proxmark3/armsrc/iso14443b.c

1757 lines
55 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, split Nov 2006
// piwi 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 14443B. This includes both the reader software and
// the `fake tag' modes.
//-----------------------------------------------------------------------------
#include "iso14443b.h"
#include "proxmark3_arm.h"
#include "common.h" // access to global variable: DBGLEVEL
#include "util.h"
#include "string.h"
#include "crc16.h"
#include "protocols.h"
#include "appmain.h"
#include "BigBuf.h"
#include "cmd.h"
#include "fpgaloader.h"
#include "commonutil.h"
#include "dbprint.h"
#include "ticks.h"
// Delays in SSP_CLK ticks.
// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
#define DELAY_READER_TO_ARM 8
#define DELAY_ARM_TO_READER 0
//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
#define DELAY_ARM_TO_TAG 16
#define DELAY_TAG_TO_ARM 32
//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when sniffing. All values should be multiples of 16
#define DELAY_TAG_TO_ARM_SNIFF 32
#define DELAY_READER_TO_ARM_SNIFF 32
// defaults to 2000ms
#ifndef FWT_TIMEOUT_14B
# define FWT_TIMEOUT_14B 35312
#endif
// 330/848kHz = 1558us / 4 == 400us,
#define ISO14443B_READER_TIMEOUT 1700 //330
// 1024/3.39MHz = 302.1us between end of tag response and next reader cmd
#define DELAY_ISO14443B_VICC_TO_VCD_READER 600 // 1024
#define DELAY_ISO14443B_VCD_TO_VICC_READER 600// 1056
#ifndef RECEIVE_MASK
# define RECEIVE_MASK (DMA_BUFFER_SIZE - 1)
#endif
// Guard Time (per 14443-2)
#ifndef TR0
# define TR0 64 // TR0 max is 256/fs = 256/(848kHz) = 302us or 64 samples from FPGA
#endif
// Synchronization time (per 14443-2)
#ifndef TR1
# define TR1 0
#endif
// Frame Delay Time PICC to PCD (per 14443-3 Amendment 1)
#ifndef TR2
# define TR2 0
#endif
// 4sample
#define SEND4STUFFBIT(x) tosend_stuffbit(x);tosend_stuffbit(x);tosend_stuffbit(x);tosend_stuffbit(x);
static void iso14b_set_timeout(uint32_t timeout);
static void iso14b_set_maxframesize(uint16_t size);
// the block number for the ISO14443-4 PCB (used with APDUs)
static uint8_t pcb_blocknum = 0;
static uint32_t iso14b_timeout = FWT_TIMEOUT_14B;
/* ISO 14443 B
*
* Reader to card | ASK - Amplitude Shift Keying Modulation (PCD to PICC for Type B) (NRZ-L encodig)
* Card to reader | BPSK - Binary Phase Shift Keying Modulation, (PICC to PCD for Type B)
*
* fc - carrier frequency 13.56 MHz
* TR0 - Guard Time per 14443-2
* TR1 - Synchronization Time per 14443-2
* TR2 - PICC to PCD Frame Delay Time (per 14443-3 Amendment 1)
*
* Elementary Time Unit (ETU) is
* - 128 Carrier Cycles (9.4395 µS) = 8 Subcarrier Units
* - 1 ETU = 1 bit
* - 10 ETU = 1 startbit, 8 databits, 1 stopbit (10bits length)
* - startbit is a 0
* - stopbit is a 1
*
* Start of frame (SOF) is
* - [10-11] ETU of ZEROS, unmodulated time
* - [2-3] ETU of ONES,
*
* End of frame (EOF) is
* - [10-11] ETU of ZEROS, unmodulated time
*
* -TO VERIFY THIS BELOW-
* The mode FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK which we use to simulate tag
* works like this:
* - A 1-bit input to the FPGA becomes 8 pulses at 847.5kHz (1.18µS / pulse) == 9.44us
* - A 0-bit input to the FPGA becomes an unmodulated time of 1.18µS or does it become 8 nonpulses for 9.44us
*
* FPGA doesn't seem to work with ETU. It seems to work with pulse / duration instead.
*
* Card sends data ub 847.e kHz subcarrier
* subcar |duration| FC division
* -------+--------+------------
* 106kHz | 9.44µS | FC/128
* 212kHz | 4.72µS | FC/64
* 424kHz | 2.36µS | FC/32
* 848kHz | 1.18µS | FC/16
* -------+--------+------------
*
* Reader data transmission:
* - no modulation ONES
* - SOF
* - Command, data and CRC_B
* - EOF
* - no modulation ONES
*
* Card data transmission
* - TR1
* - SOF
* - data (each bytes is: 1startbit, 8bits, 1stopbit)
* - CRC_B
* - EOF
*
* FPGA implementation :
* At this point only Type A is implemented. This means that we are using a
* bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
* things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
*
* Let us report a correlation every 64 samples. I.e.
* one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier,
* one Q/I pair after 2 subcarrier cycles for the 424kHz subcarrier,
* one Q/I pair for each subcarrier cyle for the 212kHz subcarrier.
*/
//=============================================================================
// An ISO 14443 Type B tag. We listen for commands from the reader, using
// a UART kind of thing that's implemented in software. When we get a
// frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
// If it's good, then we can do something appropriate with it, and send
// a response.
//=============================================================================
//-----------------------------------------------------------------------------
// Code up a string of octets at layer 2 (including CRC, we don't generate
// that here) so that they can be transmitted to the reader. Doesn't transmit
// them yet, just leaves them ready to send in ToSend[].
//-----------------------------------------------------------------------------
static void CodeIso14443bAsTag(const uint8_t *cmd, int len) {
int i;
tosend_reset();
// Transmit a burst of ones, as the initial thing that lets the
// reader get phase sync.
// This loop is TR1, per specification
// TR1 minimum must be > 80/fs
// TR1 maximum 200/fs
// 80/fs < TR1 < 200/fs
// 10 ETU < TR1 < 24 ETU
// Send TR1.
// 10-11 ETU * 4times samples ONES
for (i = 0; i < 20; i++) {
SEND4STUFFBIT(1);
}
// Send SOF.
