proxmark3/armsrc/mifareutil.c
pwpiwi 6a1f2d82bb bugfixes iso14443a (hf 14a commands)
- buffers were too small to handle 256 byte frames
- parity bits were only handled for up to 32 byte frames
- trace format was inefficient
- removed parity calculation from decoders in iclass.c (parity not used on air anyway)
2014-12-16 07:41:07 +01:00

571 lines
16 KiB
C

//-----------------------------------------------------------------------------
// Merlok, May 2011, 2012
// Many authors, whom made it possible
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Work with mifare cards.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "iso14443crc.h"
#include "iso14443a.h"
#include "crapto1.h"
#include "mifareutil.h"
int MF_DBGLEVEL = MF_DBG_ALL;
// memory management
uint8_t* get_bigbufptr_recvrespbuf(void) {
return (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
}
uint8_t* get_bigbufptr_recvcmdbuf(void) {
return (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
}
uint8_t* get_bigbufptr_emlcardmem(void) {
return (((uint8_t *)BigBuf) + CARD_MEMORY_OFFSET);
}
// crypto1 helpers
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len){
uint8_t bt = 0;
int i;
if (len != 1) {
for (i = 0; i < len; i++)
data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i];
} else {
bt = 0;
for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data[0], i)) << i;
data[0] = bt;
}
return;
}
void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) {
uint8_t bt = 0;
int i;
par[0] = 0;
for (i = 0; i < len; i++) {
bt = data[i];
data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i];
if((i&0x0007) == 0) par[i>>3] = 0;
par[i>>3] |= (((filter(pcs->odd) ^ oddparity(bt)) & 0x01)<<(7-(i&0x0007)));
}
return;
}
uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {
uint8_t bt = 0;
int i;
for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, i)) << i;
return bt;
}
// send commands
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)
{
return mifare_sendcmd_shortex(pcs, crypted, cmd, data, answer, answer_parity, timing);
}
int mifare_sendcmd_short_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)
{
uint8_t dcmd[8];//, ecmd[4];
//uint32_t par=0;
dcmd[0] = cmd;
dcmd[1] = data[0];
dcmd[2] = data[1];
dcmd[3] = data[2];
dcmd[4] = data[3];
dcmd[5] = data[4];
AppendCrc14443a(dcmd, 6);
//Dbprintf("Data command: %02x", dcmd[0]);
//Dbprintf("Data R: %02x %02x %02x %02x %02x %02x %02x", dcmd[1],dcmd[2],dcmd[3],dcmd[4],dcmd[5],dcmd[6],dcmd[7]);
//memcpy(ecmd, dcmd, sizeof(dcmd));
ReaderTransmit(dcmd, sizeof(dcmd), NULL);
int len = ReaderReceive(answer, answer_parity);
if(!len)
{
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout.");
return 2;
}
return len;
}
int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t *answer, uint8_t *answer_parity, uint32_t *timing)
{
uint8_t dcmd[4], ecmd[4];
uint16_t pos, res;
uint8_t par[1]; // 1 Byte parity is enough here
dcmd[0] = cmd;
dcmd[1] = data;
AppendCrc14443a(dcmd, 2);
memcpy(ecmd, dcmd, sizeof(dcmd));
if (crypted) {
par[0] = 0;
for (pos = 0; pos < 4; pos++)
{
ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos];
par[0] |= (((filter(pcs->odd) ^ oddparity(dcmd[pos])) & 0x01) << (7-pos));
}
ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing);
} else {
ReaderTransmit(dcmd, sizeof(dcmd), timing);
}
int len = ReaderReceive(answer, par);
if (answer_parity) *answer_parity = par[0];
if (crypted == CRYPT_ALL) {
if (len == 1) {
res = 0;
for (pos = 0; pos < 4; pos++)
res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], pos)) << pos;
answer[0] = res;
} else {
for (pos = 0; pos < len; pos++)
{
answer[pos] = crypto1_byte(pcs, 0x00, 0) ^ answer[pos];
}
}
}
return len;
}
// mifare commands
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested)
{
return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL);
}
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing)
{
// variables
int len;
uint32_t pos;
uint8_t tmp4[4];
uint8_t par[1] = {0};
byte_t nr[4];
uint32_t nt, ntpp; // Supplied tag nonce
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t *receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// Transmit MIFARE_CLASSIC_AUTH
len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing);
if (MF_DBGLEVEL >= 4) Dbprintf("rand tag nonce len: %x", len);
if (len != 4) return 1;
// "random" reader nonce:
