proxmark3/armsrc/lfops.c
iceman1001 4ab2212346 style
2019-04-13 08:50:05 +02:00

2127 lines
68 KiB
C

//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Miscellaneous routines for low frequency tag operations.
// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
// Also routines for raw mode reading/simulating of LF waveform
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "hitag2.h"
#include "crc16.h"
#include "string.h"
#include "lfdemod.h"
#include "lfsampling.h"
#include "protocols.h"
#include "usb_cdc.h" // for usb_poll_validate_length
#include "common.h"
#include "flashmem.h" // persistence on mem
//#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
//#define WRITE_GAP 8*8 // 17*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
//#define WRITE_0 15*8 // 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
//#define WRITE_1 47*8 // 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
//#define READ_GAP 15*8
// VALUES TAKEN FROM EM4x function: SendForward
// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
// WRITE_GAP = 128; (16*8)
// WRITE_1 = 256 32*8; (32*8)
// These timings work for 4469/4269/4305 (with the 55*8 above)
// WRITE_0 = 23*8 , 9*8
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
// 1 Cycle = 8 microseconds(us) == 1 field clock
// new timer:
// = 1us = 1.5ticks
// 1fc = 8us = 12ticks
/*
Default LF T55xx config is set to:
startgap = 31*8
writegap = 17*8
write_0 = 15*8
write_1 = 47*8
read_gap = 15*8
*/
t55xx_config t_config = { 29 * 8, 17 * 8, 15 * 8, 47 * 8, 15 * 8 } ;
void printT55xxConfig(void) {
Dbprintf("LF T55XX config");
Dbprintf(" [a] startgap............%d*8 (%d)", t_config.start_gap / 8, t_config.start_gap);
Dbprintf(" [b] writegap............%d*8 (%d)", t_config.write_gap / 8, t_config.write_gap);
Dbprintf(" [c] write_0.............%d*8 (%d)", t_config.write_0 / 8, t_config.write_0);
Dbprintf(" [d] write_1.............%d*8 (%d)", t_config.write_1 / 8, t_config.write_1);
Dbprintf(" [e] readgap.............%d*8 (%d)", t_config.read_gap / 8, t_config.read_gap);
}
void setT55xxConfig(uint8_t arg0, t55xx_config *c) {
if (c->start_gap != 0) t_config.start_gap = c->start_gap;
if (c->write_gap != 0) t_config.write_gap = c->write_gap;
if (c->write_0 != 0) t_config.write_0 = c->write_0;
if (c->write_1 != 0) t_config.write_1 = c->write_1;
if (c->read_gap != 0) t_config.read_gap = c->read_gap;
printT55xxConfig();
#ifdef WITH_FLASH
// shall persist to flashmem
if (arg0 == 0) {
return;
}
if (!FlashInit()) {
return;
}
uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN);
Flash_CheckBusy(BUSY_TIMEOUT);
uint16_t res = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
if (res == 0) {
FlashStop();
BigBuf_free();
return;
}
memcpy(buf, &t_config, T55XX_CONFIG_LEN);
Flash_CheckBusy(BUSY_TIMEOUT);
Flash_WriteEnable();
Flash_Erase4k(3, 0xD);
res = Flash_Write(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
if (res == T55XX_CONFIG_LEN && MF_DBGLEVEL > 1) {
DbpString("T55XX Config save success");
}
BigBuf_free();
#endif
}
t55xx_config *getT55xxConfig(void) {
return &t_config;
}
void loadT55xxConfig(void) {
#ifdef WITH_FLASH
if (!FlashInit()) {
return;
}
uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN);
Flash_CheckBusy(BUSY_TIMEOUT);
uint16_t isok = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
FlashStop();
// verify read mem is actual data.
uint8_t cntA = T55XX_CONFIG_LEN, cntB = T55XX_CONFIG_LEN;
for (int i = 0; i < T55XX_CONFIG_LEN; i++) {
if (buf[i] == 0xFF) cntA--;
if (buf[i] == 0x00) cntB--;
}
if (!cntA || !cntB) {
BigBuf_free();
return;
}
memcpy((uint8_t *)&t_config, buf, T55XX_CONFIG_LEN);
if (isok == T55XX_CONFIG_LEN) {
if (MF_DBGLEVEL > 1) DbpString("T55XX Config load success");
}
#endif
}
/**
* Function to do a modulation and then get samples.
* @param delay_off
* @param period_0
* @param period_1
* @param command (in binary char array)
*/
void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) {
// start timer
StartTicks();
// use lf config settings
sample_config *sc = getSamplingConfig();
// Make sure the tag is reset
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
WaitMS(500);
// clear read buffer
BigBuf_Clear_keep_EM();
LFSetupFPGAForADC(sc->divisor, true);
// little more time for the tag to fully power up
WaitMS(200);
// if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
bool bitbang = delay_off == 0;
// now modulate the reader field
if (bitbang) {
// HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
uint8_t hack_cnt = 7;
if (period_0 < hack_cnt || period_1 < hack_cnt) {
DbpString("[!] Warning periods cannot be less than 7us in bit bang mode");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
return;
}
// hack2 needed--- it appears to take about 8-16us to turn the antenna back on
// leading to ~ 1 to 2 125khz samples extra in every off period
// so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
// but is this time different for every antenna or other hw builds??? more testing needed
// prime cmd_len to save time comparing strings while modulating
int cmd_len = 0;
while (command[cmd_len] != '\0' && command[cmd_len] != ' ')
cmd_len++;
int counter = 0;
bool off = false;
for (counter = 0; counter < cmd_len; counter++) {
// if cmd = 0 then turn field off
if (command[counter] == '0') {
// if field already off leave alone (affects timing otherwise)
if (off == false) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
off = true;
}
// note we appear to take about 7us to switch over (or run the if statements/loop...)
WaitUS(period_0 - hack_cnt);
// else if cmd = 1 then turn field on
} else {
// if field already on leave alone (affects timing otherwise)
if (off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
off = false;
}
// note we appear to take about 7us to switch over (or run the if statements/loop...)
WaitUS(period_1 - hack_cnt);
}
}
} else { // old mode of cmd read using delay as off period
while (*command != '\0' && *command != ' ') {
LED_D_ON();
if (*(command++) == '0')
TurnReadLFOn(period_0);
else
TurnReadLFOn(period_1);
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
WaitUS(delay_off);
}
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
DoAcquisition_config(false, 0);
// Turn off antenna
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// tell client we are done
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
}
/* blank r/w tag data stream
...0000000000000000 01111111
1010101010101010101010101010101010101010101010101010101010101010
0011010010100001
01111111
101010101010101[0]000...
