < 2000) continue;
// FSK demodulator
//int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
bitLen=size;
//Dbprintf("DEBUG: Buffer got");
errCnt = askmandemod(dest,&bitLen,&clk,&invert); //HIDdemodFSK(dest,size,&hi2,&hi,&lo);
//Dbprintf("DEBUG: ASK Got");
WDT_HIT();
if (errCnt>=0){
lo = Em410xDecode(dest,bitLen);
//Dbprintf("DEBUG: EM GOT");
//printEM410x(lo);
if (lo>0){
Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo>>32),(uint32_t)lo,(uint32_t)(lo&0xFFFF),(uint32_t)((lo>>16LL) & 0xFF),(uint32_t)(lo & 0xFFFFFF));
}
if (findone){
if (ledcontrol) LED_A_OFF();
return;
}
} else{
//Dbprintf("DEBUG: No Tag");
}
WDT_HIT();
lo = 0;
clk=0;
invert=0;
errCnt=0;
size=0;
//SpinDelay(50);
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
int idx=0;
uint32_t code=0, code2=0;
uint8_t version=0;
uint8_t facilitycode=0;
uint16_t number=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition125k_internal(-1,true);
//fskdemod and get start index
WDT_HIT();
idx = IOdemodFSK(dest,sizeof(BigBuf));
if (idx>0){
//valid tag found
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo
//Handle the data
if(findone){ //only print binary if we are doing one
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
}
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
version = bytebits_to_byte(dest+idx+27,8); //14,4
facilitycode = bytebits_to_byte(dest+idx+18,8) ;
number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
// if we're only looking for one tag
if (findone){
if (ledcontrol) LED_A_OFF();
//LED_A_OFF();
return;
}
code=code2=0;
version=facilitycode=0;
number=0;
idx=0;
}
WDT_HIT();
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
/*------------------------------
* T5555/T5557/T5567 routines
*------------------------------
*/
/* T55x7 configuration register definitions */
#define T55x7_POR_DELAY 0x00000001
#define T55x7_ST_TERMINATOR 0x00000008
#define T55x7_PWD 0x00000010
#define T55x7_MAXBLOCK_SHIFT 5
#define T55x7_AOR 0x00000200
#define T55x7_PSKCF_RF_2 0
#define T55x7_PSKCF_RF_4 0x00000400
#define T55x7_PSKCF_RF_8 0x00000800
#define T55x7_MODULATION_DIRECT 0
#define T55x7_MODULATION_PSK1 0x00001000
#define T55x7_MODULATION_PSK2 0x00002000
#define T55x7_MODULATION_PSK3 0x00003000
#define T55x7_MODULATION_FSK1 0x00004000
#define T55x7_MODULATION_FSK2 0x00005000
#define T55x7_MODULATION_FSK1a 0x00006000
#define T55x7_MODULATION_FSK2a 0x00007000
#define T55x7_MODULATION_MANCHESTER 0x00008000
#define T55x7_MODULATION_BIPHASE 0x00010000
#define T55x7_BITRATE_RF_8 0
#define T55x7_BITRATE_RF_16 0x00040000
#define T55x7_BITRATE_RF_32 0x00080000
#define T55x7_BITRATE_RF_40 0x000C0000
#define T55x7_BITRATE_RF_50 0x00100000
#define T55x7_BITRATE_RF_64 0x00140000
#define T55x7_BITRATE_RF_100 0x00180000
#define T55x7_BITRATE_RF_128 0x001C0000
/* T5555 (Q5) configuration register definitions */
#define T5555_ST_TERMINATOR 0x00000001
#define T5555_MAXBLOCK_SHIFT 0x00000001
#define T5555_MODULATION_MANCHESTER 0
#define T5555_MODULATION_PSK1 0x00000010
#define T5555_MODULATION_PSK2 0x00000020
#define T5555_MODULATION_PSK3 0x00000030
#define T5555_MODULATION_FSK1 0x00000040
#define T5555_MODULATION_FSK2 0x00000050
#define T5555_MODULATION_BIPHASE 0x00000060
#define T5555_MODULATION_DIRECT 0x00000070
#define T5555_INVERT_OUTPUT 0x00000080
#define T5555_PSK_RF_2 0
#define T5555_PSK_RF_4 0x00000100
#define T5555_PSK_RF_8 0x00000200
#define T5555_USE_PWD 0x00000400
#define T5555_USE_AOR 0x00000800
#define T5555_BITRATE_SHIFT 12
#define T5555_FAST_WRITE 0x00004000
#define T5555_PAGE_SELECT 0x00008000
/*
* Relevant times in microsecond
* To compensate antenna falling times shorten the write times
* and enlarge the gap ones.