// 10-11 ETU * 4times samples ZEROS
for (i = 0; i < 10; i++) {
SEND4STUFFBIT(0);
}
// 2-3 ETU * 4times samples ONES
for (i = 0; i < 2; i++) {
SEND4STUFFBIT(1);
}
// data
for (i = 0; i < len; i++) {
// Start bit
SEND4STUFFBIT(0);
// Data bits
uint8_t b = cmd[i];
for (int j = 0; j < 8; j++) {
SEND4STUFFBIT(b & 1);
b >>= 1;
}
// Stop bit
SEND4STUFFBIT(1);
// Extra Guard bit
// For PICC it ranges 0-18us (1etu = 9us)
//SEND4STUFFBIT(1);
}
// Send EOF.
// 10-11 ETU * 4 sample rate = ZEROS
for (i = 0; i < 10; i++) {
SEND4STUFFBIT(0);
}
// why this?
for (i = 0; i < 2; i++) {
SEND4STUFFBIT(1);
}
tosend_t *ts = get_tosend();
// Convert from last byte pos to length
ts->max++;
}
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
static struct {
enum {
STATE_14B_UNSYNCD,
STATE_14B_GOT_FALLING_EDGE_OF_SOF,
STATE_14B_AWAITING_START_BIT,
STATE_14B_RECEIVING_DATA
} state;
uint16_t shiftReg;
int bitCnt;
int byteCnt;
int byteCntMax;
int posCnt;
uint8_t *output;
} Uart;
static void Uart14bReset(void) {
Uart.state = STATE_14B_UNSYNCD;
Uart.shiftReg = 0;
Uart.bitCnt = 0;
Uart.byteCnt = 0;
Uart.byteCntMax = MAX_FRAME_SIZE;
Uart.posCnt = 0;
}
static void Uart14bInit(uint8_t *data) {
Uart.output = data;
Uart14bReset();
}
//-----------------------------------------------------------------------------
// The software Demod that receives commands from the tag, and its state variables.
//-----------------------------------------------------------------------------
#define NOISE_THRESHOLD 80 // don't try to correlate noise
#define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
static struct {
enum {
DEMOD_UNSYNCD,
DEMOD_PHASE_REF_TRAINING,
DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
DEMOD_GOT_FALLING_EDGE_OF_SOF,
DEMOD_AWAITING_START_BIT,
DEMOD_RECEIVING_DATA
} state;
uint16_t bitCount;
int posCount;
int thisBit;
uint16_t shiftReg;
uint16_t max_len;
uint8_t *output;
uint16_t len;
int sumI;
int sumQ;
} Demod;
// Clear out the state of the "UART" that receives from the tag.
static void Demod14bReset(void) {
Demod.state = DEMOD_UNSYNCD;
Demod.bitCount = 0;
Demod.posCount = 0;
Demod.thisBit = 0;
Demod.shiftReg = 0;
Demod.len = 0;
Demod.sumI = 0;
Demod.sumQ = 0;
}
static void Demod14bInit(uint8_t *data, uint16_t max_len) {
Demod.output = data;
Demod.max_len = max_len;
Demod14bReset();
}
/*
* 9.4395 us = 1 ETU and clock is about 1.5 us
* 13560000Hz
* 1000ms/s
* timeout in ETUs (time to transfer 1 bit, 9.4395 us)
*
* Formula to calculate FWT (in ETUs) by timeout (in ms):
* fwt = 13560000 * 1000 / (8*16) * timeout;
* Sample: 3sec == 3000ms
* 13560000 * 1000 / (8*16) * 3000 ==
* 13560000000 / 384000 = 35312 FWT
* @param timeout is in frame wait time, fwt, measured in ETUs
*/
static void iso14b_set_timeout(uint32_t timeout) {
#define MAX_TIMEOUT 40542464 // 13560000Hz * 1000ms / (2^32-1) * (8*16)
if (timeout > MAX_TIMEOUT)
timeout = MAX_TIMEOUT;
iso14b_timeout = timeout;
if (DBGLEVEL >= DBG_DEBUG) Dbprintf("ISO14443B Timeout set to %ld fwt", iso14b_timeout);
}
static void iso14b_set_maxframesize(uint16_t size) {
if (size > 256)
size = MAX_FRAME_SIZE;
Uart.byteCntMax = size;
if (DBGLEVEL >= DBG_DEBUG) Dbprintf("ISO14443B Max frame size set to %d bytes", Uart.byteCntMax);
}
/* Receive & handle a bit coming from the reader.
*
* This function is called 4 times per bit (every 2 subcarrier cycles).
* Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
*
* LED handling:
* LED A -> ON once we have received the SOF and are expecting the rest.
* LED A -> OFF once we have received EOF or are in error state or unsynced
*
* Returns: true if we received a EOF
* false if we are still waiting for some more
*/
static RAMFUNC int Handle14443bSampleFromReader(uint8_t bit) {
switch (Uart.state) {
case STATE_14B_UNSYNCD:
if (bit == false) {
// we went low, so this could be the beginning of an SOF
Uart.state = STATE_14B_GOT_FALLING_EDGE_OF_SOF;
Uart.posCnt = 0;
Uart.bitCnt = 0;
}
break;
case STATE_14B_GOT_FALLING_EDGE_OF_SOF:
Uart.posCnt++;
if (Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
if (bit) {
if (Uart.bitCnt > 9) {
// we've seen enough consecutive
// zeros that it's a valid SOF
Uart.posCnt = 0;
Uart.byteCnt = 0;
Uart.state = STATE_14B_AWAITING_START_BIT;
LED_A_ON(); // Indicate we got a valid SOF
} else {
// didn't stay down long enough before going high, error
Uart.state = STATE_14B_UNSYNCD;
}
} else {
// do nothing, keep waiting
}
Uart.bitCnt++;
}
if (Uart.posCnt >= 4) {
Uart.posCnt = 0;
}
if (Uart.bitCnt > 12) {
// Give up if we see too many zeros without a one, too.