[5555fe852c5555555555555555fe0000]
*/
void ReadTItag(void) {
StartTicks();
// some hardcoded initial params
// when we read a TI tag we sample the zerocross line at 2Mhz
// TI tags modulate a 1 as 16 cycles of 123.2Khz
// TI tags modulate a 0 as 16 cycles of 134.2Khz
#define FSAMPLE 2000000
#define FREQLO 123200
#define FREQHI 134200
signed char *dest = (signed char *)BigBuf_get_addr();
uint16_t n = BigBuf_max_traceLen();
// 128 bit shift register [shift3:shift2:shift1:shift0]
uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
int i, cycles = 0, samples = 0;
// how many sample points fit in 16 cycles of each frequency
uint32_t sampleslo = (FSAMPLE << 4) / FREQLO, sampleshi = (FSAMPLE << 4) / FREQHI;
// when to tell if we're close enough to one freq or another
uint32_t threshold = (sampleslo - sampleshi + 1) >> 1;
// TI tags charge at 134.2Khz
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// connects to SSP_DIN and the SSP_DOUT logic level controls
// whether we're modulating the antenna (high)
// or listening to the antenna (low)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
// get TI tag data into the buffer
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
for (i = 0; i < n - 1; i++) {
// count cycles by looking for lo to hi zero crossings
if ((dest[i] < 0) && (dest[i + 1] > 0)) {
cycles++;
// after 16 cycles, measure the frequency
if (cycles > 15) {
cycles = 0;
samples = i - samples; // number of samples in these 16 cycles
// TI bits are coming to us lsb first so shift them
// right through our 128 bit right shift register
shift0 = (shift0 >> 1) | (shift1 << 31);
shift1 = (shift1 >> 1) | (shift2 << 31);
shift2 = (shift2 >> 1) | (shift3 << 31);
shift3 >>= 1;
// check if the cycles fall close to the number
// expected for either the low or high frequency
if ((samples > (sampleslo - threshold)) && (samples < (sampleslo + threshold))) {
// low frequency represents a 1
shift3 |= (1u << 31);
} else if ((samples > (sampleshi - threshold)) && (samples < (sampleshi + threshold))) {
// high frequency represents a 0
} else {
// probably detected a gay waveform or noise
// use this as gaydar or discard shift register and start again
shift3 = shift2 = shift1 = shift0 = 0;
}
samples = i;
// for each bit we receive, test if we've detected a valid tag
// if we see 17 zeroes followed by 6 ones, we might have a tag
// remember the bits are backwards
if (((shift0 & 0x7fffff) == 0x7e0000)) {
// if start and end bytes match, we have a tag so break out of the loop
if (((shift0 >> 16) & 0xff) == ((shift3 >> 8) & 0xff)) {
cycles = 0xF0B; //use this as a flag (ugly but whatever)
break;
}
}
}
}
}
// if flag is set we have a tag
if (cycles != 0xF0B) {
DbpString("Info: No valid tag detected.");
} else {
// put 64 bit data into shift1 and shift0
shift0 = (shift0 >> 24) | (shift1 << 8);
shift1 = (shift1 >> 24) | (shift2 << 8);
// align 16 bit crc into lower half of shift2
shift2 = ((shift2 >> 24) | (shift3 << 8)) & 0x0ffff;
// if r/w tag, check ident match
if (shift3 & (1 << 15)) {
DbpString("Info: TI tag is rewriteable");
// only 15 bits compare, last bit of ident is not valid
if (((shift3 >> 16) ^ shift0) & 0x7fff) {
DbpString("Error: Ident mismatch!");
} else {
DbpString("Info: TI tag ident is valid");
}
} else {
DbpString("Info: TI tag is readonly");
}
// WARNING the order of the bytes in which we calc crc below needs checking
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
// bytes in reverse or something
// calculate CRC
uint32_t crc = 0;
crc = update_crc16(crc, (shift0) & 0xff);
crc = update_crc16(crc, (shift0 >> 8) & 0xff);
crc = update_crc16(crc, (shift0 >> 16) & 0xff);
crc = update_crc16(crc, (shift0 >> 24) & 0xff);
crc = update_crc16(crc, (shift1) & 0xff);
crc = update_crc16(crc, (shift1 >> 8) & 0xff);
crc = update_crc16(crc, (shift1 >> 16) & 0xff);
crc = update_crc16(crc, (shift1 >> 24) & 0xff);
Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
if (crc != (shift2 & 0xffff)) {
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
} else {
DbpString("Info: CRC is good");
}
}
StopTicks();
}
void WriteTIbyte(uint8_t b) {
int i = 0;
// modulate 8 bits out to the antenna
for (i = 0; i < 8; i++) {
if (b & (1 << i)) {
// stop modulating antenna 1ms
LOW(GPIO_SSC_DOUT);
WaitUS(1000);
// modulate antenna 1ms
HIGH(GPIO_SSC_DOUT);
WaitUS(1000);
} else {
// stop modulating antenna 0.3ms
LOW(GPIO_SSC_DOUT);
WaitUS(300);
// modulate antenna 1.7ms
HIGH(GPIO_SSC_DOUT);
WaitUS(1700);
}
}
}
void AcquireTiType(void) {
int i, j, n;
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
#define TIBUFLEN 1250
// clear buffer
uint32_t *buf = (uint32_t *)BigBuf_get_addr();
//clear buffer now so it does not interfere with timing later
BigBuf_Clear_ext(false);
// Set up the synchronous serial port
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
// steal this pin from the SSP and use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
// 48/2 = 24 MHz clock must be divided by 12
AT91C_BASE_SSC->SSC_CMR = 12;
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
// Transmit Clock Mode Register
AT91C_BASE_SSC->SSC_TCMR = 0;
// Transmit Frame Mode Register
AT91C_BASE_SSC->SSC_TFMR = 0;
// iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
LED_D_ON();
// modulate antenna
HIGH(GPIO_SSC_DOUT);
// Charge TI tag for 50ms.