*/
#define START_GAP 250
#define WRITE_GAP 160
#define WRITE_0 144 // 192
#define WRITE_1 400 // 432 for T55x7; 448 for E5550
// Write one bit to card
void T55xxWriteBit(int bit)
{
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
if (bit == 0)
SpinDelayUs(WRITE_0);
else
SpinDelayUs(WRITE_1);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(WRITE_GAP);
}
// Write one card block in page 0, no lock
void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
//unsigned int i; //enio adjustment 12/10/14
uint32_t i;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
// And for the tag to fully power up
SpinDelay(150);
// Now start writting
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(0); //Page 0
if (PwdMode == 1){
// Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
}
// Lock bit
T55xxWriteBit(0);
// Data
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Data & i);
// Block
for (i = 0x04; i != 0; i >>= 1)
T55xxWriteBit(Block & i);
// Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
// so wait a little more)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
SpinDelay(20);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
// Read one card block in page 0
void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
uint8_t *dest = (uint8_t *)BigBuf;
//int m=0, i=0; //enio adjustment 12/10/14
uint32_t m=0, i=0;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
m = sizeof(BigBuf);
// Clear destination buffer before sending the command
memset(dest, 128, m);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
LED_D_ON();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
// And for the tag to fully power up
SpinDelay(150);
// Now start writting
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(0); //Page 0
if (PwdMode == 1){
// Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
}
// Lock bit
T55xxWriteBit(0);
// Block
for (i = 0x04; i != 0; i >>= 1)
T55xxWriteBit(Block & i);
// Turn field on to read the response
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Now do the acquisition
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// we don't care about actual value, only if it's more or less than a
// threshold essentially we capture zero crossings for later analysis
// if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
i++;
if (i >= m) break;
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
DbpString("DONE!");
}
// Read card traceability data (page 1)
void T55xxReadTrace(void){
uint8_t *dest = (uint8_t *)BigBuf;
int m=0, i=0;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
m = sizeof(BigBuf);
// Clear destination buffer before sending the command
memset(dest, 128, m);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
LED_D_ON();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
// And for the tag to fully power up
SpinDelay(150);
// Now start writting
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(1); //Page 1
// Turn field on to read the response
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Now do the acquisition
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
i++;
if (i >= m) break;
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
DbpString("DONE!");
}
/*-------------- Cloning routines -----------*/
// Copy HID id to card and setup block 0 config
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
{
int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
int last_block = 0;
if (longFMT){
// Ensure no more than 84 bits supplied
if (hi2>0xFFFFF) {
DbpString("Tags can only have 84 bits.");
return;
}
// Build the 6 data blocks for supplied 84bit ID
last_block = 6;
data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
for (int i=0;i<4;i++) {
if (hi2 & (1<<(19-i)))
data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
else
data1 |= (1<<((3-i)*2)); // 0 -> 01
}
data2 = 0;
for (int i=0;i<16;i++) {
if (hi2 & (1<<(15-i)))
data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data2 |= (1<<((15-i)*2)); // 0 -> 01
}
data3 = 0;
