proxmark3/client/src/cmdlf.c
2022-06-11 12:29:27 -07:00

1871 lines
64 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Low frequency commands
//-----------------------------------------------------------------------------
#include "cmdlf.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <ctype.h>
#include "cmdparser.h" // command_t
#include "comms.h"
#include "commonutil.h" // ARRAYLEN
#include "lfdemod.h" // device/client demods of LF signals
#include "ui.h" // for show graph controls
#include "proxgui.h"
#include "cliparser.h" // args parsing
#include "graph.h" // for graph data
#include "cmddata.h" // for `lf search`
#include "cmdlfawid.h" // for awid menu
#include "cmdlfem.h" // for em menu
#include "cmdlfem410x.h" // for em4x menu
#include "cmdlfem4x05.h" // for em4x05 / 4x69
#include "cmdlfem4x50.h" // for em4x50
#include "cmdlfem4x70.h" // for em4x70
#include "cmdlfhid.h" // for hid menu
#include "cmdlfhitag.h" // for hitag menu
#include "cmdlfidteck.h" // for idteck menu
#include "cmdlfio.h" // for ioprox menu
#include "cmdlfcotag.h" // for COTAG menu
#include "cmdlfdestron.h" // for FDX-A FECAVA Destron menu
#include "cmdlffdxb.h" // for FDX-B menu
#include "cmdlfgallagher.h" // for GALLAGHER menu
#include "cmdlfguard.h" // for gproxii menu
#include "cmdlfindala.h" // for indala menu
#include "cmdlfjablotron.h" // for JABLOTRON menu
#include "cmdlfkeri.h" // for keri menu
#include "cmdlfmotorola.h" // for Motorola menu
#include "cmdlfnedap.h" // for NEDAP menu
#include "cmdlfnexwatch.h" // for nexwatch menu
#include "cmdlfnoralsy.h" // for NORALSY menu
#include "cmdlfpac.h" // for pac menu
#include "cmdlfparadox.h" // for paradox menu
#include "cmdlfpcf7931.h" // for pcf7931 menu
#include "cmdlfpresco.h" // for presco menu
#include "cmdlfpyramid.h" // for pyramid menu
#include "cmdlfsecurakey.h" // for securakey menu
#include "cmdlft55xx.h" // for t55xx menu
#include "cmdlfti.h" // for ti menu
#include "cmdlfviking.h" // for viking menu
#include "cmdlfvisa2000.h" // for VISA2000 menu
#include "cmdlfzx8211.h" // for ZX8211 menu
#include "crc.h"
#include "pm3_cmd.h" // for LF_CMDREAD_MAX_EXTRA_SYMBOLS
static bool gs_lf_threshold_set = false;
static int CmdHelp(const char *Cmd);
// Informative user function.
// loop and wait for either keyboard press or pm3 button to exit
// if key event, send break loop cmd to Pm3
int lfsim_wait_check(uint32_t cmd) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "Press " _GREEN_("<Enter>") " or pm3-button to abort simulation");
for (;;) {
if (kbd_enter_pressed()) {
SendCommandNG(CMD_BREAK_LOOP, NULL, 0);
PrintAndLogEx(DEBUG, "User aborted");
break;
}
PacketResponseNG resp;
if (WaitForResponseTimeout(cmd, &resp, 1000)) {
if (resp.status == PM3_EOPABORTED) {
PrintAndLogEx(DEBUG, "Button pressed, user aborted");
break;
}
}
}
PrintAndLogEx(INFO, "Done");
return PM3_SUCCESS;
}
static int CmdLFTune(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf tune",
"Continuously measure LF antenna tuning.\n"
"Press button or <Enter> to interrupt.",
"lf tune\n"
"lf tune --mix"
);
char q_str[60];
snprintf(q_str, sizeof(q_str), "Frequency divisor. %d -> 134 kHz, %d -> 125 kHz", LF_DIVISOR_134, LF_DIVISOR_125);
void *argtable[] = {
arg_param_begin,
arg_u64_0("n", "iter", "<dec>", "number of iterations (default: 0=infinite)"),
arg_u64_0("q", "divisor", "<dec>", q_str),
arg_dbl0("f", "freq", "<float>", "Frequency in kHz"),
arg_lit0(NULL, "bar", "bar style"),
arg_lit0(NULL, "mix", "mixed style"),
arg_lit0(NULL, "value", "values style"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
uint32_t iter = arg_get_u32_def(ctx, 1, 0);
uint8_t divisor = arg_get_u32_def(ctx, 2, LF_DIVISOR_125);
double freq = arg_get_dbl_def(ctx, 3, 125);
bool is_bar = arg_get_lit(ctx, 4);
bool is_mix = arg_get_lit(ctx, 5);
bool is_value = arg_get_lit(ctx, 6);
CLIParserFree(ctx);
if (divisor < 19) {
PrintAndLogEx(ERR, "divisor must be between 19 and 255");
return PM3_EINVARG;
}
if ((freq < 47) || (freq > 600)) {
PrintAndLogEx(ERR, "freq must be between 47 and 600");
return PM3_EINVARG;
}
if (divisor != LF_DIVISOR_125 && freq != 125) {
PrintAndLogEx(ERR, "Select either `divisor` or `frequency`");
return PM3_EINVARG;
}
if (freq != 125)
divisor = LF_FREQ2DIV(freq);
if ((is_bar + is_mix + is_value) > 1) {
PrintAndLogEx(ERR, "Select only one output style");
return PM3_EINVARG;
}
barMode_t style = g_session.bar_mode;
if (is_bar)
style = STYLE_BAR;
if (is_mix)
style = STYLE_MIXED;
if (is_value)
style = STYLE_VALUE;
PrintAndLogEx(INFO, "Measuring LF antenna at " _YELLOW_("%.2f") " kHz, click " _GREEN_("pm3 button") " or press " _GREEN_("Enter") " to exit", LF_DIV2FREQ(divisor));
uint8_t params[] = {1, 0};
params[1] = divisor;
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_MEASURE_ANTENNA_TUNING_LF, params, sizeof(params));
if (!WaitForResponseTimeout(CMD_MEASURE_ANTENNA_TUNING_LF, &resp, 1000)) {
PrintAndLogEx(WARNING, "Timeout while waiting for Proxmark LF initialization, aborting");
return PM3_ETIMEOUT;
}
params[0] = 2;
// #define MAX_ADC_LF_VOLTAGE 140800
uint32_t max = 71000;
bool first = true;
print_progress(0, max, style);
// loop forever (till button pressed) if iter = 0 (default)
for (uint32_t i = 0; iter == 0 || i < iter; i++) {
if (kbd_enter_pressed()) {
break;
}
SendCommandNG(CMD_MEASURE_ANTENNA_TUNING_LF, params, sizeof(params));
if (!WaitForResponseTimeout(CMD_MEASURE_ANTENNA_TUNING_LF, &resp, 1000)) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(WARNING, "Timeout while waiting for Proxmark LF measure, aborting");
break;
}
if ((resp.status == PM3_EOPABORTED) || (resp.length != sizeof(uint32_t))) {
PrintAndLogEx(NORMAL, "");
break;
}
uint32_t volt = resp.data.asDwords[0];
if (first) {
max = (volt * 1.03);
first = false;
}
if (volt > max) {
max = (volt * 1.03);
}
print_progress(volt, max, style);
}
params[0] = 3;
SendCommandNG(CMD_MEASURE_ANTENNA_TUNING_LF, params, sizeof(params));
if (!WaitForResponseTimeout(CMD_MEASURE_ANTENNA_TUNING_LF, &resp, 1000)) {
PrintAndLogEx(WARNING, "Timeout while waiting for Proxmark LF shutdown, aborting");
return PM3_ETIMEOUT;
}
PrintAndLogEx(NORMAL, "\x1b%c[2K\r", 30);
PrintAndLogEx(INFO, "Done.");
return PM3_SUCCESS;
}
/* send a LF command before reading */
int CmdLFCommandRead(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf cmdread",
"Modulate LF reader field to send command before read. All periods in microseconds.\n"