WaitMS(50);
// stop modulating antenna and listen
LOW(GPIO_SSC_DOUT);
LED_D_OFF();
i = 0;
for (;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
i++;
if (i >= TIBUFLEN) break;
}
WDT_HIT();
}
// return stolen pin to SSP
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
char *dest = (char *)BigBuf_get_addr();
n = TIBUFLEN * 32;
// unpack buffer
for (i = TIBUFLEN - 1; i >= 0; i--) {
for (j = 0; j < 32; j++) {
if (buf[i] & (1u << j)) {
dest[--n] = 1;
} else {
dest[--n] = -1;
}
}
}
// reset SSC
FpgaSetupSsc();
}
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if crc provided, it will be written with the data verbatim (even if bogus)
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) {
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if (crc == 0) {
crc = update_crc16(crc, (idlo) & 0xff);
crc = update_crc16(crc, (idlo >> 8) & 0xff);
crc = update_crc16(crc, (idlo >> 16) & 0xff);
crc = update_crc16(crc, (idlo >> 24) & 0xff);
crc = update_crc16(crc, (idhi) & 0xff);
crc = update_crc16(crc, (idhi >> 8) & 0xff);
crc = update_crc16(crc, (idhi >> 16) & 0xff);
crc = update_crc16(crc, (idhi >> 24) & 0xff);
}
Dbprintf("Writing to tag: %x%08x, crc=%x", idhi, idlo, crc);
// TI tags charge at 134.2Khz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// connects to SSP_DIN and the SSP_DOUT logic level controls
// whether we're modulating the antenna (high)
// or listening to the antenna (low)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
StartTicks();
LED_A_ON();
// steal this pin from the SSP and use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
// writing algorithm:
// a high bit consists of a field off for 1ms and field on for 1ms
// a low bit consists of a field off for 0.3ms and field on for 1.7ms
// initiate a charge time of 50ms (field on) then immediately start writing bits
// start by writing 0xBB (keyword) and 0xEB (password)
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
// finally end with 0x0300 (write frame)
// all data is sent lsb first
// finish with 50ms programming time
// modulate antenna
HIGH(GPIO_SSC_DOUT);
WaitMS(50); // charge time
WriteTIbyte(0xbb); // keyword
WriteTIbyte(0xeb); // password
WriteTIbyte((idlo) & 0xff);
WriteTIbyte((idlo >> 8) & 0xff);
WriteTIbyte((idlo >> 16) & 0xff);
WriteTIbyte((idlo >> 24) & 0xff);
WriteTIbyte((idhi) & 0xff);
WriteTIbyte((idhi >> 8) & 0xff);
WriteTIbyte((idhi >> 16) & 0xff);
WriteTIbyte((idhi >> 24) & 0xff); // data hi to lo
WriteTIbyte((crc) & 0xff); // crc lo
WriteTIbyte((crc >> 8) & 0xff); // crc hi
WriteTIbyte(0x00); // write frame lo
WriteTIbyte(0x03); // write frame hi
HIGH(GPIO_SSC_DOUT);
WaitMS(50); // programming time
LED_A_OFF();
// get TI tag data into the buffer
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Now use `lf ti read` to check");
StopTicks();
}
// note: a call to FpgaDownloadAndGo(FPGA_BITSTREAM_LF) must be done before, but
// this may destroy the bigbuf so be sure this is called before calling SimulateTagLowFrequencyEx
void SimulateTagLowFrequencyEx(int period, int gap, int ledcontrol, int numcycles) {
// start us timer
StartTicks();
//FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
WaitMS(20);
int i = 0, x = 0;
uint8_t *buf = BigBuf_get_addr();
// set frequency, get values from 'lf config' command
sample_config *sc = getSamplingConfig();
if ((sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255))
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
else if (sc->divisor == 0)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
else
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
uint8_t check = 1;
for (;;) {
if (numcycles > -1) {
if (x != numcycles) {
++x;
} else {
// exit without turning of field
return;
}
}
if (ledcontrol) LED_D_ON();
// wait until SSC_CLK goes HIGH
// used as a simple detection of a reader field?
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
WDT_HIT();
if (!check) {
if (usb_poll_validate_length() || BUTTON_PRESS())
goto OUT;
}
++check;
}
if (buf[i])
OPEN_COIL();
else
SHORT_COIL();
//wait until SSC_CLK goes LOW
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
WDT_HIT();
if (!check) {
if (usb_poll_validate_length() || BUTTON_PRESS())
goto OUT;
}
++check;
}
i++;
if (i == period) {
i = 0;
if (gap) {
SHORT_COIL();
WaitUS(gap);
}
}
if (ledcontrol) LED_D_OFF();
}
OUT:
StopTicks();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
}
void SimulateTagLowFrequency(int period, int gap, int ledcontrol) {
SimulateTagLowFrequencyEx(period, gap, ledcontrol, -1);
}
#define DEBUG_FRAME_CONTENTS 1
void SimulateTagLowFrequencyBidir(int divisor, int max_bitlen) {
}
// compose fc/5 fc/8 waveform (FSK1)
// compose fc/8 fc/10 waveform (FSK2)
// also manchester,
static void fc(int c, int *n) {
uint8_t *dest = BigBuf_get_addr();
int idx;
// for when we want an fc8 pattern every 4 logical bits
if (c == 0) {
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
}
// an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
if (c == 8) {
for (idx = 0; idx < 6; idx++) {
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
}
}
// an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
if (c == 10) {
for (idx = 0; idx < 5; idx++) {
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 1;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
dest[((*n)++)] = 0;
}
}
}
// special start of frame marker containing invalid bit sequences
// this one is focused on HID, with manchester encoding.