for (int i=0;i<16;i++) {
if (hi & (1<<(31-i)))
data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data3 |= (1<<((15-i)*2)); // 0 -> 01
}
data4 = 0;
for (int i=0;i<16;i++) {
if (hi & (1<<(15-i)))
data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data4 |= (1<<((15-i)*2)); // 0 -> 01
}
data5 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(31-i)))
data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data5 |= (1<<((15-i)*2)); // 0 -> 01
}
data6 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(15-i)))
data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data6 |= (1<<((15-i)*2)); // 0 -> 01
}
}
else {
// Ensure no more than 44 bits supplied
if (hi>0xFFF) {
DbpString("Tags can only have 44 bits.");
return;
}
// Build the 3 data blocks for supplied 44bit ID
last_block = 3;
data1 = 0x1D000000; // load preamble
for (int i=0;i<12;i++) {
if (hi & (1<<(11-i)))
data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
else
data1 |= (1<<((11-i)*2)); // 0 -> 01
}
data2 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(31-i)))
data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data2 |= (1<<((15-i)*2)); // 0 -> 01
}
data3 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(15-i)))
data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data3 |= (1<<((15-i)*2)); // 0 -> 01
}
}
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 for HID format
T55xxWriteBlock(data1,1,0,0);
T55xxWriteBlock(data2,2,0,0);
T55xxWriteBlock(data3,3,0,0);
if (longFMT) { // if long format there are 6 blocks
T55xxWriteBlock(data4,4,0,0);
T55xxWriteBlock(data5,5,0,0);
T55xxWriteBlock(data6,6,0,0);
}
// Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
T55xxWriteBlock(T55x7_BITRATE_RF_50 |
T55x7_MODULATION_FSK2a |
last_block << T55x7_MAXBLOCK_SHIFT,
0,0,0);
LED_D_OFF();
DbpString("DONE!");
}
void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
{
int data1=0, data2=0; //up to six blocks for long format
data1 = hi; // load preamble
data2 = lo;
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 for HID format
T55xxWriteBlock(data1,1,0,0);
T55xxWriteBlock(data2,2,0,0);
//Config Block
T55xxWriteBlock(0x00147040,0,0,0);
LED_D_OFF();
DbpString("DONE!");
}
// Define 9bit header for EM410x tags
#define EM410X_HEADER 0x1FF
#define EM410X_ID_LENGTH 40
void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
{
int i, id_bit;
uint64_t id = EM410X_HEADER;
uint64_t rev_id = 0; // reversed ID
int c_parity[4]; // column parity
int r_parity = 0; // row parity
uint32_t clock = 0;
// Reverse ID bits given as parameter (for simpler operations)
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
if (i < 32) {
rev_id = (rev_id << 1) | (id_lo & 1);
id_lo >>= 1;
} else {
rev_id = (rev_id << 1) | (id_hi & 1);
id_hi >>= 1;
}
}
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
id_bit = rev_id & 1;
if (i % 4 == 0) {
// Don't write row parity bit at start of parsing
if (i)
id = (id << 1) | r_parity;
// Start counting parity for new row
r_parity = id_bit;
} else {
// Count row parity
r_parity ^= id_bit;
}
// First elements in column?
if (i < 4)
// Fill out first elements
c_parity[i] = id_bit;
else
// Count column parity
c_parity[i % 4] ^= id_bit;
// Insert ID bit
id = (id << 1) | id_bit;
rev_id >>= 1;
}
// Insert parity bit of last row
id = (id << 1) | r_parity;
// Fill out column parity at the end of tag
for (i = 0; i < 4; ++i)
id = (id << 1) | c_parity[i];
// Add stop bit
id <<= 1;
Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
LED_D_ON();
// Write EM410x ID
T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
T55xxWriteBlock((uint32_t)id, 2, 0, 0);
// Config for EM410x (RF/64, Manchester, Maxblock=2)
if (card) {
// Clock rate is stored in bits 8-15 of the card value
clock = (card & 0xFF00) >> 8;
Dbprintf("Clock rate: %d", clock);
switch (clock)
{
case 32:
clock = T55x7_BITRATE_RF_32;
break;
case 16:
clock = T55x7_BITRATE_RF_16;
break;
case 0:
// A value of 0 is assumed to be 64 for backwards-compatibility
// Fall through...