" - use " _YELLOW_("`lf config`") _CYAN_(" to set parameters"),
"lf cmdread -d 50 -z 116 -o 166 -e W3000 -c W00110 --> probing for Hitag 1/S\n"
"lf cmdread -d 50 -z 116 -o 166 -e W3000 -c W11000 --> probing for Hitag 2\n"
"lf cmdread -d 50 -z 116 -o 166 -e W3000 -c W11000 -s 2000 -@ --> probing for Hitag 2, oscilloscope style\n"
"lf cmdread -d 48 -z 112 -o 176 -e W3000 -e S240 -e E336 -c W0S00000010000E --> probing for Hitag (us)\n"
);
char div_str[70] = {0};
snprintf(div_str, sizeof(div_str), "Extra symbol definition and duration (up to %i)", LF_CMDREAD_MAX_EXTRA_SYMBOLS);
void *argtable[] = {
arg_param_begin,
arg_u64_0("d", "duration", "<us>", "delay OFF period, (0 for bitbang mode)"),
arg_str0("c", "cmd", "<0|1|...>", "command symbols"),
arg_strx0("e", "extra", "<us>", div_str),
arg_u64_0("o", "one", "<us>", "ONE time period"),
arg_u64_0("z", "zero", "<us>", "ZERO time period"),
arg_u64_0("s", "samples", "<dec>", "number of samples to collect"),
arg_lit0("v", "verbose", "verbose output"),
arg_lit0("k", "keep", "keep signal field ON after receive"),
arg_lit0(NULL, "crc-ht", "calculate and append CRC-8/HITAG (also for ZX8211)"),
arg_lit0("@", NULL, "continuous mode"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, false);
uint32_t delay = arg_get_u32_def(ctx, 1, 0);
int cmd_len = 128;
char cmd[128] = {0};
CLIGetStrWithReturn(ctx, 2, (uint8_t *)cmd, &cmd_len);
int extra_arg_len = 250;
char extra_arg[250] = {0};
CLIGetStrWithReturn(ctx, 3, (uint8_t *)extra_arg, &extra_arg_len);
uint16_t period_1 = arg_get_u32_def(ctx, 4, 0);
uint16_t period_0 = arg_get_u32_def(ctx, 5, 0);
uint32_t samples = arg_get_u32_def(ctx, 6, 0);
bool verbose = arg_get_lit(ctx, 7);
bool keep_field_on = arg_get_lit(ctx, 8);
bool add_crc_ht = arg_get_lit(ctx, 9);
bool cm = arg_get_lit(ctx, 10);
CLIParserFree(ctx);
if (g_session.pm3_present == false)
return PM3_ENOTTY;
#define PAYLOAD_HEADER_SIZE (12 + (3 * LF_CMDREAD_MAX_EXTRA_SYMBOLS))
struct p {
uint32_t delay;
uint16_t period_0;
uint16_t period_1;
uint8_t symbol_extra[LF_CMDREAD_MAX_EXTRA_SYMBOLS];
uint16_t period_extra[LF_CMDREAD_MAX_EXTRA_SYMBOLS];
uint32_t samples : 30;
bool keep_field_on : 1;
bool verbose : 1;
uint8_t data[PM3_CMD_DATA_SIZE - PAYLOAD_HEADER_SIZE];
} PACKED payload;
payload.delay = delay;
payload.period_1 = period_1;
payload.period_0 = period_0;
payload.samples = samples;
payload.keep_field_on = keep_field_on;
payload.verbose = verbose;
if (add_crc_ht && (cmd_len <= 120)) {
// Hitag 1, Hitag S, ZX8211
// width=8 poly=0x1d init=0xff refin=false refout=false xorout=0x00 check=0xb4 residue=0x00 name="CRC-8/HITAG"
crc_t crc;
uint8_t data = 0;
uint8_t n = 0;
crc_init_ref(&crc, 8, 0x1d, 0xff, 0, false, false);
uint8_t i;
for (i = 0; i < cmd_len; i++) {
if ((cmd[i] != '0') && (cmd[i] != '1')) {
continue;
}
data <<= 1;
data += cmd[i] - '0';
n += 1;
if (n == 8) {
crc_update2(&crc, data, n);
n = 0;
data = 0;
}
}
if (n > 0) {
crc_update2(&crc, data, n);
}
uint8_t crc_final = crc_finish(&crc);
for (int j = 7; j >= 0; j--) {
cmd[cmd_len] = ((crc_final >> j) & 1) ? '1' : '0';
cmd_len++;
}
}
memcpy(payload.data, cmd, cmd_len);
// extra symbol definition
uint8_t index_extra = 0;
int i = 0;
for (; i < extra_arg_len;) {
if (index_extra < LF_CMDREAD_MAX_EXTRA_SYMBOLS - 1) {
payload.symbol_extra[index_extra] = extra_arg[i];
int tmp = atoi(extra_arg + (i + 1));
payload.period_extra[index_extra] = tmp;
index_extra++;
i++;
while (extra_arg[i] >= 0x30 && extra_arg[i] <= 0x39)
i++;
} else {
PrintAndLogEx(WARNING, "Too many extra symbols, please define up to %i symbols", LF_CMDREAD_MAX_EXTRA_SYMBOLS);
}
}
// bitbang mode
if (payload.delay == 0) {
if (payload.period_0 < 7 || payload.period_1 < 7) {
PrintAndLogEx(WARNING, "periods cannot be less than 7us in bit bang mode");
return PM3_EINVARG;
}
}
PrintAndLogEx(DEBUG, "Cmd read - settings");
PrintAndLogEx(DEBUG, "-------------------");
PrintAndLogEx(DEBUG, "delay: %u , zero %u , one %u , samples %u", payload.delay, payload.period_0, payload.period_1, payload.samples);
PrintAndLogEx(DEBUG, "Extra symbols");
PrintAndLogEx(DEBUG, "-------------");
for (i = 0; i < LF_CMDREAD_MAX_EXTRA_SYMBOLS; i++) {
if (payload.symbol_extra[i] == 0x00)
continue;
PrintAndLogEx(DEBUG, " %c - %u", payload.symbol_extra[i], payload.period_extra[i]);
}
PrintAndLogEx(DEBUG, "data: %s", payload.data);
if (cm) {
PrintAndLogEx(INFO, "Press " _GREEN_("<Enter>") " to exit");
}
if (verbose) {
PrintAndLogEx(SUCCESS, "Sending command...");
}
int ret = PM3_SUCCESS;
do {
clearCommandBuffer();
SendCommandNG(CMD_LF_MOD_THEN_ACQ_RAW_ADC, (uint8_t *)&payload, PAYLOAD_HEADER_SIZE + cmd_len);
PacketResponseNG resp;
i = 10;
// 20sec wait loop
while (!WaitForResponseTimeout(CMD_LF_MOD_THEN_ACQ_RAW_ADC, &resp, 2000) && i != 0) {
if (verbose) {
PrintAndLogEx(NORMAL, "." NOLF);
}
i--;
}
if (verbose) {
PrintAndLogEx(NORMAL, "");
}
if (resp.status != PM3_SUCCESS) {
PrintAndLogEx(WARNING, "command failed.");
return PM3_ESOFT;
}
if (i) {
if (verbose) {
PrintAndLogEx(SUCCESS, "downloading response signal data");
}
getSamples(samples, false);
ret = PM3_SUCCESS;
} else {
PrintAndLogEx(WARNING, "timeout while waiting for reply.");
return PM3_ETIMEOUT;
}
} while (cm && kbd_enter_pressed() == false);
return ret;
}
int CmdFlexdemod(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
#ifndef LONG_WAIT
#define LONG_WAIT 100
#endif
int i, j, start, bit, sum;
int data[g_GraphTraceLen];
memcpy(data, g_GraphBuffer, g_GraphTraceLen);
size_t size = g_GraphTraceLen;
for (i = 0; i < g_GraphTraceLen; ++i)
data[i] = (data[i] < 0) ? -1 : 1;
for (start = 0; start < size - LONG_WAIT; start++) {
int first = data[start];
for (i = start; i < start + LONG_WAIT; i++) {
if (data[i] != first) {
break;
}
}
if (i == (start + LONG_WAIT))
break;
}
if (start == size - LONG_WAIT) {
PrintAndLogEx(WARNING, "nothing to wait for");
return PM3_ENODATA;
}
data[start] = 4;
data[start + 1] = 0;
uint8_t bits[64] = {0x00};
i = start;
for (bit = 0; bit < 64; bit++) {
sum = 0;
for (j = 0; j < 16; j++) {
sum += data[i++];
}
bits[bit] = (sum > 0) ? 1 : 0;
PrintAndLogEx(NORMAL, "bit %d sum %d", bit, sum);
}
for (bit = 0; bit < 64; bit++) {
sum = 0;
for (j = 0; j < 16; j++)
sum += data[i++];
if (sum > 0 && bits[bit] != 1) PrintAndLogEx(WARNING, "oops1 at %d", bit);
if (sum < 0 && bits[bit] != 0) PrintAndLogEx(WARNING, "oops2 at %d", bit);
}
// iceman, use g_DemodBuffer? blue line?