LED_A_OFF();
Uart.state = STATE_14B_UNSYNCD;
}
break;
case STATE_14B_AWAITING_START_BIT:
Uart.posCnt++;
if (bit) {
// max 57us between characters = 49 1/fs,
// max 3 etus after low phase of SOF = 24 1/fs
if (Uart.posCnt > 50 / 2) {
// stayed high for too long between characters, error
Uart.state = STATE_14B_UNSYNCD;
}
} else {
// falling edge, this starts the data byte
Uart.posCnt = 0;
Uart.bitCnt = 0;
Uart.shiftReg = 0;
Uart.state = STATE_14B_RECEIVING_DATA;
}
break;
case STATE_14B_RECEIVING_DATA:
Uart.posCnt++;
if (Uart.posCnt == 2) {
// time to sample a bit
Uart.shiftReg >>= 1;
if (bit) {
Uart.shiftReg |= 0x200;
}
Uart.bitCnt++;
}
if (Uart.posCnt >= 4) {
Uart.posCnt = 0;
}
if (Uart.bitCnt == 10) {
if ((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) {
// this is a data byte, with correct
// start and stop bits
Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xFF;
Uart.byteCnt++;
if (Uart.byteCnt >= Uart.byteCntMax) {
// Buffer overflowed, give up
LED_A_OFF();
Uart.state = STATE_14B_UNSYNCD;
} else {
// so get the next byte now
Uart.posCnt = 0;
Uart.state = STATE_14B_AWAITING_START_BIT;
}
} else if (Uart.shiftReg == 0x000) {
// this is an EOF byte
LED_A_OFF(); // Finished receiving
Uart.state = STATE_14B_UNSYNCD;
if (Uart.byteCnt != 0)
return true;
} else {
// this is an error
LED_A_OFF();
Uart.state = STATE_14B_UNSYNCD;
}
}
break;
default:
LED_A_OFF();
Uart.state = STATE_14B_UNSYNCD;
break;
}
return false;
}
//-----------------------------------------------------------------------------
// Receive a command (from the reader to us, where we are the simulated tag),
// and store it in the given buffer, up to the given maximum length. Keeps
// spinning, waiting for a well-framed command, until either we get one
// (returns true) or someone presses the pushbutton on the board (false).
//
// Assume that we're called with the SSC (to the FPGA) and ADC path set
// correctly.
//-----------------------------------------------------------------------------
static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) {
// Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
// Now run a `software UART' on the stream of incoming samples.
Uart14bInit(received);
while (BUTTON_PRESS() == false) {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
for (uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
if (Handle14443bSampleFromReader(b & mask)) {
*len = Uart.byteCnt;
return true;
}
}
}
}
return false;
}
static void TransmitFor14443b_AsTag(uint8_t *response, uint16_t len) {
// Signal field is off with the appropriate LED
LED_D_OFF();
// Modulate BPSK
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
AT91C_BASE_SSC->SSC_THR = 0xFF;
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
// Transmit the response.
for (uint16_t i = 0; i < len;) {
// Put byte into tx holding register as soon as it is ready
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = response[i++];
}
}
}
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
void SimulateIso14443bTag(uint32_t pupi) {
LED_A_ON();
// the only commands we understand is WUPB, AFI=0, Select All, N=1:
// static const uint8_t cmdWUPB[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 }; // WUPB
// ... and REQB, AFI=0, Normal Request, N=1:
// static const uint8_t cmdREQB[] = { ISO14443B_REQB, 0x00, 0x00, 0x71, 0xFF }; // REQB
// ... and HLTB
// static const uint8_t cmdHLTB[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
// ... and ATTRIB
// static const uint8_t cmdATTRIB[] = { ISO14443B_ATTRIB, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
// ... if not PUPI/UID is supplied we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
// supports only 106kBit/s in both directions, max frame size = 32Bytes,
// supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
uint8_t respATQB[] = {
0x50,
0x82, 0x0d, 0xe1, 0x74,
0x20, 0x38, 0x19,
0x22, 0x00, 0x21, 0x85,
0x5e, 0xd7
};
// response to HLTB and ATTRIB
static const uint8_t respOK[] = {0x00, 0x78, 0xF0};
// ...PUPI/UID supplied from user. Adjust ATQB response accordingly
if (pupi > 0) {
num_to_bytes(pupi, 4, respATQB + 1);
AddCrc14B(respATQB, 12);
}
// setup device.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Set up the synchronous serial port
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
// allocate command receive buffer
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
uint16_t len, cmdsReceived = 0;
int cardSTATE = SIM_NOFIELD;
int vHf = 0; // in mV
tosend_t *ts = get_tosend();
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
// prepare "ATQB" tag answer (encoded):
CodeIso14443bAsTag(respATQB, sizeof(respATQB));
uint8_t *encodedATQB = BigBuf_malloc(ts->max);
uint16_t encodedATQBLen = ts->max;
memcpy(encodedATQB, ts->buf, ts->max);
// prepare "OK" tag answer (encoded):
CodeIso14443bAsTag(respOK, sizeof(respOK));
uint8_t *encodedOK = BigBuf_malloc(ts->max);
uint16_t encodedOKLen = ts->max;
memcpy(encodedOK, ts->buf, ts->max);
// Simulation loop
while (BUTTON_PRESS() == false) {
WDT_HIT();
//iceman: limit with 2000 times..
if (data_available()) {
break;
}
// find reader field
if (cardSTATE == SIM_NOFIELD) {
#if defined RDV4
vHf = (MAX_ADC_HF_VOLTAGE_RDV40 * SumAdc(ADC_CHAN_HF_RDV40, 32)) >> 15;
#else
vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15;
#endif
if (vHf > MF_MINFIELDV) {
cardSTATE = SIM_IDLE;
LED_A_ON();
}
}
if (cardSTATE == SIM_NOFIELD) continue;
// Get reader command
if (!GetIso14443bCommandFromReader(receivedCmd, &len)) {
Dbprintf("button pressed, received %d commands", cmdsReceived);
break;
}
// ISO14443-B protocol states:
// REQ or WUP request in ANY state
// WUP in HALTED state
if (len == 5) {
if ((receivedCmd[0] == ISO14443B_REQB && (receivedCmd[2] & 0x8) == 0x8 && cardSTATE == SIM_HALTED) ||
receivedCmd[0] == ISO14443B_REQB) {
LogTrace(receivedCmd, len, 0, 0, NULL, true);
cardSTATE = SIM_SELECTING;
}
}
/*
* How should this flow go?