case 64:
clock = T55x7_BITRATE_RF_64;
break;
default:
Dbprintf("Invalid clock rate: %d", clock);
return;
}
// Writing configuration for T55x7 tag
T55xxWriteBlock(clock |
T55x7_MODULATION_MANCHESTER |
2 << T55x7_MAXBLOCK_SHIFT,
0, 0, 0);
}
else
// Writing configuration for T5555(Q5) tag
T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
T5555_MODULATION_MANCHESTER |
2 << T5555_MAXBLOCK_SHIFT,
0, 0, 0);
LED_D_OFF();
Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
(uint32_t)(id >> 32), (uint32_t)id);
}
// Clone Indala 64-bit tag by UID to T55x7
void CopyIndala64toT55x7(int hi, int lo)
{
//Program the 2 data blocks for supplied 64bit UID
// and the block 0 for Indala64 format
T55xxWriteBlock(hi,1,0,0);
T55xxWriteBlock(lo,2,0,0);
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
T55xxWriteBlock(T55x7_BITRATE_RF_32 |
T55x7_MODULATION_PSK1 |
2 << T55x7_MAXBLOCK_SHIFT,
0, 0, 0);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
// T5567WriteBlock(0x603E1042,0);
DbpString("DONE!");
}
void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
{
//Program the 7 data blocks for supplied 224bit UID
// and the block 0 for Indala224 format
T55xxWriteBlock(uid1,1,0,0);
T55xxWriteBlock(uid2,2,0,0);
T55xxWriteBlock(uid3,3,0,0);
T55xxWriteBlock(uid4,4,0,0);
T55xxWriteBlock(uid5,5,0,0);
T55xxWriteBlock(uid6,6,0,0);
T55xxWriteBlock(uid7,7,0,0);
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
T55xxWriteBlock(T55x7_BITRATE_RF_32 |
T55x7_MODULATION_PSK1 |
7 << T55x7_MAXBLOCK_SHIFT,
0,0,0);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
// T5567WriteBlock(0x603E10E2,0);
DbpString("DONE!");
}
#define abs(x) ( ((x)<0) ? -(x) : (x) )
#define max(x,y) ( x<y ? y:x)
int DemodPCF7931(uint8_t **outBlocks) {
uint8_t BitStream[256];
uint8_t Blocks[8][16];
uint8_t *GraphBuffer = (uint8_t *)BigBuf;
int GraphTraceLen = sizeof(BigBuf);
int i, j, lastval, bitidx, half_switch;
int clock = 64;
int tolerance = clock / 8;
int pmc, block_done;
int lc, warnings = 0;
int num_blocks = 0;
int lmin=128, lmax=128;
uint8_t dir;
AcquireRawAdcSamples125k(0);
lmin = 64;
lmax = 192;
i = 2;
/* Find first local max/min */
if(GraphBuffer[1] > GraphBuffer[0]) {
while(i < GraphTraceLen) {
if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
break;
i++;
}
dir = 0;
}
else {
while(i < GraphTraceLen) {
if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
break;
i++;
}
dir = 1;
}
lastval = i++;
half_switch = 0;
pmc = 0;
block_done = 0;
for (bitidx = 0; i < GraphTraceLen; i++)
{
if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
{
lc = i - lastval;
lastval = i;
// Switch depending on lc length:
// Tolerance is 1/8 of clock rate (arbitrary)
if (abs(lc-clock/4) < tolerance) {
// 16T0
if((i - pmc) == lc) { /* 16T0 was previous one */
/* It's a PMC ! */
i += (128+127+16+32+33+16)-1;
lastval = i;
pmc = 0;
block_done = 1;
}
else {
pmc = i;
}
} else if (abs(lc-clock/2) < tolerance) {
// 32TO
if((i - pmc) == lc) { /* 16T0 was previous one */
/* It's a PMC ! */
i += (128+127+16+32+33)-1;
lastval = i;
pmc = 0;
block_done = 1;
}
else if(half_switch == 1) {
BitStream[bitidx++] = 0;
half_switch = 0;
}
else
half_switch++;
} else if (abs(lc-clock) < tolerance) {
// 64TO
BitStream[bitidx++] = 1;
} else {
// Error
warnings++;
if (warnings > 10)
{
Dbprintf("Error: too many detection errors, aborting.");
return 0;
}
}
if(block_done == 1) {
if(bitidx == 128) {
for(j=0; j<16; j++) {
Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
64*BitStream[j*8+6]+
32*BitStream[j*8+5]+
16*BitStream[j*8+4]+
8*BitStream[j*8+3]+
4*BitStream[j*8+2]+
2*BitStream[j*8+1]+
BitStream[j*8];
}
num_blocks++;
}
bitidx = 0;
block_done = 0;
half_switch = 0;
}
if(i < GraphTraceLen)
{
if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
else dir = 1;