// HACK writing back to graphbuffer.
g_GraphTraceLen = 32 * 64;
i = 0;
for (bit = 0; bit < 64; bit++) {
int phase = (bits[bit] == 0) ? 0 : 1;
for (j = 0; j < 32; j++) {
g_GraphBuffer[i++] = phase;
phase = !phase;
}
}
RepaintGraphWindow();
return PM3_SUCCESS;
}
/*
* this function will save a copy of the current lf config value, and set config to default values.
*
*/
int lf_config_savereset(sample_config *config) {
if (config == NULL) {
return PM3_EINVARG;
}
memset(config, 0, sizeof(sample_config));
int res = lf_getconfig(config);
if (res != PM3_SUCCESS) {
PrintAndLogEx(ERR, "failed to get current device LF config");
return res;
}
sample_config def_config = {
.decimation = 1,
.bits_per_sample = 8,
.averaging = 1,
.divisor = LF_DIVISOR_125,
.trigger_threshold = 0,
.samples_to_skip = 0,
.verbose = false,
};
res = lf_config(&def_config);
if (res != PM3_SUCCESS) {
PrintAndLogEx(ERR, "failed to reset LF configuration to default values");
return res;
}
// disable output on save config object
config->verbose = false;
return PM3_SUCCESS;
}
int lf_getconfig(sample_config *config) {
if (!g_session.pm3_present) return PM3_ENOTTY;
if (config == NULL)
return PM3_EINVARG;
clearCommandBuffer();
SendCommandNG(CMD_LF_SAMPLING_GET_CONFIG, NULL, 0);
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_LF_SAMPLING_GET_CONFIG, &resp, 2000)) {
PrintAndLogEx(WARNING, "command execution time out");
return PM3_ETIMEOUT;
}
memcpy(config, resp.data.asBytes, sizeof(sample_config));
return PM3_SUCCESS;
}
int lf_config(sample_config *config) {
if (!g_session.pm3_present) return PM3_ENOTTY;
clearCommandBuffer();
if (config != NULL)
SendCommandNG(CMD_LF_SAMPLING_SET_CONFIG, (uint8_t *)config, sizeof(sample_config));
else
SendCommandNG(CMD_LF_SAMPLING_PRINT_CONFIG, NULL, 0);
return PM3_SUCCESS;
}
int CmdLFConfig(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf config",
"Get/Set config for LF sampling, bit/sample, decimation, frequency\n"
"These changes are temporary, will be reset after a power cycle.\n\n"
" - use " _YELLOW_("`lf read`") _CYAN_(" performs a read (active field)\n")
_CYAN_(" - use ") _YELLOW_("`lf sniff`") _CYAN_(" performs a sniff (no active field)"),
"lf config --> shows current config\n"
"lf config -b 8 --125 --> samples at 125 kHz, 8 bps\n"
"lf config -b 4 --134 --dec 3 --> samples at 134 kHz, averages three samples into one, stored with a resolution of 4 bits per sample\n"
"lf config --trig 20 -s 10000 --> trigger sampling when above 20, skip 10 000 first samples after triggered\n"
"lf config --reset --> reset back to default values\n"
);
char div_str[70] = {0};
snprintf(div_str, sizeof(div_str), "Manually set freq divisor. %d -> 134 kHz, %d -> 125 kHz", LF_DIVISOR_134, LF_DIVISOR_125);
void *argtable[] = {
arg_param_begin,
arg_lit0(NULL, "125", "125 kHz frequency"),
arg_lit0(NULL, "134", "134 kHz frequency"),
arg_int0("a", "avg", "<0|1>", "averaging - if set, will average the stored sample value when decimating (default 1)"),
arg_int0("b", "bps", "<1-8>", "sets resolution of bits per sample (default 8)"),
arg_int0(NULL, "dec", "<1-8>", "sets decimation. A value of N saves only 1 in N samples (default 1)"),
arg_int0(NULL, "divisor", "<19-255>", div_str),
arg_int0("f", "freq", "<47-600>", "manually set frequency in kHz"),
arg_lit0("r", "reset", "reset values to defaults"),
arg_int0("s", "skip", "<dec>", "sets a number of samples to skip before capture (default 0)"),
arg_int0("t", "trig", "<0-128>", "sets trigger threshold. 0 means no threshold"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool use_125 = arg_get_lit(ctx, 1);
bool use_134 = arg_get_lit(ctx, 2);
int8_t avg = arg_get_int_def(ctx, 3, 0);
int8_t bps = arg_get_int_def(ctx, 4, -1);
int8_t dec = arg_get_int_def(ctx, 5, -1);
int16_t divisor = arg_get_int_def(ctx, 6, -1);
int16_t freq = arg_get_int_def(ctx, 7, -1);
bool reset = arg_get_lit(ctx, 8);
int32_t skip = arg_get_int_def(ctx, 9, -1);
int16_t trigg = arg_get_int_def(ctx, 10, -1);
CLIParserFree(ctx);
if (g_session.pm3_present == false)
return PM3_ENOTTY;
// if called with no params, just print the device config
if (strlen(Cmd) == 0) {
return lf_config(NULL);
}
if (use_125 + use_134 > 1) {
PrintAndLogEx(ERR, "use only one of 125 or 134 params");
return PM3_EINVARG;
}
sample_config config = {
.decimation = -1,
.bits_per_sample = -1,
.averaging = -1,
.divisor = -1,
.trigger_threshold = -1,
.samples_to_skip = -1,
.verbose = true
};
if (reset) {
config.decimation = 1;
config.bits_per_sample = 8;
config.averaging = 1,
config.divisor = LF_DIVISOR_125;
config.samples_to_skip = 0;
config.trigger_threshold = 0;
gs_lf_threshold_set = false;
}
if (use_125)
config.divisor = LF_DIVISOR_125;
if (use_134)
config.divisor = LF_DIVISOR_134;
// check if the config.averaging is not set by if(reset){...}
if (config.averaging == -1)
config.averaging = (avg == 1);
if (bps > -1) {
// bps is limited to 8
config.bits_per_sample = (bps & 0x0F);
if (config.bits_per_sample > 8)
config.bits_per_sample = 8;
}
if (dec > -1) {
// decimation is limited to 8
config.decimation = (dec & 0x0F);
if (config.decimation > 8)
config.decimation = 8;
}
if (divisor > -1) {
config.divisor = divisor;
if (config.divisor < 19) {
PrintAndLogEx(ERR, "divisor must be between 19 and 255");
return PM3_EINVARG;
}
}
if (freq > -1) {
config.divisor = LF_FREQ2DIV(freq);
if (config.divisor < 19) {
PrintAndLogEx(ERR, "freq must be between 47 and 600");