* REQB or WUPB
* send response ( waiting for Attrib)
* ATTRIB
* send response ( waiting for commands 7816)
* HALT
send halt response ( waiting for wupb )
*/
switch (cardSTATE) {
//case SIM_NOFIELD:
case SIM_HALTED:
case SIM_IDLE: {
LogTrace(receivedCmd, len, 0, 0, NULL, true);
break;
}
case SIM_SELECTING: {
TransmitFor14443b_AsTag(encodedATQB, encodedATQBLen);
LogTrace(respATQB, sizeof(respATQB), 0, 0, NULL, false);
cardSTATE = SIM_WORK;
break;
}
case SIM_HALTING: {
TransmitFor14443b_AsTag(encodedOK, encodedOKLen);
LogTrace(respOK, sizeof(respOK), 0, 0, NULL, false);
cardSTATE = SIM_HALTED;
break;
}
case SIM_ACKNOWLEDGE: {
TransmitFor14443b_AsTag(encodedOK, encodedOKLen);
LogTrace(respOK, sizeof(respOK), 0, 0, NULL, false);
cardSTATE = SIM_IDLE;
break;
}
case SIM_WORK: {
if (len == 7 && receivedCmd[0] == ISO14443B_HALT) {
cardSTATE = SIM_HALTED;
} else if (len == 11 && receivedCmd[0] == ISO14443B_ATTRIB) {
cardSTATE = SIM_ACKNOWLEDGE;
} else {
// Todo:
// - SLOT MARKER
// - ISO7816
// - emulate with a memory dump
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsReceived);
// CRC Check
if (len >= 3) { // if crc exists
if (!check_crc(CRC_14443_B, receivedCmd, len)) {
if (DBGLEVEL >= DBG_DEBUG) {
DbpString("CRC fail");
}
}
} else {
if (DBGLEVEL >= DBG_DEBUG) {
DbpString("CRC passed");
}
}
cardSTATE = SIM_IDLE;
}
break;
}
default:
break;
}
++cmdsReceived;
}
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("Emulator stopped. Trace length: %d ", BigBuf_get_traceLen());
switch_off(); //simulate
}
//=============================================================================
// An ISO 14443 Type B reader. We take layer two commands, code them
// appropriately, and then send them to the tag. We then listen for the
// tag's response, which we leave in the buffer to be demodulated on the
// PC side.
//=============================================================================
/*
* Handles reception of a bit from the tag
*
* This function is called 2 times per bit (every 4 subcarrier cycles).
* Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
*
* LED handling:
* LED C -> ON once we have received the SOF and are expecting the rest.
* LED C -> OFF once we have received EOF or are unsynced
*
* Returns: true if we received a EOF
* false if we are still waiting for some more
*
*/
static RAMFUNC int Handle14443bSamplesFromTag(int ci, int cq) {
int v;
// The soft decision on the bit uses an estimate of just the
// quadrant of the reference angle, not the exact angle.
#define MAKE_SOFT_DECISION() { \
if(Demod.sumI > 0) { \
v = ci; \
} else { \
v = -ci; \
} \
if(Demod.sumQ > 0) { \
v += cq; \
} else { \
v -= cq; \
} \
}
#define SUBCARRIER_DETECT_THRESHOLD 8
// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
#define AMPLITUDE(ci,cq) (MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2))
switch (Demod.state) {
case DEMOD_UNSYNCD: {
if (AMPLITUDE(ci, cq) > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
Demod.state = DEMOD_PHASE_REF_TRAINING;
Demod.sumI = ci;
Demod.sumQ = cq;
Demod.posCount = 1;
}
break;
}
case DEMOD_PHASE_REF_TRAINING: {
if (Demod.posCount < 8) {
if (AMPLITUDE(ci, cq) > SUBCARRIER_DETECT_THRESHOLD) {
// set the reference phase (will code a logic '1') by averaging over 32 1/fs.
// note: synchronization time > 80 1/fs
Demod.sumI += ci;
Demod.sumQ += cq;
Demod.posCount++;
} else {
// subcarrier lost
Demod.state = DEMOD_UNSYNCD;
}
} else {
Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
}
break;
}
case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: {
MAKE_SOFT_DECISION();
if (v < 0) { // logic '0' detected
Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
Demod.posCount = 0; // start of SOF sequence
} else {
if (Demod.posCount > 200 / 4) { // maximum length of TR1 = 200 1/fs
Demod.state = DEMOD_UNSYNCD;
}
}
Demod.posCount++;
break;
}
case DEMOD_GOT_FALLING_EDGE_OF_SOF: {
Demod.posCount++;
MAKE_SOFT_DECISION();
if (v > 0) {
if (Demod.posCount < 9 * 2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
Demod.state = DEMOD_UNSYNCD;
} else {
LED_C_ON(); // Got SOF
Demod.posCount = 0;
Demod.bitCount = 0;
Demod.len = 0;
Demod.state = DEMOD_AWAITING_START_BIT;
}
} else {
if (Demod.posCount > 14 * 2) { // low phase of SOF too long (> 12 etu)
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
}
break;
}
case DEMOD_AWAITING_START_BIT: {
Demod.posCount++;
MAKE_SOFT_DECISION();
if (v > 0) {
if (Demod.posCount > 6 * 2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
LED_C_OFF();
if (Demod.bitCount == 0 && Demod.len == 0) { // received SOF only, this is valid for iClass/Picopass
return true;
} else {
Demod.state = DEMOD_UNSYNCD;
}
}
} else { // start bit detected
Demod.posCount = 1; // this was the first half
Demod.thisBit = v;
Demod.shiftReg = 0;
Demod.state = DEMOD_RECEIVING_DATA;
}
break;
}
case DEMOD_RECEIVING_DATA: {
MAKE_SOFT_DECISION();
if (Demod.posCount == 0) { // first half of bit
Demod.thisBit = v;
Demod.posCount = 1;
} else { // second half of bit
Demod.thisBit += v;
Demod.shiftReg >>= 1;
if (Demod.thisBit > 0) { // logic '1'
Demod.shiftReg |= 0x200;
}
Demod.bitCount++;
if (Demod.bitCount == 10) {
uint16_t s = Demod.shiftReg;
if ((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
Demod.output[Demod.len] = (s >> 1);
Demod.len++;
Demod.bitCount = 0;
Demod.state = DEMOD_AWAITING_START_BIT;
} else {
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
if (s == 0x000) {
// This is EOF (start, stop and all data bits == '0'
return true;
}
}
}
Demod.posCount = 0;
}
break;
}
default: {
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
break;
}
}
return false;
}
/*
* Demodulate the samples we received from the tag, also log to tracebuffer
*/
static int Get14443bAnswerFromTag(uint8_t *response, uint16_t max_len, int timeout, uint32_t *eof_time) {
int samples = 0, ret = 0;
// Set up the demodulator for tag -> reader responses.