}
}
if(bitidx==255)
bitidx=0;
warnings = 0;
if(num_blocks == 4) break;
}
memcpy(outBlocks, Blocks, 16*num_blocks);
return num_blocks;
}
int IsBlock0PCF7931(uint8_t *Block) {
// Assume RFU means 0 :)
if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
return 1;
if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
return 1;
return 0;
}
int IsBlock1PCF7931(uint8_t *Block) {
// Assume RFU means 0 :)
if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
return 1;
return 0;
}
#define ALLOC 16
void ReadPCF7931() {
uint8_t Blocks[8][17];
uint8_t tmpBlocks[4][16];
int i, j, ind, ind2, n;
int num_blocks = 0;
int max_blocks = 8;
int ident = 0;
int error = 0;
int tries = 0;
memset(Blocks, 0, 8*17*sizeof(uint8_t));
do {
memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
n = DemodPCF7931((uint8_t**)tmpBlocks);
if(!n)
error++;
if(error==10 && num_blocks == 0) {
Dbprintf("Error, no tag or bad tag");
return;
}
else if (tries==20 || error==10) {
Dbprintf("Error reading the tag");
Dbprintf("Here is the partial content");
goto end;
}
for(i=0; i<n; i++)
Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
if(!ident) {
for(i=0; i<n; i++) {
if(IsBlock0PCF7931(tmpBlocks[i])) {
// Found block 0 ?
if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
// Found block 1!
// \o/
ident = 1;
memcpy(Blocks[0], tmpBlocks[i], 16);
Blocks[0][ALLOC] = 1;
memcpy(Blocks[1], tmpBlocks[i+1], 16);
Blocks[1][ALLOC] = 1;
max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
// Debug print
Dbprintf("(dbg) Max blocks: %d", max_blocks);
num_blocks = 2;
// Handle following blocks
for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
if(j==n) j=0;
if(j==i) break;
memcpy(Blocks[ind2], tmpBlocks[j], 16);
Blocks[ind2][ALLOC] = 1;
}
break;
}
}
}
}
else {
for(i=0; i<n; i++) { // Look for identical block in known blocks
if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
for(j=0; j<max_blocks; j++) {
if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
// Found an identical block
for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
if(ind2 < 0)
ind2 = max_blocks;
if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
// Dbprintf("Tmp %d -> Block %d", ind, ind2);
memcpy(Blocks[ind2], tmpBlocks[ind], 16);
Blocks[ind2][ALLOC] = 1;
num_blocks++;
if(num_blocks == max_blocks) goto end;
}
}
for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
if(ind2 > max_blocks)
ind2 = 0;
if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
// Dbprintf("Tmp %d -> Block %d", ind, ind2);
memcpy(Blocks[ind2], tmpBlocks[ind], 16);
Blocks[ind2][ALLOC] = 1;
num_blocks++;
if(num_blocks == max_blocks) goto end;
}
}
}
}
}
}
}
tries++;
if (BUTTON_PRESS()) return;
} while (num_blocks != max_blocks);
end:
Dbprintf("-----------------------------------------");
Dbprintf("Memory content:");
Dbprintf("-----------------------------------------");
for(i=0; i<max_blocks; i++) {
if(Blocks[i][ALLOC]==1)
Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
else
Dbprintf("<missing block %d>", i);
}
Dbprintf("-----------------------------------------");
return ;
}
//-----------------------------------
// EM4469 / EM4305 routines
//-----------------------------------
#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
#define FWD_CMD_WRITE 0xA
#define FWD_CMD_READ 0x9
#define FWD_CMD_DISABLE 0x5
uint8_t forwardLink_data[64]; //array of forwarded bits
uint8_t * forward_ptr; //ptr for forward message preparation
uint8_t fwd_bit_sz; //forwardlink bit counter
uint8_t * fwd_write_ptr; //forwardlink bit pointer
//====================================================================
// prepares command bits
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Cmd( uint8_t cmd ) {
//--------------------------------------------------------------------