nr[0] = 0x55;
nr[1] = 0x41;
nr[2] = 0x49;
nr[3] = 0x92;
// Save the tag nonce (nt)
nt = bytes_to_num(receivedAnswer, 4);
// ----------------------------- crypto1 create
if (isNested)
crypto1_destroy(pcs);
// Init cipher with key
crypto1_create(pcs, ui64Key);
if (isNested == AUTH_NESTED) {
// decrypt nt with help of new key
nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt;
} else {
// Load (plain) uid^nt into the cipher
crypto1_word(pcs, nt ^ uid, 0);
}
// some statistic
if (!ntptr && (MF_DBGLEVEL >= 3))
Dbprintf("auth uid: %08x nt: %08x", uid, nt);
// save Nt
if (ntptr)
*ntptr = nt;
// Generate (encrypted) nr+parity by loading it into the cipher (Nr)
par[0] = 0;
for (pos = 0; pos < 4; pos++)
{
mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos];
par[0] |= (((filter(pcs->odd) ^ oddparity(nr[pos])) & 0x01) << (7-pos));
}
// Skip 32 bits in pseudo random generator
nt = prng_successor(nt,32);
// ar+parity
for (pos = 4; pos < 8; pos++)
{
nt = prng_successor(nt,8);
mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff);
par[0] |= (((filter(pcs->odd) ^ oddparity(nt & 0xff)) & 0x01) << (7-pos));
}
// Transmit reader nonce and reader answer
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
// Receive 4 byte tag answer
len = ReaderReceive(receivedAnswer, receivedAnswerPar);
if (!len)
{
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Card timeout.");
return 2;
}
memcpy(tmp4, receivedAnswer, 4);
ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0);
if (ntpp != bytes_to_num(tmp4, 4)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Authentication failed. Error card response.");
return 3;
}
return 0;
}
int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{
// variables
int len;
uint8_t bt[2];
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t* receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_READBLOCK
len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if (len == 1) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1;
}
if (len != 18) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: card timeout. len: %x", len);
return 2;
}
memcpy(bt, receivedAnswer + 16, 2);
AppendCrc14443a(receivedAnswer, 16);
if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd CRC response error.");
return 3;
}
memcpy(blockData, receivedAnswer, 16);
return 0;
}
int mifare_ultra_readblock(uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{
// variables
uint16_t len;
uint8_t bt[2];
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t* receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_READBLOCK
len = mifare_sendcmd_short(NULL, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if (len == 1) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1;
}
if (len != 18) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: card timeout. len: %x", len);
return 2;
}
memcpy(bt, receivedAnswer + 16, 2);
AppendCrc14443a(receivedAnswer, 16);
if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd CRC response error.");
return 3;
}
memcpy(blockData, receivedAnswer, 14);
return 0;
}
int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{
// variables
int len, i;
uint32_t pos;
uint8_t par[3] = {0}; // enough for 18 Bytes to send
byte_t res;
uint8_t d_block[18], d_block_enc[18];
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t* receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_WRITEBLOCK
len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1;
}
memcpy(d_block, blockData, 16);
AppendCrc14443a(d_block, 16);
// crypto
for (pos = 0; pos < 18; pos++)
{
d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos];
par[pos>>3] |= (((filter(pcs->odd) ^ oddparity(d_block[pos])) & 0x01) << (7 - (pos&0x0007)));
}
ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL);
// Receive the response
len = ReaderReceive(receivedAnswer, receivedAnswerPar);
res = 0;
for (i = 0; i < 4; i++)
res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], i)) << i;
if ((len != 1) || (res != 0x0A)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd send data2 Error: %02x", res);
return 2;
}
return 0;
}
int mifare_ultra_writeblock(uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{
// variables
uint16_t len;
uint8_t par[3] = {0}; // enough for 18 parity bits
uint8_t d_block[18];
uint8_t* receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t* receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_WRITEBLOCK