Demod14bInit(response, max_len);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) {};
// And put the FPGA in the appropriate mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_848_KHZ | FPGA_HF_READER_MODE_RECEIVE_IQ);
// Setup and start DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
// The DMA buffer, used to stream samples from the FPGA
dmabuf16_t *dma = get_dma16();
if (FpgaSetupSscDma((uint8_t *) dma->buf, DMA_BUFFER_SIZE) == false) {
if (DBGLEVEL > DBG_ERROR) Dbprintf("FpgaSetupSscDma failed. Exiting");
return -1;
}
uint32_t dma_start_time = 0;
uint16_t *upTo = dma->buf;
for (;;) {
volatile uint16_t behindBy = ((uint16_t *)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
if (behindBy == 0)
continue;
samples++;
if (samples == 1) {
// DMA has transferred the very first data
dma_start_time = GetCountSspClk() & 0xfffffff0;
}
volatile int8_t ci = *upTo >> 8;
volatile int8_t cq = *upTo;
upTo++;
// we have read all of the DMA buffer content.
if (upTo >= dma->buf + DMA_BUFFER_SIZE) {
// start reading the circular buffer from the beginning again
upTo = dma->buf;
// DMA Counter Register had reached 0, already rotated.
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) {
// primary buffer was stopped
if (AT91C_BASE_PDC_SSC->PDC_RCR == false) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dma->buf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
}
// secondary buffer sets as primary, secondary buffer was stopped
if (AT91C_BASE_PDC_SSC->PDC_RNCR == false) {
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dma->buf;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
WDT_HIT();
if (BUTTON_PRESS()) {
DbpString("stopped");
break;
}
}
}
if (Handle14443bSamplesFromTag(ci, cq)) {
*eof_time = dma_start_time + (samples * 16) - DELAY_TAG_TO_ARM; // end of EOF
if (Demod.len > Demod.max_len) {
ret = -2; // overflow
}
break;
}
if (samples > timeout && Demod.state < DEMOD_PHASE_REF_TRAINING) {
ret = -1;
break;
}
}
FpgaDisableSscDma();
if (ret < 0) {
return ret;
}
if (Demod.len > 0) {
uint32_t sof_time = *eof_time
- (Demod.len * 8 * 8 * 16) // time for byte transfers
- (32 * 16) // time for SOF transfer
- 0; // time for EOF transfer
LogTrace(Demod.output, Demod.len, (sof_time * 4), (*eof_time * 4), NULL, false);
}
return Demod.len;
}
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitFor14443b_AsReader(uint32_t *start_time) {
tosend_t *ts = get_tosend();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_SHALLOW_MOD);
if (*start_time < DELAY_ARM_TO_TAG) {
*start_time = DELAY_ARM_TO_TAG;
}
*start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0;
if (GetCountSspClk() > *start_time) { // we may miss the intended time
*start_time = (GetCountSspClk() + 16) & 0xfffffff0; // next possible time
}
// wait
while (GetCountSspClk() < *start_time) ;
LED_B_ON();
for (int c = 0; c < ts->max; c++) {
volatile uint8_t data = ts->buf[c];
for (int i = 0; i < 8; i++) {
uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
data <<= 1;
}
WDT_HIT();
}
LED_B_OFF();
*start_time += DELAY_ARM_TO_TAG;
}
//-----------------------------------------------------------------------------
// Code a layer 2 command (string of octets, including CRC) into ToSend[],
// so that it is ready to transmit to the tag using TransmitFor14443b().
//-----------------------------------------------------------------------------
static void CodeIso14443bAsReader(const uint8_t *cmd, int len) {
/*
* Reader data transmission:
* - no modulation ONES
* - SOF
* - Command, data and CRC_B
* - EOF
* - no modulation ONES
*
* 1 ETU == 1 BIT!
* TR0 - 8 ETUS minimum.
*
* QUESTION: how long is a 1 or 0 in pulses in the xcorr_848 mode?
* 1 "stuffbit" = 1ETU (9us)
*/
tosend_reset();
// Send SOF
// 10-11 ETUs of ZERO
for (int i = 0; i < 10; i++)
tosend_stuffbit(0);
// 2-3 ETUs of ONE
tosend_stuffbit(1);
tosend_stuffbit(1);
// Sending cmd, LSB
// from here we add BITS
for (int i = 0; i < len; i++) {
// Start bit
tosend_stuffbit(0);
// Data bits
uint8_t b = cmd[i];
tosend_stuffbit(b & 1);
tosend_stuffbit((b >> 1) & 1);
tosend_stuffbit((b >> 2) & 1);
tosend_stuffbit((b >> 3) & 1);
tosend_stuffbit((b >> 4) & 1);
tosend_stuffbit((b >> 5) & 1);
tosend_stuffbit((b >> 6) & 1);
tosend_stuffbit((b >> 7) & 1);
// Stop bit
tosend_stuffbit(1);
// EGT extra guard time
// For PCD it ranges 0-57us (1etu = 9us)
// tosend_stuffbit(1);
// tosend_stuffbit(1);
// tosend_stuffbit(1);
}
// Send EOF
// 10-11 ETUs of ZERO
for (int i = 0; i < 10; i++)
tosend_stuffbit(0);
// Transition time. TR0 - guard time
// 8ETUS minum?
// Per specification, Subcarrier must be stopped no later than 2 ETUs after EOF.
// I'm guessing this is for the FPGA to be able to send all bits before we switch to listening mode
// ensure that last byte is filled up
for (int i = 0; i < 8 ; ++i)
tosend_stuffbit(1);
// TR1 - Synchronization time
// Convert from last character reference to length
tosend_t *ts = get_tosend();
ts->max++;
}
/*
* Convenience function to encode, transmit and trace iso 14443b comms
*/
static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len, uint32_t *start_time, uint32_t *eof_time) {
tosend_t *ts = get_tosend();
CodeIso14443bAsReader(cmd, len);
TransmitFor14443b_AsReader(start_time);
*eof_time = *start_time + (32 * (8 * ts->max));
LogTrace(cmd, len, *start_time, *eof_time, NULL, true);
}
/* Sends an APDU to the tag
* TODO: check CRC and preamble
*/
int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response, uint16_t respmaxlen) {
LED_A_ON();
uint8_t message_frame[message_length + 4];
// PCB
message_frame[0] = 0x0A | pcb_blocknum;
pcb_blocknum ^= 1;
// CID
message_frame[1] = 0;
// INF
memcpy(message_frame + 2, message, message_length);
// EDC (CRC)
AddCrc14B(message_frame, message_length + 2);
// send
uint32_t start_time = 0;
uint32_t eof_time = 0;
CodeAndTransmit14443bAsReader(message_frame, sizeof(message_frame), &start_time, &eof_time);
// Get response?
if (response == NULL) {
LED_A_OFF();
return 0;
}
eof_time += DELAY_ISO14443B_VCD_TO_VICC_READER;
int retlen = Get14443bAnswerFromTag(response, respmaxlen, ISO14443B_READER_TIMEOUT, &eof_time);
FpgaDisableTracing();
if (retlen < 3) {
LED_A_OFF();
return -1;
}
// VALIDATE CRC
if (!check_crc(CRC_14443_B, response, retlen)) {
if (DBGLEVEL > DBG_DEBUG) DbpString("CRC fail");
return -2;
}
return retlen;
}
/**
* SRx Initialise.