return PM3_EINVARG;
}
}
if (trigg > -1) {
config.trigger_threshold = trigg;
gs_lf_threshold_set = (config.trigger_threshold > 0);
}
config.samples_to_skip = skip;
return lf_config(&config);
}
int lf_read(bool verbose, uint32_t samples) {
if (!g_session.pm3_present) return PM3_ENOTTY;
struct p {
uint32_t samples : 31;
bool verbose : 1;
} PACKED;
struct p payload;
payload.verbose = verbose;
payload.samples = samples;
clearCommandBuffer();
SendCommandNG(CMD_LF_ACQ_RAW_ADC, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
if (gs_lf_threshold_set) {
WaitForResponse(CMD_LF_ACQ_RAW_ADC, &resp);
} else {
if (!WaitForResponseTimeout(CMD_LF_ACQ_RAW_ADC, &resp, 2500)) {
PrintAndLogEx(WARNING, "(lf_read) command execution time out");
return PM3_ETIMEOUT;
}
}
// response is number of bits read
uint32_t size = (resp.data.asDwords[0] / 8);
getSamples(size, verbose);
return PM3_SUCCESS;
}
int CmdLFRead(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf read",
"Sniff low frequency signal.\n"
" - use " _YELLOW_("`lf config`") _CYAN_(" to set parameters.\n")
_CYAN_(" - use ") _YELLOW_("`data plot`") _CYAN_(" to look at it"),
"lf read -v -s 12000 --> collect 12000 samples\n"
"lf read -s 3000 -@ --> oscilloscope style \n"
);
void *argtable[] = {
arg_param_begin,
arg_u64_0("s", "samples", "<dec>", "number of samples to collect"),
arg_lit0("v", "verbose", "verbose output"),
arg_lit0("@", NULL, "continuous reading mode"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
uint32_t samples = arg_get_u32_def(ctx, 1, 0);
bool verbose = arg_get_lit(ctx, 2);
bool cm = arg_get_lit(ctx, 3);
CLIParserFree(ctx);
if (g_session.pm3_present == false)
return PM3_ENOTTY;
if (cm) {
PrintAndLogEx(INFO, "Press " _GREEN_("<Enter>") " to exit");
}
int ret = PM3_SUCCESS;
do {
ret = lf_read(verbose, samples);
} while (cm && kbd_enter_pressed() == false);
return ret;
}
int lf_sniff(bool verbose, uint32_t samples) {
if (!g_session.pm3_present) return PM3_ENOTTY;
struct p {
uint32_t samples : 31;
bool verbose : 1;
} PACKED payload;
payload.samples = (samples & 0xFFFF);
payload.verbose = verbose;
clearCommandBuffer();
SendCommandNG(CMD_LF_SNIFF_RAW_ADC, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
if (gs_lf_threshold_set) {
WaitForResponse(CMD_LF_SNIFF_RAW_ADC, &resp);
} else {
if (WaitForResponseTimeout(CMD_LF_SNIFF_RAW_ADC, &resp, 2500) == false) {
PrintAndLogEx(WARNING, "(lf_read) command execution time out");
return PM3_ETIMEOUT;
}
}
// response is number of bits read
uint32_t size = (resp.data.asDwords[0] / 8);
getSamples(size, verbose);
return PM3_SUCCESS;
}
int CmdLFSniff(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf sniff",
"Sniff low frequency signal. You need to configure the LF part on the Proxmark3 device manually.\n"
"Usually a trigger and skip samples is a good thing to set before doing a low frequency sniff.\n"
"\n"
" - use " _YELLOW_("`lf config`") _CYAN_(" to set parameters.\n")
_CYAN_(" - use ") _YELLOW_("`data plot`") _CYAN_(" to look at sniff signal.\n")
_CYAN_(" - use ") _YELLOW_("`lf search -1`") _CYAN_(" to see if signal can be automatic decoded\n"),
"lf sniff -v\n"
"lf sniff -s 3000 -@ --> oscilloscope style \n"
);
void *argtable[] = {
arg_param_begin,
arg_u64_0("s", "samples", "<dec>", "number of samples to collect"),
arg_lit0("v", "verbose", "verbose output"),
arg_lit0("@", NULL, "continuous sniffing mode"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
uint32_t samples = (arg_get_u32_def(ctx, 1, 0) & 0xFFFF);
bool verbose = arg_get_lit(ctx, 2);
bool cm = arg_get_lit(ctx, 3);
CLIParserFree(ctx);
if (g_session.pm3_present == false)
return PM3_ENOTTY;
if (cm) {
PrintAndLogEx(INFO, "Press " _GREEN_("<Enter>") " to exit");
}
int ret = PM3_SUCCESS;
do {
ret = lf_sniff(verbose, samples);
} while (cm && !kbd_enter_pressed());
return ret;
}
static void lf_chk_bitstream(void) {
// convert to bitstream if necessary
for (int i = 0; i < (int)(g_GraphTraceLen / 2); i++) {
if (g_GraphBuffer[i] > 1 || g_GraphBuffer[i] < 0) {
CmdGetBitStream("");
PrintAndLogEx(INFO, "converted Graphbuffer to bitstream values (0|1)");
break;
}
}
}
// Uploads g_GraphBuffer to device, in order to be used for LF SIM.
int lfsim_upload_gb(void) {
PrintAndLogEx(DEBUG, "DEBUG: Uploading %zu bytes", g_GraphTraceLen);
struct pupload {
uint8_t flag;
uint16_t offset;
uint8_t data[PM3_CMD_DATA_SIZE - 3];
} PACKED payload_up;
// flag =
// b0 0
// 1 clear bigbuff
payload_up.flag = 0x1;
// fast push mode
g_conn.block_after_ACK = true;
PacketResponseNG resp;
//can send only 512 bits at a time (1 byte sent per bit...)
PrintAndLogEx(INFO, "." NOLF);
for (size_t i = 0; i < g_GraphTraceLen; i += PM3_CMD_DATA_SIZE - 3) {
size_t len = MIN((g_GraphTraceLen - i), PM3_CMD_DATA_SIZE - 3);
clearCommandBuffer();
payload_up.offset = i;
for (size_t j = 0; j < len; j++)
payload_up.data[j] = g_GraphBuffer[i + j];
SendCommandNG(CMD_LF_UPLOAD_SIM_SAMPLES, (uint8_t *)&payload_up, sizeof(struct pupload));
WaitForResponse(CMD_LF_UPLOAD_SIM_SAMPLES, &resp);
if (resp.status != PM3_SUCCESS) {
PrintAndLogEx(INFO, "Bigbuf is full");
break;
}
PrintAndLogEx(NORMAL, "." NOLF);
fflush(stdout);
payload_up.flag = 0;
}
PrintAndLogEx(NORMAL, "");
// Disable fast mode before last command
g_conn.block_after_ACK = false;
return PM3_SUCCESS;
}
//Attempt to simulate any wave in buffer (one bit per output sample)
// converts g_GraphBuffer to bitstream (based on zero crossings) if needed.