static void fcSTT(int *n) {
fc(8, n);
fc(8, n); // invalid
fc(8, n);
fc(10, n); // logical 0
fc(10, n);
fc(10, n); // invalid
fc(8, n);
fc(10, n); // logical 0
}
// compose fc/X fc/Y waveform (FSKx)
static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) {
uint8_t *dest = BigBuf_get_addr();
uint8_t halfFC = fc >> 1;
uint8_t wavesPerClock = clock / fc;
uint8_t mod = clock % fc; //modifier
// loop through clock - step field clock
for (uint8_t idx = 0; idx < wavesPerClock; idx++) {
// put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
memset(dest + (*n), 0, fc - halfFC); //in case of odd number use extra here
memset(dest + (*n) + (fc - halfFC), 1, halfFC);
*n += fc;
}
if (mod > 0) {
uint8_t modAdj = fc / mod; //how often to apply modifier
bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk = true;
(*modCnt)++;
if (modAdjOk) { //fsk2
if ((*modCnt % modAdj) == 0) { //if 4th 8 length wave in a rf/50 add extra 8 length wave
memset(dest + (*n), 0, fc - halfFC);
memset(dest + (*n) + (fc - halfFC), 1, halfFC);
*n += fc;
}
}
if (!modAdjOk) { //fsk1
memset(dest + (*n), 0, mod - (mod >> 1));
memset(dest + (*n) + (mod - (mod >> 1)), 1, mod >> 1);
*n += mod;
}
}
}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
void CmdHIDsimTAGEx(uint32_t hi, uint32_t lo, int ledcontrol, int numcycles) {
if (hi > 0xFFF) {
DbpString("[!] tags can only have 44 bits. - USE lf simfsk for larger tags");
return;
}
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
set_tracing(false);
int n = 0, i = 0;
/*
HID tag bitstream format
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
A 1 bit is represented as 6 fc8 and 5 fc10 patterns (manchester 10) during 2 clock periods. (1bit = 1clock period)
A 0 bit is represented as 5 fc10 and 6 fc8 patterns (manchester 01)
A fc8 is inserted before every 4 bits
A special start of frame pattern is used consisting a0b0 where a and b are neither 0
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
FSK2a
bit 1 = fc10
bit 0 = fc8
*/
fc(0, &n);
// special start of frame marker containing invalid bit sequences
fcSTT(&n);
// manchester encode bits 43 to 32
for (i = 11; i >= 0; i--) {
if ((i % 4) == 3) fc(0, &n);
if ((hi >> i) & 1) {
fc(10, &n);
fc(8, &n); // low-high transition
} else {
fc(8, &n);
fc(10, &n); // high-low transition
}
}
// manchester encode bits 31 to 0
for (i = 31; i >= 0; i--) {
if ((i % 4) == 3) fc(0, &n);
if ((lo >> i) & 1) {
fc(10, &n);
fc(8, &n); // low-high transition
} else {
fc(8, &n);
fc(10, &n); // high-low transition
}
}
if (ledcontrol) LED_A_ON();
SimulateTagLowFrequencyEx(n, 0, ledcontrol, numcycles);
if (ledcontrol) LED_A_OFF();
}
void CmdHIDsimTAG(uint32_t hi, uint32_t lo, int ledcontrol) {
CmdHIDsimTAGEx(hi, lo, ledcontrol, -1);
DbpString("[!] simulation finished");
}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a FSK tag until the button is pressed
// arg1 contains fcHigh and fcLow, arg2 contains STT marker and clock
void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *bits, int ledcontrol) {
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(false);
int n = 0, i = 0;
uint8_t fcHigh = arg1 >> 8;
uint8_t fcLow = arg1 & 0xFF;
uint16_t modCnt = 0;
uint8_t clk = arg2 & 0xFF;
uint8_t stt = (arg2 >> 8) & 1;
if (stt) {
//int fsktype = ( fcHigh == 8 && fcLow == 5) ? 1 : 2;
//fcSTT(&n);
}
for (i = 0; i < size; i++) {
if (bits[i])
fcAll(fcLow, &n, clk, &modCnt);
else
fcAll(fcHigh, &n, clk, &modCnt);
}
WDT_HIT();
Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, STT: %d, n: %d", fcHigh, fcLow, clk, stt, n);
if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
if (ledcontrol) LED_A_OFF();
}
// compose ask waveform for one bit(ASK)
static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) {
uint8_t *dest = BigBuf_get_addr();
uint8_t halfClk = clock / 2;
// c = current bit 1 or 0
if (manchester == 1) {
memset(dest + (*n), c, halfClk);
memset(dest + (*n) + halfClk, c ^ 1, halfClk);
} else {
memset(dest + (*n), c, clock);
}
*n += clock;
}
static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) {
uint8_t *dest = BigBuf_get_addr();
uint8_t halfClk = clock / 2;
if (c) {
memset(dest + (*n), c ^ 1 ^ *phase, halfClk);
memset(dest + (*n) + halfClk, c ^ *phase, halfClk);
} else {
memset(dest + (*n), c ^ *phase, clock);
*phase ^= 1;
}
*n += clock;
}
static void stAskSimBit(int *n, uint8_t clock) {
uint8_t *dest = BigBuf_get_addr();
uint8_t halfClk = clock / 2;
//ST = .5 high .5 low 1.5 high .5 low 1 high
memset(dest + (*n), 1, halfClk);
memset(dest + (*n) + halfClk, 0, halfClk);
memset(dest + (*n) + clock, 1, clock + halfClk);
memset(dest + (*n) + clock * 2 + halfClk, 0, halfClk);
memset(dest + (*n) + clock * 3, 1, clock);
*n += clock * 4;
}
// args clock, ask/man or askraw, invert, transmission separator
void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *bits, int ledcontrol) {
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
set_tracing(false);
int n = 0, i = 0;
uint8_t clk = (arg1 >> 8) & 0xFF;
uint8_t encoding = arg1 & 0xFF;
uint8_t separator = arg2 & 1;
uint8_t invert = (arg2 >> 8) & 1;
if (encoding == 2) { //biphase
uint8_t phase = 0;
for (i = 0; i < size; i++) {
biphaseSimBit(bits[i]^invert, &n, clk, &phase);
}
if (phase == 1) { //run a second set inverted to keep phase in check
for (i = 0; i < size; i++) {
biphaseSimBit(bits[i]^invert, &n, clk, &phase);
}
}
} else { // ask/manchester || ask/raw
for (i = 0; i < size; i++) {
askSimBit(bits[i]^invert, &n, clk, encoding);
}
if (encoding == 0 && bits[0] == bits[size - 1]) { //run a second set inverted (for ask/raw || biphase phase)
for (i = 0; i < size; i++) {
askSimBit(bits[i]^invert ^ 1, &n, clk, encoding);
}
}
}
if (separator == 1 && encoding == 1)
stAskSimBit(&n, clk);
else if (separator == 1)
Dbprintf("sorry but separator option not yet available");
WDT_HIT();
Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d", clk, invert, encoding, separator, n);
if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
if (ledcontrol) LED_A_OFF();
}
//carrier can be 2,4 or 8
static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) {
uint8_t *dest = BigBuf_get_addr();
uint8_t halfWave = waveLen / 2;
//uint8_t idx;
int i = 0;
if (phaseChg) {
// write phase change
memset(dest + (*n), *curPhase ^ 1, halfWave);
memset(dest + (*n) + halfWave, *curPhase, halfWave);
*n += waveLen;
*curPhase ^= 1;
i += waveLen;
}
//write each normal clock wave for the clock duration
for (; i < clk; i += waveLen) {
memset(dest + (*n), *curPhase, halfWave);
memset(dest + (*n) + halfWave, *curPhase ^ 1, halfWave);
*n += waveLen;
}
}
// args clock, carrier, invert,
void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *bits, int ledcontrol) {
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
set_tracing(false);
int n = 0, i = 0;
uint8_t clk = arg1 >> 8;
uint8_t carrier = arg1 & 0xFF;
uint8_t invert = arg2 & 0xFF;
uint8_t curPhase = 0;
for (i = 0; i < size; i++) {
if (bits[i] == curPhase) {
pskSimBit(carrier, &n, clk, &curPhase, false);
} else {
pskSimBit(carrier, &n, clk, &curPhase, true);
}
}
WDT_HIT();
Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d", carrier, clk, invert, n);
if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
if (ledcontrol) LED_A_OFF();
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
uint8_t *dest = BigBuf_get_addr();
size_t size;
uint32_t hi2 = 0, hi = 0, lo = 0;
int dummyIdx = 0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