*/
static int iso14443b_select_srx_card(iso14b_card_select_t *card) {
// INITIATE command: wake up the tag using the INITIATE
static const uint8_t init_srx[] = { ISO14443B_INITIATE, 0x00, 0x97, 0x5b };
uint8_t r_init[3] = {0x0};
uint8_t r_select[3] = {0x0};
uint8_t r_papid[10] = {0x0};
uint32_t start_time = 0;
uint32_t eof_time = 0;
CodeAndTransmit14443bAsReader(init_srx, sizeof(init_srx), &start_time, &eof_time);
eof_time += DELAY_ISO14443B_VCD_TO_VICC_READER;
int retlen = Get14443bAnswerFromTag(r_init, sizeof(r_init), ISO14443B_READER_TIMEOUT, &eof_time);
FpgaDisableTracing();
if (retlen <= 0)
return -1;
// Randomly generated Chip ID
if (card) {
card->chipid = Demod.output[0];
}
// SELECT command (with space for CRC)
uint8_t select_srx[] = { ISO14443B_SELECT, 0x00, 0x00, 0x00};
select_srx[1] = r_init[0];
AddCrc14B(select_srx, 2);
start_time = eof_time + DELAY_ISO14443B_VICC_TO_VCD_READER;
CodeAndTransmit14443bAsReader(select_srx, sizeof(select_srx), &start_time, &eof_time);
eof_time += DELAY_ISO14443B_VCD_TO_VICC_READER;
retlen = Get14443bAnswerFromTag(r_select, sizeof(r_select), ISO14443B_READER_TIMEOUT, &eof_time);
FpgaDisableTracing();
if (retlen != 3) {
return -1;
}
// Check the CRC of the answer:
if (!check_crc(CRC_14443_B, r_select, retlen)) {
return -2;
}
// Check response from the tag: should be the same UID as the command we just sent:
if (select_srx[1] != r_select[0]) {
return -3;
}
// First get the tag's UID:
select_srx[0] = ISO14443B_GET_UID;
AddCrc14B(select_srx, 1);
start_time = eof_time + DELAY_ISO14443B_VICC_TO_VCD_READER;
CodeAndTransmit14443bAsReader(select_srx, 3, &start_time, &eof_time); // Only first three bytes for this one
eof_time += DELAY_ISO14443B_VCD_TO_VICC_READER;
retlen = Get14443bAnswerFromTag(r_papid, sizeof(r_papid), ISO14443B_READER_TIMEOUT, &eof_time);
FpgaDisableTracing();
if (retlen != 10) {
return -1;
}
// The check the CRC of the answer
if (!check_crc(CRC_14443_B, r_papid, retlen)) {
return -2;
}
if (card) {
card->uidlen = 8;
memcpy(card->uid, r_papid, 8);
}
return 0;
}
/* Perform the ISO 14443 B Card Selection procedure
* Currently does NOT do any collision handling.
* It expects 0-1 cards in the device's range.
* TODO: Support multiple cards (perform anticollision)
* TODO: Verify CRC checksums
*/
int iso14443b_select_card(iso14b_card_select_t *card) {
// WUPB command (including CRC)
// Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
static const uint8_t wupb[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 };
// ATTRIB command (with space for CRC)
uint8_t attrib[] = { ISO14443B_ATTRIB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
uint8_t r_pupid[14] = {0x0};
uint8_t r_attrib[3] = {0x0};
// first, wake up the tag
uint32_t start_time = 0;
uint32_t eof_time = 0;
CodeAndTransmit14443bAsReader(wupb, sizeof(wupb), &start_time, &eof_time);
eof_time += DELAY_ISO14443B_VCD_TO_VICC_READER;;
int retlen = Get14443bAnswerFromTag(r_pupid, sizeof(r_pupid), ISO14443B_READER_TIMEOUT, &eof_time);
FpgaDisableTracing();
// ATQB too short?
if (retlen < 14) {
return -1;
}
// VALIDATE CRC
if (!check_crc(CRC_14443_B, r_pupid, retlen)) {
return -2;
}
if (card) {
card->uidlen = 4;
memcpy(card->uid, r_pupid + 1, 4);
memcpy(card->atqb, r_pupid + 5, 7);
}
// copy the PUPI to ATTRIB ( PUPI == UID )
memcpy(attrib + 1, r_pupid + 1, 4);
// copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into ATTRIB (Param 3)
attrib[7] = r_pupid[10] & 0x0F;
AddCrc14B(attrib, 9);
start_time = eof_time + DELAY_ISO14443B_VICC_TO_VCD_READER;
CodeAndTransmit14443bAsReader(attrib, sizeof(attrib), &start_time, &eof_time);
eof_time += DELAY_ISO14443B_VCD_TO_VICC_READER;
retlen = Get14443bAnswerFromTag(r_attrib, sizeof(r_attrib), ISO14443B_READER_TIMEOUT, &eof_time);
FpgaDisableTracing();
// Answer to ATTRIB too short?
if (retlen < 3) {
return -1;
}
// VALIDATE CRC
if (!check_crc(CRC_14443_B, r_attrib, retlen)) {
return -2;
}
if (card) {
// CID
card->cid = r_attrib[0];
// MAX FRAME
uint16_t maxFrame = card->atqb[5] >> 4;
if (maxFrame < 5) maxFrame = 8 * maxFrame + 16;
else if (maxFrame == 5) maxFrame = 64;
else if (maxFrame == 6) maxFrame = 96;
else if (maxFrame == 7) maxFrame = 128;
else if (maxFrame == 8) maxFrame = 256;
else maxFrame = 257;
iso14b_set_maxframesize(maxFrame);
// FWT
uint8_t fwt = card->atqb[6] >> 4;
if (fwt < 16) {
uint32_t fwt_time = (302 << fwt);
iso14b_set_timeout(fwt_time);
}
}
// reset PCB block number
pcb_blocknum = 0;
return 0;
}
// Set up ISO 14443 Type B communication (similar to iso14443a_setup)
// field is setup for "Sending as Reader"
void iso14443b_setup(void) {
LEDsoff();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// allocate command receive buffer
BigBuf_free();
BigBuf_Clear_ext(false);
// Initialize Demod and Uart structs
Demod14bInit(BigBuf_malloc(MAX_FRAME_SIZE), MAX_FRAME_SIZE);
Uart14bInit(BigBuf_malloc(MAX_FRAME_SIZE));
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Set up the synchronous serial port
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
// Signal field is on with the appropriate LED
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_SHALLOW_MOD);
SpinDelay(100);
// Start the timer
StartCountSspClk();
LED_D_ON();
}
//-----------------------------------------------------------------------------
// Read a SRI512 ISO 14443B tag.