int CmdLFSim(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf sim",
"Simulate low frequency tag from graphbuffer\n"
"Use " _YELLOW_("`lf config`") _CYAN_(" to set parameters"),
"lf sim\n"
"lf sim --gap 240 --> start simulating with 240ms gap"
);
void *argtable[] = {
arg_param_begin,
arg_u64_0("g", "gap", "<ms>", "start gap in microseconds"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
uint16_t gap = arg_get_u32_def(ctx, 1, 0);
CLIParserFree(ctx);
if (g_session.pm3_present == false) {
PrintAndLogEx(DEBUG, "DEBUG: no proxmark present");
return PM3_ENOTTY;
}
// sanity check
if (g_GraphTraceLen < 20) {
PrintAndLogEx(ERR, "No data in Graphbuffer");
return PM3_ENODATA;
}
// convert to bitstream if necessary
lf_chk_bitstream();
lfsim_upload_gb();
struct p {
uint16_t len;
uint16_t gap;
} PACKED payload;
payload.len = g_GraphTraceLen;
payload.gap = gap;
clearCommandBuffer();
SendCommandNG(CMD_LF_SIMULATE, (uint8_t *)&payload, sizeof(payload));
return lfsim_wait_check(CMD_LF_SIMULATE);
}
// sim fsk data given clock, fcHigh, fcLow, invert
// - allow pull data from g_DemodBuffer
int CmdLFfskSim(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf simfsk",
"Simulate FSK tag from DemodBuffer or input. There are about four FSK modulations to know of.\n"
"FSK1 - where fc/8 = high and fc/5 = low\n"
"FSK1a - is inverted FSK1, ie: fc/5 = high and fc/8 = low\n"
"FSK2 - where fc/10 = high and fc/8 = low\n"
"FSK2a - is inverted FSK2, ie: fc/10 = high and fc/8 = low\n\n"
"NOTE: if you set one clock manually set them all manually",
"lf simfsk -c 40 --high 8 --low 5 -d 010203 --> FSK1 rf/40 data 010203\n"
"lf simfsk -c 40 --high 5 --low 8 -d 010203 --> FSK1a rf/40 data 010203\n"
"lf simfsk -c 64 --high 10 --low 8 -d 010203 --> FSK2 rf/64 data 010203\n"
"lf simfsk -c 64 --high 8 --low 10 -d 010203 --> FSK2a rf/64 data 010203\n\n"
"lf simfsk -c 50 --high 10 --low 8 -d 1D5559555569A9A555A59569 --> simulate HID Prox tag manually\n"
"lf simfsk -c 50 --high 10 --low 8 --stt -d 011DB2487E8D811111111111 --> simulate AWID tag manually"
);
void *argtable[] = {
arg_param_begin,
arg_u64_0("c", "clk", "<dec>", "manually set clock - can autodetect if using DemodBuffer (default 64)"),
arg_u64_0(NULL, "low", "<dec>", "manually set larger Field Clock"),
arg_u64_0(NULL, "high", "<dec>", "manually set smaller Field Clock"),
arg_lit0(NULL, "stt", "TBD! - STT to enable a gap between playback repetitions (default: no gap)"),
arg_str0("d", "data", "<hex>", "data to sim - omit to use DemodBuffer"),
arg_lit0("v", "verbose", "verbose output"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
uint8_t clk = arg_get_u32_def(ctx, 1, 0);
uint8_t fclow = arg_get_u32_def(ctx, 2, 0);
uint8_t fchigh = arg_get_u32_def(ctx, 3, 0);
bool separator = arg_get_lit(ctx, 4);
int raw_len = 64;
char raw[64] = {0};
CLIGetStrWithReturn(ctx, 5, (uint8_t *)raw, &raw_len);
bool verbose = arg_get_lit(ctx, 6);
CLIParserFree(ctx);
// No args
if (raw_len == 0 && g_DemodBufferLen == 0) {
PrintAndLogEx(ERR, "No user supplied data nor inside DemodBuffer");
return PM3_EINVARG;
}
if (verbose && separator) {
PrintAndLogEx(INFO, "STT gap isn't implemented yet. Skipping...");
separator = 0;
}
uint8_t bs[256] = {0x00};
int bs_len = hextobinarray((char *)bs, raw);
if (bs_len == 0) {
// Using data from g_DemodBuffer
// might be able to autodetect FC and clock from Graphbuffer if using g_DemodBuffer
// will need clock, fchigh, fclow and bitstream
PrintAndLogEx(INFO, "No user supplied data, using DemodBuffer...");
if (clk == 0 || fchigh == 0 || fclow == 0) {
int firstClockEdge = 0;
bool res = fskClocks(&fchigh, &fclow, &clk, &firstClockEdge);
if (res == false) {
clk = 0;
fchigh = 0;
fclow = 0;
}
}
PrintAndLogEx(DEBUG, "Detected rf/%u, High fc/%u, Low fc/%u, n %zu ", clk, fchigh, fclow, g_DemodBufferLen);
} else {
setDemodBuff(bs, bs_len, 0);
}
//default if not found
if (clk == 0) {
clk = 50;
PrintAndLogEx(DEBUG, "Autodetection of clock failed, falling back to rf/%u", clk);
}
if (fchigh == 0) {
fchigh = 10;
PrintAndLogEx(DEBUG, "Autodetection of larger clock failed, falling back to fc/%u", fchigh);
}
if (fclow == 0) {
fclow = 8;
PrintAndLogEx(DEBUG, "Autodetection of smaller clock failed, falling back to fc/%u", fclow);
}
size_t size = g_DemodBufferLen;
if (size > (PM3_CMD_DATA_SIZE - sizeof(lf_fsksim_t))) {
PrintAndLogEx(WARNING, "DemodBuffer too long for current implementation - length: %zu - max: %zu", size, PM3_CMD_DATA_SIZE - sizeof(lf_fsksim_t));
PrintAndLogEx(INFO, "Continuing with trimmed down data");
size = PM3_CMD_DATA_SIZE - sizeof(lf_fsksim_t);
}
lf_fsksim_t *payload = calloc(1, sizeof(lf_fsksim_t) + size);
payload->fchigh = fchigh;
payload->fclow = fclow;
payload->separator = separator;
payload->clock = clk;
memcpy(payload->data, g_DemodBuffer, size);
clearCommandBuffer();
SendCommandNG(CMD_LF_FSK_SIMULATE, (uint8_t *)payload, sizeof(lf_fsksim_t) + size);
free(payload);
setClockGrid(clk, 0);
return lfsim_wait_check(CMD_LF_FSK_SIMULATE);
}
// sim ask data given clock, invert, manchester or raw, separator
// - allow pull data from g_DemodBuffer
int CmdLFaskSim(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf simask",
"Simulate ASK tag from DemodBuffer or input",
"lf simask --clk 32 --am -d 0102030405 --> simulate ASK/MAN rf/32\n"
"lf simask --clk 32 --bi -d 0102030405 --> simulate ASK/BIPHASE rf/32\n\n"
"lf simask --clk 64 --am -d ffbd8001686f1924 --> simulate a EM410x tag\n"
"lf simask --clk 64 --am --stt -d 5649533200003F340000001B --> simulate a VISA2K tag"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("i", "inv", "invert data"),
arg_u64_0("c", "clk", "<dec>", "manually set clock - can autodetect if using DemodBuffer (default 64)"),
arg_lit0(NULL, "bi", "ask/biphase encoding"),
arg_lit0(NULL, "am", "ask/manchester encoding (default)"),
arg_lit0(NULL, "ar", "ask/raw encoding"),
arg_lit0(NULL, "stt", "add t55xx Sequence Terminator gap - default: no gaps (only manchester)"),
arg_str0("d", "data", "<hex>", "data to sim - omit to use DemodBuffer"),
arg_lit0("v", "verbose", "verbose output"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool invert = arg_get_lit(ctx, 1);