//clear read buffer
BigBuf_Clear_keep_EM();
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition_default(-1, true);
// FSK demodulator
size = 50 * 128 * 2; //big enough to catch 2 sequences of largest format
int idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
if (idx < 0) continue;
if (idx > 0 && lo > 0 && (size == 96 || size == 192)) {
// go over previously decoded manchester data and decode into usable tag ID
if (hi2 != 0) { //extra large HID tags 88/192 bits
Dbprintf("TAG ID: %x%08x%08x (%d)",
hi2,
hi,
lo,
(lo >> 1) & 0xFFFF
);
} else { //standard HID tags 44/96 bits
uint8_t bitlen = 0;
uint32_t fac = 0;
uint32_t cardnum = 0;
if (((hi >> 5) & 1) == 1) { //if bit 38 is set then < 37 bit format is used
uint32_t lo2 = 0;
lo2 = (((hi & 31) << 12) | (lo >> 20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while (lo2 > 1) { //find last bit set to 1 (format len bit)
lo2 >>= 1;
idx3++;
}
bitlen = idx3 + 19;
fac = 0;
cardnum = 0;
if (bitlen == 26) {
cardnum = (lo >> 1) & 0xFFFF;
fac = (lo >> 17) & 0xFF;
}
if (bitlen == 37) {
cardnum = (lo >> 1) & 0x7FFFF;
fac = ((hi & 0xF) << 12) | (lo >> 20);
}
if (bitlen == 34) {
cardnum = (lo >> 1) & 0xFFFF;
fac = ((hi & 1) << 15) | (lo >> 17);
}
if (bitlen == 35) {
cardnum = (lo >> 1) & 0xFFFFF;
fac = ((hi & 1) << 11) | (lo >> 21);
}
} else { //if bit 38 is not set then 37 bit format is used
bitlen = 37;
cardnum = (lo >> 1) & 0x7FFFF;
fac = ((hi & 0xF) << 12) | (lo >> 20);
}
Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
hi,
lo,
(lo >> 1) & 0xFFFF,
bitlen,
fac,
cardnum
);
}
if (findone) {
*high = hi;
*low = lo;
break;
}
// reset
}
hi2 = hi = lo = idx = 0;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdAWIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
uint8_t *dest = BigBuf_get_addr();
//big enough to catch 2 sequences of largest format
size_t size = 12800; //50 * 128 * 2;
int dummyIdx = 0;
BigBuf_Clear_keep_EM();
LFSetupFPGAForADC(95, true);
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition_default(-1, true);
// FSK demodulator
int idx = detectAWID(dest, &size, &dummyIdx);
if (idx <= 0 || size != 96) continue;
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
// -----------------------------------------------------------------------------
// 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
// premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
// |---26 bit---| |-----117----||-------------142-------------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
//get raw ID before removing parities
uint32_t rawLo = bytebits_to_byte(dest + idx + 64, 32);
uint32_t rawHi = bytebits_to_byte(dest + idx + 32, 32);
uint32_t rawHi2 = bytebits_to_byte(dest + idx, 32);
size = removeParity(dest, idx + 8, 4, 1, 88);
if (size != 66) continue;
// ok valid card found!
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
// -----------------------------------------------------------------------------
// 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
// bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// |26 bit| |-117--| |-----142------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
uint32_t fac = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
uint32_t code2 = 0;
uint8_t fmtLen = bytebits_to_byte(dest, 8);
if (fmtLen == 26) {
fac = bytebits_to_byte(dest + 9, 8);
cardnum = bytebits_to_byte(dest + 17, 16);
code1 = bytebits_to_byte(dest + 8, fmtLen);
Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fac, cardnum, code1, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(dest + 8 + (fmtLen - 17), 16);
if (fmtLen > 32) {
code1 = bytebits_to_byte(dest + 8, fmtLen - 32);
code2 = bytebits_to_byte(dest + 8 + (fmtLen - 32), 32);
Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
} else {
code1 = bytebits_to_byte(dest + 8, fmtLen);
Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
}
}
if (findone) {
if (ledcontrol) LED_A_OFF();
*high = rawHi;
*low = rawLo;
break;
}
WDT_HIT();
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void CmdEM410xdemod(int findone, uint32_t *high, uint64_t *low, int ledcontrol) {
uint8_t *dest = BigBuf_get_addr();
size_t size, idx = 0;
int clk = 0, invert = 0, errCnt, maxErr = 20;
uint32_t hi = 0;
uint64_t lo = 0;
BigBuf_Clear_keep_EM();
LFSetupFPGAForADC(95, true);
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition_default(-1, true);
size = BigBuf_max_traceLen();
//askdemod and manchester decode
if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
WDT_HIT();
if (errCnt < 0) continue;
errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
if (errCnt == 1) {
if (size == 128) {
Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
hi,
(uint32_t)(lo >> 32),
(uint32_t)lo,
(uint32_t)(lo & 0xFFFF),
(uint32_t)((lo >> 16LL) & 0xFF),
(uint32_t)(lo & 0xFFFFFF));
} else {
Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
(uint32_t)(lo >> 32),
(uint32_t)lo,
(uint32_t)(lo & 0xFFFF),
(uint32_t)((lo >> 16LL) & 0xFF),
(uint32_t)(lo & 0xFFFFFF));
}
if (findone) {
if (ledcontrol) LED_A_OFF();
*high = hi;
*low = lo;
break;
}
}
WDT_HIT();
hi = lo = size = idx = 0;
clk = invert = 0;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void CmdIOdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
uint8_t *dest = BigBuf_get_addr();
int dummyIdx = 0;
uint32_t code = 0, code2 = 0;
uint8_t version = 0, facilitycode = 0, crc = 0;
uint16_t number = 0, calccrc = 0;
size_t size = BigBuf_max_traceLen();
BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition_default(-1, true);
//fskdemod and get start index
WDT_HIT();
int idx = detectIOProx(dest, &size, &dummyIdx);
if (idx < 0) continue;
//valid tag found
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
//
//Checksum:
//00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
//preamble F0 E0 01 03 B6 75
// How to calc checksum,
// http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
// F0 + E0 + 01 + 03 + B6 = 28A
// 28A & FF = 8A
// FF - 8A = 75
// Checksum: 0x75
//XSF(version)facility:codeone+codetwo
//Handle the data
// if(findone){ //only print binary if we are doing one
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
// Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
// }
code = bytebits_to_byte(dest + idx, 32);
code2 = bytebits_to_byte(dest + idx + 32, 32);
version = bytebits_to_byte(dest + idx + 27, 8); //14,4
facilitycode = bytebits_to_byte(dest + idx + 18, 8);
number = (bytebits_to_byte(dest + idx + 36, 8) << 8) | (bytebits_to_byte(dest + idx + 45, 8)); //36,9
crc = bytebits_to_byte(dest + idx + 54, 8);
for (uint8_t i = 1; i < 6; ++i)
calccrc += bytebits_to_byte(dest + idx + 9 * i, 8);
calccrc &= 0xff;
calccrc = 0xff - calccrc;
char *crcStr = (crc == calccrc) ? "ok" : "!crc";
Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]", version, facilitycode, number, code, code2, crc, crcStr);
// if we're only looking for one tag
if (findone) {
if (ledcontrol) LED_A_OFF();
*high = code;
*low = code2;
break;
}
code = code2 = 0;
version = facilitycode = 0;
number = 0;
WDT_HIT();
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
/*------------------------------
* T5555/T5557/T5567/T5577 routines
*------------------------------
* NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
*
* Relevant communication times in microsecond
* To compensate antenna falling times shorten the write times
* and enlarge the gap ones.