//
// SRI512 tags are just simple memory tags, here we're looking at making a dump
// of the contents of the memory. No anticollision algorithm is done, we assume
// we have a single tag in the field.
//
// I tried to be systematic and check every answer of the tag, every CRC, etc...
//-----------------------------------------------------------------------------
static bool ReadSTBlock(uint8_t blocknr, uint8_t *block) {
uint8_t cmd[] = {ISO14443B_READ_BLK, blocknr, 0x00, 0x00};
AddCrc14B(cmd, 2);
uint8_t r_block[6] = {0};
uint32_t start_time = 0;
uint32_t eof_time = 0;
CodeAndTransmit14443bAsReader(cmd, sizeof(cmd), &start_time, &eof_time);
eof_time += DELAY_ISO14443B_VCD_TO_VICC_READER;
int retlen = Get14443bAnswerFromTag(r_block, sizeof(r_block), ISO14443B_READER_TIMEOUT, &eof_time);
FpgaDisableTracing();
// Check if we got an answer from the tag
if (retlen != 6) {
DbpString("[!] expected 6 bytes from tag, got less...");
return false;
}
// The check the CRC of the answer
if (!check_crc(CRC_14443_B, r_block, retlen)) {
DbpString("CRC fail");
return false;
}
if (block) {
memcpy(block, r_block, 4);
}
Dbprintf("Address=%02x, Contents=%08x, CRC=%04x",
blocknr,
(r_block[3] << 24) + (r_block[2] << 16) + (r_block[1] << 8) + r_block[0],
(r_block[4] << 8) + r_block[5]);
return true;
}
void ReadSTMemoryIso14443b(uint16_t numofblocks) {
iso14443b_setup();
uint8_t *mem = BigBuf_malloc((numofblocks + 1) * 4);
iso14b_card_select_t card;
int res = iso14443b_select_srx_card(&card);
int isOK = PM3_SUCCESS;
// 0: OK 2: attrib fail, 3:crc fail,
if (res < 1) {
isOK = PM3_ETIMEOUT;
goto out;
}
++numofblocks;
for (uint8_t i = 0; i < numofblocks; i++) {
if (ReadSTBlock(i, mem + (i * 4)) == false) {
isOK = PM3_ETIMEOUT;
break;
}
}
// System area block (0xFF)
if (ReadSTBlock(0xFF, mem + (numofblocks * 4)) == false)
isOK = PM3_ETIMEOUT;
out:
reply_ng(CMD_HF_SRI_READ, isOK, mem, numofblocks * 4);
BigBuf_free();
switch_off();
}
//=============================================================================
// Finally, the `sniffer' combines elements from both the reader and
// simulated tag, to show both sides of the conversation.
//=============================================================================
//-----------------------------------------------------------------------------
// Record the sequence of commands sent by the reader to the tag, with
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
/*
* Memory usage for this function, (within BigBuf)
* Last Received command (reader->tag) - MAX_FRAME_SIZE
* Last Received command (tag->reader) - MAX_FRAME_SIZE
* DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
* Demodulated samples received - all the rest
*/
void SniffIso14443b(void) {
LEDsoff();
LED_A_ON();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
DbpString("Starting to sniff. Press PM3 Button to stop.");
BigBuf_free();
clear_trace();
set_tracing(true);
// Initialize Demod and Uart structs
uint8_t dm_buf[MAX_FRAME_SIZE] = {0};
Demod14bInit(dm_buf, sizeof(dm_buf));
uint8_t ua_buf[MAX_FRAME_SIZE] = {0};
Uart14bInit(ua_buf);
//Demod14bInit(BigBuf_malloc(MAX_FRAME_SIZE), MAX_FRAME_SIZE);
//Uart14bInit(BigBuf_malloc(MAX_FRAME_SIZE));
// Set FPGA in the appropriate mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_848_KHZ | FPGA_HF_READER_MODE_SNIFF_IQ);
// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_848_KHZ | FPGA_HF_READER_MODE_SNIFF_AMPLITUDE);
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
StartCountSspClk();
// The DMA buffer, used to stream samples from the FPGA
dmabuf16_t *dma = get_dma16();
// Setup and start DMA.
if (!FpgaSetupSscDma((uint8_t *) dma->buf, DMA_BUFFER_SIZE)) {
if (DBGLEVEL > DBG_ERROR) DbpString("FpgaSetupSscDma failed. Exiting");
switch_off();
return;
}
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
bool tag_is_active = false;
bool reader_is_active = false;
bool expect_tag_answer = false;
int dma_start_time = 0;
// Count of samples received so far, so that we can include timing
int samples = 0;
uint16_t *upTo = dma->buf;
for (;;) {
volatile int behind_by = ((uint16_t *)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
if (behind_by < 1) continue;
samples++;
if (samples == 1) {
// DMA has transferred the very first data
dma_start_time = GetCountSspClk() & 0xfffffff0;
}
volatile int8_t ci = *upTo >> 8;
volatile int8_t cq = *upTo;
upTo++;
// we have read all of the DMA buffer content.
if (upTo >= dma->buf + DMA_BUFFER_SIZE) {
// start reading the circular buffer from the beginning again
upTo = dma->buf;
// DMA Counter Register had reached 0, already rotated.