*forward_ptr++ = 0; //start bit
*forward_ptr++ = 0; //second pause for 4050 code
*forward_ptr++ = cmd;
cmd >>= 1;
*forward_ptr++ = cmd;
cmd >>= 1;
*forward_ptr++ = cmd;
cmd >>= 1;
*forward_ptr++ = cmd;
return 6; //return number of emited bits
}
//====================================================================
// prepares address bits
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Addr( uint8_t addr ) {
//--------------------------------------------------------------------
register uint8_t line_parity;
uint8_t i;
line_parity = 0;
for(i=0;i<6;i++) {
*forward_ptr++ = addr;
line_parity ^= addr;
addr >>= 1;
}
*forward_ptr++ = (line_parity & 1);
return 7; //return number of emited bits
}
//====================================================================
// prepares data bits intreleaved with parity bits
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
//--------------------------------------------------------------------
register uint8_t line_parity;
register uint8_t column_parity;
register uint8_t i, j;
register uint16_t data;
data = data_low;
column_parity = 0;
for(i=0; i<4; i++) {
line_parity = 0;
for(j=0; j<8; j++) {
line_parity ^= data;
column_parity ^= (data & 1) << j;
*forward_ptr++ = data;
data >>= 1;
}
*forward_ptr++ = line_parity;
if(i == 1)
data = data_hi;
}
for(j=0; j<8; j++) {
*forward_ptr++ = column_parity;
column_parity >>= 1;
}
*forward_ptr = 0;
return 45; //return number of emited bits
}
//====================================================================
// Forward Link send function
// Requires: forwarLink_data filled with valid bits (1 bit per byte)
// fwd_bit_count set with number of bits to be sent
//====================================================================
void SendForward(uint8_t fwd_bit_count) {
fwd_write_ptr = forwardLink_data;
fwd_bit_sz = fwd_bit_count;
LED_D_ON();
//Field on
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
// And for the tag to fully power up
SpinDelay(150);
// force 1st mod pulse (start gap must be longer for 4305)
fwd_bit_sz--; //prepare next bit modulation
fwd_write_ptr++;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
SpinDelayUs(16*8); //16 cycles on (8us each)
// now start writting
while(fwd_bit_sz-- > 0) { //prepare next bit modulation
if(((*fwd_write_ptr++) & 1) == 1)
SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
else {
//These timings work for 4469/4269/4305 (with the 55*8 above)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
SpinDelayUs(23*8); //16-4 cycles off (8us each)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
SpinDelayUs(9*8); //16 cycles on (8us each)
}
}
}
void EM4xLogin(uint32_t Password) {
uint8_t fwd_bit_count;
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
SendForward(fwd_bit_count);
//Wait for command to complete
SpinDelay(20);
}
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
uint8_t fwd_bit_count;
uint8_t *dest = (uint8_t *)BigBuf;
int m=0, i=0;
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
fwd_bit_count += Prepare_Addr( Address );
m = sizeof(BigBuf);
// Clear destination buffer before sending the command
memset(dest, 128, m);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
SendForward(fwd_bit_count);
// Now do the acquisition
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
i++;
if (i >= m) break;
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}
void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
uint8_t fwd_bit_count;
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
fwd_bit_count += Prepare_Addr( Address );
fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
SendForward(fwd_bit_count);
//Wait for write to complete
SpinDelay(20);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}