* Q5 tags seems to have issues when these values changes.
*/
void TurnReadLFOn(uint32_t delay) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// measure antenna strength.
//int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
WaitUS(delay);
}
void TurnReadLF_off(uint32_t delay) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
WaitUS(delay);
}
// Write one bit to card
void T55xxWriteBit(int bit) {
if (!bit)
TurnReadLFOn(t_config.write_0);
else
TurnReadLFOn(t_config.write_1);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
WaitUS(t_config.write_gap);
}
// Send T5577 reset command then read stream (see if we can identify the start of the stream)
void T55xxResetRead(void) {
LED_A_ON();
//clear buffer now so it does not interfere with timing later
BigBuf_Clear_keep_EM();
// Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
// make sure tag is fully powered up...
WaitMS(4);
// Trigger T55x7 in mode.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
WaitUS(t_config.start_gap);
// reset tag - op code 00
T55xxWriteBit(0);
T55xxWriteBit(0);
TurnReadLFOn(t_config.read_gap);
// Acquisition
DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
// Turn the field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
LED_A_OFF();
}
// Write one card block in page 0, no lock
void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
LED_A_ON();
bool PwdMode = arg & 0x1;
uint8_t Page = (arg & 0x2) >> 1;
bool testMode = arg & 0x4;
uint32_t i = 0;
// Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
// make sure tag is fully powered up...
WaitMS(4);
// Trigger T55x7 in mode.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
WaitUS(t_config.start_gap);
if (testMode) Dbprintf("TestMODE");
// Std Opcode 10
T55xxWriteBit(testMode ? 0 : 1);
T55xxWriteBit(testMode ? 1 : Page); //Page 0
if (PwdMode) {
// Send Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
}
// Send Lock bit
T55xxWriteBit(0);
// Send Data
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Data & i);
// Send Block number
for (i = 0x04; i != 0; i >>= 1)
T55xxWriteBit(Block & i);
// Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
// so wait a little more)
// "there is a clock delay before programming"
// - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
// so we should wait 1 clock + 5.6ms then read response?
// but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
if (testMode) {
//TESTMODE TIMING TESTS:
// <566us does nothing
// 566-568 switches between wiping to 0s and doing nothing
// 5184 wipes and allows 1 block to be programmed.
// indefinite power on wipes and then programs all blocks with bitshifted data sent.
TurnReadLFOn(5184);
} else {
TurnReadLFOn(20 * 1000);
//could attempt to do a read to confirm write took
// as the tag should repeat back the new block
// until it is reset, but to confirm it we would
// need to know the current block 0 config mode for
// modulation clock an other details to demod the response...
// response should be (for t55x7) a 0 bit then (ST if on)
// block data written in on repeat until reset.
//DoPartialAcquisition(20, true, 12000);
}
// turn field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_A_OFF();
}
// Write one card block in page 0, no lock
void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
T55xxWriteBlockExt(Data, Block, Pwd, arg);
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
}
// Read one card block in page [page]
void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
LED_A_ON();
bool PwdMode = arg0 & 0x1;
uint8_t Page = (arg0 & 0x2) >> 1;
bool brute_mem = arg0 & 0x4;
uint32_t i;
// regular read mode
bool RegReadMode = (Block == 0xFF);
uint8_t start_wait = 4;
size_t samples = 12000;
if (brute_mem) {
start_wait = 0;
samples = 1024;
}
//clear buffer now so it does not interfere with timing later
BigBuf_Clear_keep_EM();
//make sure block is at max 7
Block &= 0x7;
// Set up FPGA, 125kHz to power up the tag
LFSetupFPGAForADC(95, true);
// make sure tag is fully powered up...
WaitMS(start_wait);
// Trigger T55x7 Direct Access Mode with start gap
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
WaitUS(t_config.start_gap);
// Opcode 1[page]
T55xxWriteBit(1);
T55xxWriteBit(Page); //Page 0
if (PwdMode) {
// Send Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
}
// Send a zero bit separation
T55xxWriteBit(0);
// Send Block number (if direct access mode)
if (!RegReadMode)
for (i = 0x04; i != 0; i >>= 1)
T55xxWriteBit(Block & i);
// Turn field on to read the response
// 137*8 seems to get to the start of data pretty well...
// but we want to go past the start and let the repeating data settle in...
TurnReadLFOn(150 * 8);
// Acquisition
// Now do the acquisition
DoPartialAcquisition(0, true, samples, 0);
// Turn the field off
if (!brute_mem) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
LED_A_OFF();
}
}
void T55xx_ChkPwds() {
DbpString("[+] T55XX Check pwds using flashmemory starting");
uint8_t ret = 0;
// First get baseline and setup LF mode.
// tends to mess up BigBuf
uint8_t *buf = BigBuf_get_addr();
uint32_t b1, baseline = 0;
// collect baseline for failed attempt
uint8_t x = 32;
while (x--) {
b1 = 0;
T55xxReadBlock(4, 1, 0);
for (uint16_t j = 0; j < 1024; ++j)
b1 += buf[j];
b1 *= b1;
b1 >>= 8;
baseline += b1;
}
baseline >>= 5;
Dbprintf("[=] Baseline determined [%u]", baseline);
uint8_t *pwds = BigBuf_get_EM_addr();
uint16_t pwdCount = 0;
uint32_t candidate = 0;
#ifdef WITH_FLASH
BigBuf_Clear_EM();
uint16_t isok = 0;
uint8_t counter[2] = {0x00, 0x00};
isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET, counter, sizeof(counter));
if (isok != sizeof(counter))
goto OUT;
pwdCount = counter[1] << 8 | counter[0];
if (pwdCount == 0 || pwdCount == 0xFFFF)
goto OUT;
isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET + 2, pwds, pwdCount * 4);
if (isok != pwdCount * 4)
goto OUT;
Dbprintf("[=] Password dictionary count %d ", pwdCount);
#endif
uint32_t pwd = 0, curr = 0, prev = 0;
for (uint16_t i = 0; i < pwdCount; ++i) {
if (BUTTON_PRESS() && !usb_poll_validate_length()) {
goto OUT;
}
pwd = bytes_to_num(pwds + i * 4, 4);
T55xxReadBlock(5, 0, pwd);
// calc mean of BigBuf 1024 samples.