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) {
// primary buffer was stopped
if (AT91C_BASE_PDC_SSC->PDC_RCR == false) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dma->buf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
}
// secondary buffer sets as primary, secondary buffer was stopped
if (AT91C_BASE_PDC_SSC->PDC_RNCR == false) {
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dma->buf;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
WDT_HIT();
if (BUTTON_PRESS()) {
DbpString("Sniff stopped");
break;
}
}
}
// no need to try decoding reader data if the tag is sending
if (tag_is_active == false) {
if (Handle14443bSampleFromReader(ci & 0x01)) {
uint32_t eof_time = dma_start_time + (samples * 16) + 8; // - DELAY_READER_TO_ARM_SNIFF; // end of EOF
if (Uart.byteCnt > 0) {
uint32_t sof_time = eof_time
- Uart.byteCnt * 1 // time for byte transfers
- 32 * 16 // time for SOF transfer
- 16 * 16; // time for EOF transfer
LogTrace(Uart.output, Uart.byteCnt, (sof_time * 4), (eof_time * 4), NULL, true);
}
// And ready to receive another command.
Uart14bReset();
Demod14bReset();
reader_is_active = false;
expect_tag_answer = true;
}
if (Handle14443bSampleFromReader(cq & 0x01)) {
uint32_t eof_time = dma_start_time + (samples * 16) + 16; // - DELAY_READER_TO_ARM_SNIFF; // end of EOF
if (Uart.byteCnt > 0) {
uint32_t sof_time = eof_time
- Uart.byteCnt * 1 // time for byte transfers
- 32 * 16 // time for SOF transfer
- 16 * 16; // time for EOF transfer
LogTrace(Uart.output, Uart.byteCnt, (sof_time * 4), (eof_time * 4), NULL, true);
}
// And ready to receive another command
Uart14bReset();
Demod14bReset();
reader_is_active = false;
expect_tag_answer = true;
}
reader_is_active = (Uart.state > STATE_14B_GOT_FALLING_EDGE_OF_SOF);
}
// no need to try decoding tag data if the reader is sending - and we cannot afford the time
if (reader_is_active == false && expect_tag_answer) {
if (Handle14443bSamplesFromTag((ci >> 1), (cq >> 1))) {
uint32_t eof_time = dma_start_time + (samples * 16); // - DELAY_TAG_TO_ARM_SNIFF; // end of EOF
uint32_t sof_time = eof_time
- Demod.len * 8 * 8 * 16 // time for byte transfers
- (32 * 16) // time for SOF transfer
- 0; // time for EOF transfer
LogTrace(Demod.output, Demod.len, (sof_time * 4), (eof_time * 4), NULL, false);
// And ready to receive another response.
Uart14bReset();
Demod14bReset();
expect_tag_answer = false;
tag_is_active = false;
} else {
tag_is_active = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
}
}
}
FpgaDisableTracing();
switch_off();
DbpString("");
DbpString(_CYAN_("Sniff statistics"));
DbpString("=================================");
Dbprintf(" DecodeTag State........%d", Demod.state);
Dbprintf(" DecodeTag byteCnt......%d", Demod.len);
Dbprintf(" DecodeTag posCount.....%d", Demod.posCount);
Dbprintf(" DecodeReader State.....%d", Uart.state);
Dbprintf(" DecodeReader byteCnt...%d", Uart.byteCnt);
Dbprintf(" DecodeReader posCount..%d", Uart.posCnt);
Dbprintf(" Trace length..........." _YELLOW_("%d"), BigBuf_get_traceLen());
DbpString("");
}
static void iso14b_set_trigger(bool enable) {
g_trigger = enable;
}
/*
* Send raw command to tag ISO14443B
* @Input
* param flags enum ISO14B_COMMAND. (mifare.h)
* len len of buffer data
* data buffer with bytes to send
*
* @Output
* none
*
*/
void SendRawCommand14443B_Ex(PacketCommandNG *c) {
iso14b_command_t param = c->oldarg[0];
size_t len = c->oldarg[1] & 0xffff;
uint32_t timeout = c->oldarg[2];
uint8_t *cmd = c->data.asBytes;
if (DBGLEVEL > DBG_DEBUG) Dbprintf("14b raw: param, %04x", param);
// turn on trigger (LED_A)
if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER)
iso14b_set_trigger(true);
if ((param & ISO14B_CONNECT) == ISO14B_CONNECT) {
iso14443b_setup();
clear_trace();
}
if ((param & ISO14B_SET_TIMEOUT))
iso14b_set_timeout(timeout);
set_tracing(true);
int status;
uint32_t sendlen = sizeof(iso14b_card_select_t);
iso14b_card_select_t card;
if ((param & ISO14B_SELECT_STD) == ISO14B_SELECT_STD) {
status = iso14443b_select_card(&card);
reply_mix(CMD_HF_ISO14443B_COMMAND, status, sendlen, 0, (uint8_t *)&card, sendlen);
// 0: OK -1: attrib fail, -2:crc fail,
if (status != 0) goto out;
}
if ((param & ISO14B_SELECT_SR) == ISO14B_SELECT_SR) {
status = iso14443b_select_srx_card(&card);
reply_mix(CMD_HF_ISO14443B_COMMAND, status, sendlen, 0, (uint8_t *)&card, sendlen);
// 0: OK 2: demod fail, 3:crc fail,
if (status > 0) goto out;
}
if ((param & ISO14B_APDU) == ISO14B_APDU) {
uint8_t buf[100] = {0};
status = iso14443b_apdu(cmd, len, buf, sizeof(buf));
reply_mix(CMD_HF_ISO14443B_COMMAND, status, status, 0, buf, status);
}
if ((param & ISO14B_RAW) == ISO14B_RAW) {
if ((param & ISO14B_APPEND_CRC) == ISO14B_APPEND_CRC) {
AddCrc14B(cmd, len);
len += 2;
}
uint8_t buf[100] = {0};
uint32_t start_time = 0;
uint32_t eof_time = 0;
CodeAndTransmit14443bAsReader(cmd, len, &start_time, &eof_time);
eof_time += DELAY_ISO14443B_VCD_TO_VICC_READER;
status = Get14443bAnswerFromTag(buf, sizeof(buf), 5 * ISO14443B_READER_TIMEOUT, &eof_time); // raw
FpgaDisableTracing();
sendlen = MIN(Demod.len, PM3_CMD_DATA_SIZE);
reply_mix(CMD_HF_ISO14443B_COMMAND, status, sendlen, 0, Demod.output, sendlen);
}
out:
// turn off trigger (LED_A)
if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER)
iso14b_set_trigger(false);
// turn off antenna et al
// we don't send a HALT command.
if ((param & ISO14B_DISCONNECT) == ISO14B_DISCONNECT) {
switch_off(); // disconnect raw
SpinDelay(20);
}
}