len = mifare_sendcmd_short(NULL, true, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Addr Error: %02x", receivedAnswer[0]);
return 1;
}
memset(d_block,'\0',18);
memcpy(d_block, blockData, 16);
AppendCrc14443a(d_block, 16);
ReaderTransmitPar(d_block, sizeof(d_block), par, NULL);
// Receive the response
len = ReaderReceive(receivedAnswer, receivedAnswerPar);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Data Error: %02x %d", receivedAnswer[0],len);
return 2;
}
return 0;
}
int mifare_ultra_special_writeblock(uint32_t uid, uint8_t blockNo, uint8_t *blockData)
{
uint16_t len;
uint8_t d_block[8];
uint8_t *receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
// command MIFARE_CLASSIC_WRITEBLOCK
memset(d_block,'\0',8);
d_block[0]= blockNo;
memcpy(d_block+1,blockData,4);
AppendCrc14443a(d_block, 6);
//i know the data send here is correct
len = mifare_sendcmd_short_special(NULL, 1, 0xA2, d_block, receivedAnswer, receivedAnswerPar, NULL);
if (receivedAnswer[0] != 0x0A) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Send Error: %02x %d", receivedAnswer[0],len);
return 1;
}
return 0;
}
int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid)
{
// variables
uint16_t len;
// Mifare HALT
uint8_t *receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) {
if (MF_DBGLEVEL >= 1) Dbprintf("halt error. response len: %x", len);
return 1;
}
return 0;
}
int mifare_ultra_halt(uint32_t uid)
{
uint16_t len;
// Mifare HALT
uint8_t *receivedAnswer = get_bigbufptr_recvrespbuf();
uint8_t *receivedAnswerPar = receivedAnswer + MAX_FRAME_SIZE;
len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);
if (len != 0) {
if (MF_DBGLEVEL >= 1) Dbprintf("halt error. response len: %x", len);
return 1;
}
return 0;
}
// Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards),
// plus evtl. 8 sectors with 16 blocks each (4k cards)
uint8_t NumBlocksPerSector(uint8_t sectorNo)
{
if (sectorNo < 32)
return 4;
else
return 16;
}
uint8_t FirstBlockOfSector(uint8_t sectorNo)
{
if (sectorNo < 32)
return sectorNo * 4;
else
return 32*4 + (sectorNo - 32) * 16;
}
// work with emulator memory
void emlSetMem(uint8_t *data, int blockNum, int blocksCount) {
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memcpy(emCARD + blockNum * 16, data, blocksCount * 16);
}
void emlGetMem(uint8_t *data, int blockNum, int blocksCount) {
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memcpy(data, emCARD + blockNum * 16, blocksCount * 16);
}
void emlGetMemBt(uint8_t *data, int bytePtr, int byteCount) {
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memcpy(data, emCARD + bytePtr, byteCount);
}
int emlCheckValBl(int blockNum) {
uint8_t* emCARD = get_bigbufptr_emlcardmem();
uint8_t* data = emCARD + blockNum * 16;
if ((data[0] != (data[4] ^ 0xff)) || (data[0] != data[8]) ||
(data[1] != (data[5] ^ 0xff)) || (data[1] != data[9]) ||
(data[2] != (data[6] ^ 0xff)) || (data[2] != data[10]) ||
(data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) ||
(data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) ||
(data[12] != (data[15] ^ 0xff))
)
return 1;
return 0;
}
int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
uint8_t* emCARD = get_bigbufptr_emlcardmem();
uint8_t* data = emCARD + blockNum * 16;
if (emlCheckValBl(blockNum)) {
return 1;
}
memcpy(blReg, data, 4);
*blBlock = data[12];
return 0;
}
int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) {
uint8_t* emCARD = get_bigbufptr_emlcardmem();
uint8_t* data = emCARD + blockNum * 16;
memcpy(data + 0, &blReg, 4);
memcpy(data + 8, &blReg, 4);
blReg = blReg ^ 0xffffffff;
memcpy(data + 4, &blReg, 4);
data[12] = blBlock;
data[13] = blBlock ^ 0xff;
data[14] = blBlock;
data[15] = blBlock ^ 0xff;
return 0;
}
uint64_t emlGetKey(int sectorNum, int keyType) {
uint8_t key[6];
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6);
return bytes_to_num(key, 6);
}
void emlClearMem(void) {
int b;
const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
const uint8_t uid[] = {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04};
uint8_t* emCARD = get_bigbufptr_emlcardmem();
memset(emCARD, 0, CARD_MEMORY_SIZE);
// fill sectors trailer data
for(b = 3; b < 256; b<127?(b+=4):(b+=16)) {
emlSetMem((uint8_t *)trailer, b , 1);
}
// uid
emlSetMem((uint8_t *)uid, 0, 1);
return;
}