uint32_t sum = 0;
for (uint16_t j = 0; j < 1024; ++j) {
sum += buf[j];
}
sum *= sum;
sum >>= 8;
int32_t tmp = (sum - baseline);
curr = ABS(tmp);
Dbprintf("[=] Pwd %08X | ABS %u", pwd, curr);
if (curr > prev) {
Dbprintf("[=] --> ABS %u Candidate %08X <--", curr, pwd);
candidate = pwd;
prev = curr;
}
}
if (candidate)
ret = 1;
OUT:
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK, ret, candidate, 0, 0, 0);
LEDsoff();
}
void T55xxWakeUp(uint32_t Pwd) {
LED_B_ON();
uint32_t i = 0;
// Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
// make sure tag is fully powered up...
WaitMS(4);
// Trigger T55x7 Direct Access Mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
WaitUS(t_config.start_gap);
// Opcode 10
T55xxWriteBit(1);
T55xxWriteBit(0); //Page 0
// Send Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
// Turn and leave field on to let the begin repeating transmission
TurnReadLFOn(20 * 1000);
}
/*-------------- Cloning routines -----------*/
void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
// write last block first and config block last (if included)
for (uint8_t i = numblocks + startblock; i > startblock; i--)
T55xxWriteBlockExt(blockdata[i - 1], i - 1, 0, 0);
}
// Copy HID id to card and setup block 0 config
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
uint32_t data[] = {0, 0, 0, 0, 0, 0, 0};
uint8_t last_block = 0;
if (longFMT) {
// Ensure no more than 84 bits supplied
if (hi2 > 0xFFFFF) {
DbpString("Tags can only have 84 bits.");
return;
}
// Build the 6 data blocks for supplied 84bit ID
last_block = 6;
// load preamble (1D) & long format identifier (9E manchester encoded)
data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
// load raw id from hi2, hi, lo to data blocks (manchester encoded)
data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
data[3] = manchesterEncode2Bytes(hi >> 16);
data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
data[5] = manchesterEncode2Bytes(lo >> 16);
data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
} else {
// Ensure no more than 44 bits supplied
if (hi > 0xFFF) {
DbpString("Tags can only have 44 bits.");
return;
}
// Build the 3 data blocks for supplied 44bit ID
last_block = 3;
// load preamble
data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
data[2] = manchesterEncode2Bytes(lo >> 16);
data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
}
// load chip config block
data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
//TODO add selection of chip for Q5 or T55x7
// data[0] = T5555_SET_BITRATE(50) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
WriteT55xx(data, 0, last_block + 1);
LED_D_OFF();
}
void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
//TODO add selection of chip for Q5 or T55x7
// data[0] = T5555_SET_BITRATE(64) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 config
WriteT55xx(data, 0, 3);
LED_D_OFF();
}
// Clone Indala 64-bit tag by UID to T55x7
void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
//Program the 2 data blocks for supplied 64bit UID
// and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
//TODO add selection of chip for Q5 or T55x7
// data[0] = T5555_SET_BITRATE(32 | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
WriteT55xx(data, 0, 3);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
// T5567WriteBlock(0x603E1042,0);
LED_D_OFF();
}
// Clone Indala 224-bit tag by UID to T55x7
void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
//Program the 7 data blocks for supplied 224bit UID
uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
// and the block 0 for Indala224 format
//Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
//TODO add selection of chip for Q5 or T55x7
// data[0] = T5555_SET_BITRATE(32 | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
WriteT55xx(data, 0, 8);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
// T5567WriteBlock(0x603E10E2,0);
LED_D_OFF();
}
// clone viking tag to T55xx
void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
// Program the data blocks for supplied ID and the block 0 config
WriteT55xx(data, 0, 3);
LED_D_OFF();
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
}
// Define 9bit header for EM410x tags
#define EM410X_HEADER 0x1FF
#define EM410X_ID_LENGTH 40
void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
int i;
uint64_t id = EM410X_HEADER;
uint64_t rev_id = 0; // reversed ID
int c_parity[4]; // column parity
int r_parity = 0; // row parity
uint32_t clock = 0;
// Reverse ID bits given as parameter (for simpler operations)
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
if (i < 32) {
rev_id = (rev_id << 1) | (id_lo & 1);
id_lo >>= 1;
} else {
rev_id = (rev_id << 1) | (id_hi & 1);
id_hi >>= 1;
}
}
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
int id_bit = rev_id & 1;
if (i % 4 == 0) {
// Don't write row parity bit at start of parsing
if (i)
id = (id << 1) | r_parity;
// Start counting parity for new row
r_parity = id_bit;
} else {
// Count row parity
r_parity ^= id_bit;
}
// First elements in column?
if (i < 4)
// Fill out first elements
c_parity[i] = id_bit;
else
// Count column parity
c_parity[i % 4] ^= id_bit;
// Insert ID bit
id = (id << 1) | id_bit;
rev_id >>= 1;
}
// Insert parity bit of last row
id = (id << 1) | r_parity;
// Fill out column parity at the end of tag
for (i = 0; i < 4; ++i)
id = (id << 1) | c_parity[i];
// Add stop bit
id <<= 1;
Dbprintf("Started writing %s tag ...", card ? "T55x7" : "T5555");
LED_D_ON();
// Write EM410x ID
uint32_t data[] = {0, (uint32_t)(id >> 32), (uint32_t)(id & 0xFFFFFFFF)};
clock = (card & 0xFF00) >> 8;
clock = (clock == 0) ? 64 : clock;
Dbprintf("Clock rate: %d", clock);
if (card & 0xFF) { //t55x7
clock = GetT55xxClockBit(clock);
if (clock == 0) {
Dbprintf("Invalid clock rate: %d", clock);
return;
}
data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
} else { //t5555 (Q5)
data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
}
WriteT55xx(data, 0, 3);
LED_D_OFF();
Dbprintf("Tag %s written with 0x%08x%08x\n",
card ? "T55x7" : "T5555",
(uint32_t)(id >> 32),
(uint32_t)id);
}
//-----------------------------------
// EM4469 / EM4305 routines
//-----------------------------------
// Below given command set.