uint8_t clk = arg_get_u32_def(ctx, 2, 0);
bool use_bi = arg_get_lit(ctx, 3);
bool use_am = arg_get_lit(ctx, 4);
bool use_ar = arg_get_lit(ctx, 5);
bool separator = arg_get_lit(ctx, 6);
int raw_len = 64;
char raw[64] = {0};
CLIGetStrWithReturn(ctx, 7, (uint8_t *)raw, &raw_len);
bool verbose = arg_get_lit(ctx, 8);
CLIParserFree(ctx);
if ((use_bi + use_am + use_ar) > 1) {
PrintAndLogEx(ERR, "only one encoding can be set");
return PM3_EINVARG;
}
uint8_t encoding = 1;
if (use_bi)
encoding = 2;
else if (use_ar)
encoding = 0;
// No args
if (raw_len == 0 && g_DemodBufferLen == 0) {
PrintAndLogEx(ERR, "No user supplied data nor any inside DemodBuffer");
return PM3_EINVARG;
}
uint8_t bs[256] = {0x00};
int bs_len = hextobinarray((char *)bs, raw);
if (bs_len == 0) {
// Using data from g_DemodBuffer
// might be able to autodetect FC and clock from Graphbuffer if using g_DemodBuffer
// will need carrier, clock, and bitstream
PrintAndLogEx(INFO, "No user supplied data, using DemodBuffer...");
if (clk == 0) {
int res = GetAskClock("0", verbose);
if (res < 1) {
clk = 64;
} else {
clk = (uint8_t)res;
}
}
PrintAndLogEx(DEBUG, "Detected rf/%u, n %zu ", clk, g_DemodBufferLen);
} else {
setDemodBuff(bs, bs_len, 0);
}
if (clk == 0) {
clk = 32;
PrintAndLogEx(DEBUG, "Autodetection of clock failed, falling back to rf/%u", clk);
}
if (encoding == 0) {
clk /= 2; // askraw needs to double the clock speed
PrintAndLogEx(DEBUG, "ASK/RAW needs half rf. Using rf/%u", clk);
}
size_t size = g_DemodBufferLen;
if (size > (PM3_CMD_DATA_SIZE - sizeof(lf_asksim_t))) {
PrintAndLogEx(WARNING, "DemodBuffer too long for current implementation - length: %zu - max: %zu", size, PM3_CMD_DATA_SIZE - sizeof(lf_asksim_t));
PrintAndLogEx(INFO, "Continuing with trimmed down data");
size = PM3_CMD_DATA_SIZE - sizeof(lf_asksim_t);
}
lf_asksim_t *payload = calloc(1, sizeof(lf_asksim_t) + size);
payload->encoding = encoding;
payload->invert = invert;
payload->separator = separator;
payload->clock = clk;
memcpy(payload->data, g_DemodBuffer, size);
clearCommandBuffer();
SendCommandNG(CMD_LF_ASK_SIMULATE, (uint8_t *)payload, sizeof(lf_asksim_t) + size);
free(payload);
setClockGrid(clk, 0);
return lfsim_wait_check(CMD_LF_ASK_SIMULATE);
}
// sim psk data given carrier, clock, invert
// - allow pull data from g_DemodBuffer or parameters
int CmdLFpskSim(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf simpsk",
"Simulate PSK tag from DemodBuffer or input",
"lf simpsk -1 --clk 40 --fc 4 -d 01020304 --> simulate PSK1 rf/40 psksub fc/4, data 01020304\n\n"
"lf simpsk -1 --clk 32 --fc 2 -d a0000000bd989a11 --> simulate a indala tag manually"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("1", "psk1", "set PSK1 (default)"),
arg_lit0("2", "psk2", "set PSK2"),
arg_lit0("3", "psk3", "set PSK3"),
arg_lit0("i", "inv", "invert data"),
arg_u64_0("c", "clk", "<dec>", "manually set clock - can autodetect if using DemodBuffer (default 32)"),
arg_u64_0(NULL, "fc", "<dec>", "2|4|8 are valid carriers (default 2)"),
arg_str0("d", "data", "<hex>", "data to sim - omit to use DemodBuffer"),
arg_lit0("v", "verbose", "verbose output"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool use_psk1 = arg_get_lit(ctx, 1);
bool use_psk2 = arg_get_lit(ctx, 2);
bool use_psk3 = arg_get_lit(ctx, 3);
bool invert = arg_get_lit(ctx, 4);
uint8_t clk = arg_get_u32_def(ctx, 5, 0);
uint8_t carrier = arg_get_u32_def(ctx, 6, 2);
int raw_len = 64;
char raw[64] = {0};
CLIGetStrWithReturn(ctx, 7, (uint8_t *)raw, &raw_len);
bool verbose = arg_get_lit(ctx, 8);
CLIParserFree(ctx);
if ((use_psk1 + use_psk2 + use_psk3) > 1) {
PrintAndLogEx(ERR, "only one PSK mode can be set");
return PM3_EINVARG;
}
if (carrier != 2 && carrier != 4 && carrier != 8) {
PrintAndLogEx(ERR, "Wrong carrier given, expected <2|4|8>");
return PM3_EINVARG;
}
uint8_t psk_type = 1;
if (use_psk2)
psk_type = 2;
if (use_psk3)
psk_type = 3;
// No args
if (raw_len == 0 && g_DemodBufferLen == 0) {
PrintAndLogEx(ERR, "No user supplied data nor any inside DemodBuffer");
return PM3_EINVARG;
}
uint8_t bs[256] = {0x00};
int bs_len = hextobinarray((char *)bs, raw);
if (bs_len == 0) {
// Using data from g_DemodBuffer
// might be able to autodetect FC and clock from Graphbuffer if using g_DemodBuffer
// will need carrier, clock, and bitstream
PrintAndLogEx(INFO, "No user supplied data, using DemodBuffer...");
int res;
if (clk == 0) {
res = GetPskClock("", verbose);
if (res < 1) {
clk = 32;
} else {
clk = (uint8_t)res;
}
}
if (carrier == 0) {
res = GetPskCarrier(verbose);
if (res < 1) {
carrier = 2;
} else {
carrier = (uint8_t)res;
}
}
PrintAndLogEx(DEBUG, "Detected rf/%u, fc/%u, n %zu ", clk, carrier, g_DemodBufferLen);
} else {
setDemodBuff(bs, bs_len, 0);
}
if (clk == 0) {
clk = 32;
PrintAndLogEx(DEBUG, "Autodetection of clock failed, falling back to rf/%u", clk);
}
if (psk_type == 2) {
//need to convert psk2 to psk1 data before sim
psk2TOpsk1(g_DemodBuffer, g_DemodBufferLen);
} else if (psk_type == 3) {
PrintAndLogEx(INFO, "PSK3 not yet available. Falling back to PSK1");
}
size_t size = g_DemodBufferLen;
if (size > (PM3_CMD_DATA_SIZE - sizeof(lf_psksim_t))) {
PrintAndLogEx(WARNING, "DemodBuffer too long for current implementation - length: %zu - max: %zu", size, PM3_CMD_DATA_SIZE - sizeof(lf_psksim_t));
PrintAndLogEx(INFO, "Continuing with trimmed down data");
size = PM3_CMD_DATA_SIZE - sizeof(lf_psksim_t);
}
lf_psksim_t *payload = calloc(1, sizeof(lf_psksim_t) + size);
payload->carrier = carrier;
payload->invert = invert;
payload->clock = clk;
memcpy(payload->data, g_DemodBuffer, size);
clearCommandBuffer();
SendCommandNG(CMD_LF_PSK_SIMULATE, (uint8_t *)payload, sizeof(lf_psksim_t) + size);
free(payload);
setClockGrid(clk, 0);
return lfsim_wait_check(CMD_LF_PSK_SIMULATE);
}
int CmdLFSimBidir(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf simbidir",
"Simulate LF tag with bidirectional data transmission between reader and tag",
"lf simbidir"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
// Set ADC to twice the carrier for a slight supersampling
// HACK: not implemented in ARMSRC.