// Commands are including the even parity, binary mirrored
#define FWD_CMD_LOGIN 0xC
#define FWD_CMD_WRITE 0xA
#define FWD_CMD_READ 0x9
#define FWD_CMD_DISABLE 0x5
uint8_t forwardLink_data[64]; //array of forwarded bits
uint8_t *forward_ptr; //ptr for forward message preparation
uint8_t fwd_bit_sz; //forwardlink bit counter
uint8_t *fwd_write_ptr; //forwardlink bit pointer
//====================================================================
// prepares command bits
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
// VALUES TAKEN FROM EM4x function: SendForward
// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
// WRITE_GAP = 128; (16*8)
// WRITE_1 = 256 32*8; (32*8)
// These timings work for 4469/4269/4305 (with the 55*8 above)
// WRITE_0 = 23*8 , 9*8
uint8_t Prepare_Cmd(uint8_t cmd) {
*forward_ptr++ = 0; //start bit
*forward_ptr++ = 0; //second pause for 4050 code
*forward_ptr++ = cmd;
cmd >>= 1;
*forward_ptr++ = cmd;
cmd >>= 1;
*forward_ptr++ = cmd;
cmd >>= 1;
*forward_ptr++ = cmd;
return 6; //return number of emited bits
}
//====================================================================
// prepares address bits
// see EM4469 spec
//====================================================================
uint8_t Prepare_Addr(uint8_t addr) {
register uint8_t line_parity;
uint8_t i;
line_parity = 0;
for (i = 0; i < 6; i++) {
*forward_ptr++ = addr;
line_parity ^= addr;
addr >>= 1;
}
*forward_ptr++ = (line_parity & 1);
return 7; //return number of emited bits
}
//====================================================================
// prepares data bits intreleaved with parity bits
// see EM4469 spec
//====================================================================
uint8_t Prepare_Data(uint16_t data_low, uint16_t data_hi) {
register uint8_t column_parity;
register uint8_t i, j;
register uint16_t data;
data = data_low;
column_parity = 0;
for (i = 0; i < 4; i++) {
register uint8_t line_parity = 0;
for (j = 0; j < 8; j++) {
line_parity ^= data;
column_parity ^= (data & 1) << j;
*forward_ptr++ = data;
data >>= 1;
}
*forward_ptr++ = line_parity;
if (i == 1)
data = data_hi;
}
for (j = 0; j < 8; j++) {
*forward_ptr++ = column_parity;
column_parity >>= 1;
}
*forward_ptr = 0;
return 45; //return number of emited bits
}
//====================================================================
// Forward Link send function
// Requires: forwarLink_data filled with valid bits (1 bit per byte)
// fwd_bit_count set with number of bits to be sent
//====================================================================
void SendForward(uint8_t fwd_bit_count) {
// iceman, 21.3us increments for the USclock verification.
// 55FC * 8us == 440us / 21.3 === 20.65 steps. could be too short. Go for 56FC instead
// 32FC * 8us == 256us / 21.3 == 12.018 steps. ok
// 16FC * 8us == 128us / 21.3 == 6.009 steps. ok
#ifndef EM_START_GAP
#define EM_START_GAP 55*8
#endif
fwd_write_ptr = forwardLink_data;
fwd_bit_sz = fwd_bit_count;
// Set up FPGA, 125kHz or 95 divisor
LFSetupFPGAForADC(95, true);
// force 1st mod pulse (start gap must be longer for 4305)
fwd_bit_sz--; //prepare next bit modulation
fwd_write_ptr++;
TurnReadLF_off(EM_START_GAP);
TurnReadLFOn(18 * 8);
// now start writting with bitbanging the antenna.
while (fwd_bit_sz-- > 0) { //prepare next bit modulation
if (((*fwd_write_ptr++) & 1) == 1) {
WaitUS(32 * 8);
} else {
TurnReadLF_off(23 * 8);
TurnReadLFOn(18 * 8);
}
}
}
void EM4xLogin(uint32_t pwd) {
uint8_t len;
forward_ptr = forwardLink_data;
len = Prepare_Cmd(FWD_CMD_LOGIN);
len += Prepare_Data(pwd & 0xFFFF, pwd >> 16);
SendForward(len);
//WaitUS(20); // no wait for login command.
// should receive
// 0000 1010 ok.
// 0000 0001 fail
}
void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd) {
LED_A_ON();
uint8_t len;
//clear buffer now so it does not interfere with timing later
BigBuf_Clear_ext(false);
StartTicks();
/* should we read answer from Logincommand?
*
* should receive
* 0000 1010 ok.
* 0000 0001 fail
**/
if (usepwd) EM4xLogin(pwd);
forward_ptr = forwardLink_data;
len = Prepare_Cmd(FWD_CMD_READ);
len += Prepare_Addr(addr);
SendForward(len);
WaitUS(400);
DoPartialAcquisition(20, true, 6000, 1000);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
LED_A_OFF();
}
void EM4xWriteWord(uint32_t flag, uint32_t data, uint32_t pwd) {
LED_A_ON();
bool usePwd = (flag & 0xF);
uint8_t addr = (flag >> 8) & 0xFF;
uint8_t len;
//clear buffer now so it does not interfere with timing later
BigBuf_Clear_ext(false);
StartTicks();
/* should we read answer from Logincommand?
*
* should receive
* 0000 1010 ok.
* 0000 0001 fail
**/
if (usePwd) EM4xLogin(pwd);
forward_ptr = forwardLink_data;
len = Prepare_Cmd(FWD_CMD_WRITE);
len += Prepare_Addr(addr);
len += Prepare_Data(data & 0xFFFF, data >> 16);
SendForward(len);
//Wait 20ms for write to complete?
WaitMS(7);
DoPartialAcquisition(20, true, 6000, 1000);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
LED_A_OFF();
}
/*
Reading a COTAG.
COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
READER START SEQUENCE:
burst 800 us, gap 2.2 msecs
burst 3.6 msecs gap 2.2 msecs
burst 800 us gap 2.2 msecs
pulse 3.6 msecs
This triggers a COTAG tag to response
*/
void Cotag(uint32_t arg0) {
#ifndef OFF
# define OFF(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS((x)); }
#endif
#ifndef ON
# define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
#endif
uint8_t rawsignal = arg0 & 0xF;
LED_A_ON();
LFSetupFPGAForADC(89, true);
//clear buffer now so it does not interfere with timing later
BigBuf_Clear_ext(false);
//send COTAG start pulse
ON(740) OFF(2035)
ON(3330) OFF(2035)
ON(740) OFF(2035)
ON(1000)
switch (rawsignal) {
case 0:
doCotagAcquisition(50000);
break;
case 1:
doCotagAcquisitionManchester();
break;
case 2:
DoAcquisition_config(true, 0);
break;
}
// Turn the field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
LEDsoff();
}
/*
* EM4305 support
*/