PrintAndLogEx(INFO, "Not implemented yet.");
// SendCommandMIX(CMD_LF_SIMULATE_BIDIR, 47, 384, 0, NULL, 0);
return PM3_SUCCESS;
}
// ICEMAN, Verichip is Animal tag. Tested against correct reader
/*
int CmdVchDemod(const char *Cmd) {
if (g_GraphTraceLen < 4096) {
PrintAndLogEx(DEBUG, "debug; VchDemod - too few samples");
return PM3_EINVARG;
}
// Is this the entire sync pattern, or does this also include some
// data bits that happen to be the same everywhere? That would be
// lovely to know.
static const int SyncPattern[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
// iceman, using correlate as preamble detect seems way better than our current memcompare
// So first, we correlate for the sync pattern, and mark that.
int bestCorrel = 0, bestPos = 0;
int i, j, sum = 0;
// It does us no good to find the sync pattern, with fewer than 2048 samples after it.
for (i = 0; i < (g_GraphTraceLen - 2048); i++) {
for (j = 0; j < ARRAYLEN(SyncPattern); j++) {
sum += g_GraphBuffer[i + j] * SyncPattern[j];
}
if (sum > bestCorrel) {
bestCorrel = sum;
bestPos = i;
}
}
PrintAndLogEx(NORMAL, "best sync at %d [metric %d]", bestPos, bestCorrel);
char bits[257];
bits[256] = '\0';
int worst = INT_MAX, worstPos = 0;
for (i = 0; i < 2048; i += 8) {
sum = 0;
for (j = 0; j < 8; j++)
sum += g_GraphBuffer[bestPos + i + j];
if (sum < 0)
bits[i / 8] = '.';
else
bits[i / 8] = '1';
if (abs(sum) < worst) {
worst = abs(sum);
worstPos = i;
}
}
PrintAndLogEx(NORMAL, "bits:");
PrintAndLogEx(NORMAL, "%s", bits);
PrintAndLogEx(NORMAL, "worst metric: %d at pos %d", worst, worstPos);
// clone
if (strcmp(Cmd, "clone") == 0) {
g_GraphTraceLen = 0;
char *s;
for (s = bits; *s; s++) {
for (j = 0; j < 16; j++) {
g_GraphBuffer[g_GraphTraceLen++] = (*s == '1') ? 1 : 0;
}
}
RepaintGraphWindow();
}
return PM3_SUCCESS;
}
*/
static bool CheckChipType(bool getDeviceData) {
bool retval = false;
if (!getDeviceData) return retval;
save_restoreGB(GRAPH_SAVE);
save_restoreDB(GRAPH_SAVE);
//check for em4x05/em4x69 chips first
uint32_t word = 0;
if (em4x05_isblock0(&word)) {
PrintAndLogEx(SUCCESS, "Chipset detection: " _GREEN_("EM4x05 / EM4x69"));
PrintAndLogEx(HINT, "Hint: try " _YELLOW_("`lf em 4x05`") " commands");
retval = true;
goto out;
}
//check for t55xx chip...
if (tryDetectP1(true)) {
PrintAndLogEx(SUCCESS, "Chipset detection: " _GREEN_("T55xx"));
PrintAndLogEx(HINT, "Hint: try " _YELLOW_("`lf t55xx`") " commands");
retval = true;
goto out;
}
#if !defined ICOPYX
// check for em4x50 chips
if (detect_4x50_block()) {
PrintAndLogEx(SUCCESS, "Chipset detection: " _GREEN_("EM4x50"));
PrintAndLogEx(HINT, "Hint: try " _YELLOW_("`lf em 4x50`") " commands");
retval = true;
goto out;
}
// check for em4x70 chips
if (detect_4x70_block()) {
PrintAndLogEx(SUCCESS, "Chipset detection: " _GREEN_("EM4x70"));
PrintAndLogEx(HINT, "Hint: try " _YELLOW_("`lf em 4x70`") " commands");
retval = true;
goto out;
}
#endif
PrintAndLogEx(INFO, "Couldn't identify a chipset");
out:
save_restoreGB(GRAPH_RESTORE);
save_restoreDB(GRAPH_RESTORE);
return retval;
}
int CmdLFfind(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "lf search",
"Read and search for valid known tag. For offline mode, you can `data load` first then search.",
"lf search -> try reading data from tag & search for known tag\n"
"lf search -1 -> use data from the GraphBuffer & search for known tag\n"
"lf search -u -> try reading data from tag & search for known and unknown tag\n"
"lf search -1u -> use data from the GraphBuffer & search for known and unknown tag\n"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("1", NULL, "Use data from Graphbuffer to search"),
arg_lit0("c", NULL, "Continue searching even after a first hit"),
arg_lit0("u", NULL, "Search for unknown tags. If not set, reads only known tags"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool use_gb = arg_get_lit(ctx, 1);
bool search_cont = arg_get_lit(ctx, 2);
bool search_unk = arg_get_lit(ctx, 3);
CLIParserFree(ctx);
int found = 0;
bool is_online = (g_session.pm3_present && (use_gb == false));
if (is_online)
lf_read(false, 30000);
size_t min_length = 2000;
if (g_GraphTraceLen < min_length) {
PrintAndLogEx(FAILED, "Data in Graphbuffer was too small.");
return PM3_ESOFT;
}
if (search_cont) {
PrintAndLogEx(INFO, "Continuous search enabled");
}
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "NOTE: some demods output possible binary");
PrintAndLogEx(INFO, "if it finds something that looks like a tag");
PrintAndLogEx(INFO, "False Positives " _YELLOW_("ARE") " possible");
PrintAndLogEx(INFO, "");
PrintAndLogEx(INFO, "Checking for known tags...");
PrintAndLogEx(INFO, "");
// only run these tests if device is online
if (is_online) {
if (IfPm3Hitag()) {
if (readHitagUid()) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Hitag") " found!");
if (search_cont) {
found++;
} else {
return PM3_SUCCESS;
}
}
}
#if !defined ICOPYX
if (IfPm3EM4x50()) {
if (read_em4x50_uid() == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("EM4x50 ID") " found!");
if (search_cont) {
found++;
} else {
return PM3_SUCCESS;
}
}
}
#endif
// only run if graphbuffer is just noise as it should be for hitag
// The improved noise detection will find Cotag.
if (getSignalProperties()->isnoise) {
PrintAndLogEx(INPLACE, "Searching for MOTOROLA tag...");
if (readMotorolaUid()) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Motorola FlexPass ID") " found!");
if (search_cont) {
found++;
} else {
return PM3_SUCCESS;
}
}
PrintAndLogEx(INPLACE, "Searching for COTAG tag...");
if (readCOTAGUid()) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("COTAG ID") " found!");
if (search_cont) {
found++;
} else {
return PM3_SUCCESS;
}
}
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(FAILED, _RED_("No data found!"));
PrintAndLogEx(HINT, "Maybe not an LF tag?");
PrintAndLogEx(NORMAL, "");
if (search_cont == 0) {
return PM3_ESOFT;
}
}
}
int retval = PM3_SUCCESS;
// ask / man
if (demodEM410x(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("EM410x ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodDestron(true) == PM3_SUCCESS) { // to do before HID
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("FDX-A FECAVA Destron ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodGallagher(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("GALLAGHER ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodNoralsy(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Noralsy ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodPresco(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Presco ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodSecurakey(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Securakey ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodViking(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Viking ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodVisa2k(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Visa2000 ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
// ask / bi
if (demodFDXB(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("FDX-B ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodJablotron(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Jablotron ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodGuard(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Guardall G-Prox II ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodNedap(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("NEDAP ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
// nrz
if (demodPac(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("PAC/Stanley ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
// fsk
if (demodHID(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("HID Prox ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodAWID(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("AWID ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodIOProx(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("IO Prox ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodPyramid(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Pyramid ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodParadox(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Paradox ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
// psk
if (demodIdteck(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Idteck ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodKeri(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("KERI ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodNexWatch(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("NexWatch ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodIndala(true) == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Indala ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
/*
if (demodTI() == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Texas Instrument ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
if (demodFermax() == PM3_SUCCESS) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Fermax ID") " found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
*/
if (found == 0) {
PrintAndLogEx(FAILED, _RED_("No known 125/134 kHz tags found!"));
}
if (search_unk) {
//test unknown tag formats (raw mode)
PrintAndLogEx(INFO, "\nChecking for unknown tags:\n");
int ans = AutoCorrelate(g_GraphBuffer, g_GraphBuffer, g_GraphTraceLen, 8000, false, false);
if (ans > 0) {
PrintAndLogEx(INFO, "Possible auto correlation of %d repeating samples", ans);
if (ans % 8 == 0)
PrintAndLogEx(INFO, "Possible %d bytes", (ans / 8));
}
//fsk
if (GetFskClock("", false)) {
if (FSKrawDemod(0, 0, 0, 0, true) == PM3_SUCCESS) {
PrintAndLogEx(INFO, "Unknown FSK Modulated Tag found!");
if (search_cont) {
found++;
} else {
goto out;
}
}
}
bool st = true;
if (ASKDemod_ext(0, 0, 0, 0, false, true, false, 1, &st) == PM3_SUCCESS) {
PrintAndLogEx(INFO, "Unknown ASK Modulated and Manchester encoded Tag found!");
PrintAndLogEx(INFO, "if it does not look right it could instead be ASK/Biphase - try " _YELLOW_("'data rawdemod --ab'"));
if (search_cont) {
found++;
} else {
goto out;
}
}
if (CmdPSK1rawDemod("") == PM3_SUCCESS) {
PrintAndLogEx(INFO, "Possible unknown PSK1 Modulated Tag found above!");
PrintAndLogEx(INFO, " Could also be PSK2 - try " _YELLOW_("'data rawdemod --p2'"));
PrintAndLogEx(INFO, " Could also be PSK3 - [currently not supported]");
PrintAndLogEx(INFO, " Could also be NRZ - try " _YELLOW_("'data rawdemod --nr"));
if (search_cont) {
found++;
} else {
goto out;
}
}
if (found == 0) {
PrintAndLogEx(FAILED, _RED_("No data found!"));
}
}
if (found == 0) {
retval = PM3_ESOFT;
}
out:
// identify chipset
if (CheckChipType(is_online) == false) {
PrintAndLogEx(DEBUG, "Automatic chip type detection " _RED_("failed"));
}
return retval;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"-----------", CmdHelp, AlwaysAvailable, "-------------- " _CYAN_("Low Frequency") " --------------"},
{"awid", CmdLFAWID, AlwaysAvailable, "{ AWID RFIDs... }"},
{"cotag", CmdLFCOTAG, AlwaysAvailable, "{ COTAG CHIPs... }"},
{"destron", CmdLFDestron, AlwaysAvailable, "{ FDX-A Destron RFIDs... }"},
{"em", CmdLFEM, AlwaysAvailable, "{ EM CHIPs & RFIDs... }"},
{"fdxb", CmdLFFdxB, AlwaysAvailable, "{ FDX-B RFIDs... }"},
{"gallagher", CmdLFGallagher, AlwaysAvailable, "{ GALLAGHER RFIDs... }"},
{"gproxii", CmdLFGuard, AlwaysAvailable, "{ Guardall Prox II RFIDs... }"},
{"hid", CmdLFHID, AlwaysAvailable, "{ HID Prox RFIDs... }"},
{"hitag", CmdLFHitag, AlwaysAvailable, "{ Hitag CHIPs... }"},
{"idteck", CmdLFIdteck, AlwaysAvailable, "{ Idteck RFIDs... }"},
{"indala", CmdLFINDALA, AlwaysAvailable, "{ Indala RFIDs... }"},
{"io", CmdLFIO, AlwaysAvailable, "{ ioProx RFIDs... }"},
{"jablotron", CmdLFJablotron, AlwaysAvailable, "{ Jablotron RFIDs... }"},
{"keri", CmdLFKeri, AlwaysAvailable, "{ KERI RFIDs... }"},
{"motorola", CmdLFMotorola, AlwaysAvailable, "{ Motorola RFIDs... }"},
{"nedap", CmdLFNedap, AlwaysAvailable, "{ Nedap RFIDs... }"},
{"nexwatch", CmdLFNEXWATCH, AlwaysAvailable, "{ NexWatch RFIDs... }"},
{"noralsy", CmdLFNoralsy, AlwaysAvailable, "{ Noralsy RFIDs... }"},
{"pac", CmdLFPac, AlwaysAvailable, "{ PAC/Stanley RFIDs... }"},
{"paradox", CmdLFParadox, AlwaysAvailable, "{ Paradox RFIDs... }"},
{"pcf7931", CmdLFPCF7931, AlwaysAvailable, "{ PCF7931 CHIPs... }"},
{"presco", CmdLFPresco, AlwaysAvailable, "{ Presco RFIDs... }"},
{"pyramid", CmdLFPyramid, AlwaysAvailable, "{ Farpointe/Pyramid RFIDs... }"},
{"securakey", CmdLFSecurakey, AlwaysAvailable, "{ Securakey RFIDs... }"},
{"ti", CmdLFTI, AlwaysAvailable, "{ TI CHIPs... }"},
{"t55xx", CmdLFT55XX, AlwaysAvailable, "{ T55xx CHIPs... }"},
{"viking", CmdLFViking, AlwaysAvailable, "{ Viking RFIDs... }"},
{"visa2000", CmdLFVisa2k, AlwaysAvailable, "{ Visa2000 RFIDs... }"},
// {"zx", CmdLFZx8211, AlwaysAvailable, "{ ZX8211 RFIDs... }"},
{"-----------", CmdHelp, AlwaysAvailable, "--------------------- " _CYAN_("General") " ---------------------"},
{"config", CmdLFConfig, IfPm3Lf, "Get/Set config for LF sampling, bit/sample, decimation, frequency"},
{"cmdread", CmdLFCommandRead, IfPm3Lf, "Modulate LF reader field to send command before read"},
{"read", CmdLFRead, IfPm3Lf, "Read LF tag"},
{"search", CmdLFfind, AlwaysAvailable, "Read and Search for valid known tag"},
{"sim", CmdLFSim, IfPm3Lf, "Simulate LF tag from buffer"},
{"simask", CmdLFaskSim, IfPm3Lf, "Simulate " _YELLOW_("ASK") " tag"},
{"simfsk", CmdLFfskSim, IfPm3Lf, "Simulate " _YELLOW_("FSK") " tag"},
{"simpsk", CmdLFpskSim, IfPm3Lf, "Simulate " _YELLOW_("PSK") " tag"},
// {"simnrz", CmdLFnrzSim, IfPm3Lf, "Simulate " _YELLOW_("NRZ") " tag"},
{"simbidir", CmdLFSimBidir, IfPm3Lf, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
{"sniff", CmdLFSniff, IfPm3Lf, "Sniff LF traffic between reader and tag"},
{"tune", CmdLFTune, IfPm3Lf, "Continuously measure LF antenna tuning"},
// {"vchdemod", CmdVchDemod, AlwaysAvailable, "Demodulate samples for VeriChip"},
// {"flexdemod", CmdFlexdemod, AlwaysAvailable, "Demodulate samples for Motorola FlexPass"},
{NULL, NULL, NULL, NULL}
};
int CmdLF(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}
int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}