proxmark3/armsrc/legicrfsim.c
2020-07-02 12:36:24 +02:00

493 lines
15 KiB
C

//-----------------------------------------------------------------------------
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
// 2016 Iceman
// 2018 AntiCat
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// LEGIC RF simulation code
//-----------------------------------------------------------------------------
#include "legicrfsim.h"
#include "legicrf.h"
#include "crc.h" /* legic crc-4 */
#include "legic_prng.h" /* legic PRNG impl */
#include "legic.h" /* legic_card_select_t struct */
#include "proxmark3_arm.h"
#include "BigBuf.h"
#include "fpgaloader.h"
#include "ticks.h"
#include "dbprint.h"
#include "util.h"
static uint8_t *legic_mem; /* card memory, used for sim */
static legic_card_select_t card;/* metadata of currently selected card */
static crc_t legic_crc;
//-----------------------------------------------------------------------------
// Frame timing and pseudorandom number generator
//
// The Prng is forwarded every 99.1us (TAG_BIT_PERIOD), except when the reader is
// transmitting. In that case the prng has to be forwarded every bit transmitted:
// - 31.3us for a 0 (RWD_TIME_0)
// - 99.1us for a 1 (RWD_TIME_1)
//
// The data dependent timing makes writing comprehensible code significantly
// harder. The current aproach forwards the prng data based if there is data on
// air and time based, using GetCountSspClk(), during computational and wait
// periodes. SSP Clock is clocked by the FPGA at 212 kHz (subcarrier frequency).
//
// To not have the necessity to calculate/guess exection time dependend timeouts
// tx_frame and rx_frame use a shared timestamp to coordinate tx and rx timeslots.
//-----------------------------------------------------------------------------
static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */
#define TAG_FRAME_WAIT 70 /* 330us from READER frame end to TAG frame start */
#define TAG_ACK_WAIT 758 /* 3.57ms from READER frame end to TAG write ACK */
#define TAG_BIT_PERIOD 21 /* 99.1us */
#define RWD_TIME_PAUSE 4 /* 18.9us */
#define RWD_TIME_1 21 /* RWD_TIME_PAUSE 18.9us off + 80.2us on = 99.1us */
#define RWD_TIME_0 13 /* RWD_TIME_PAUSE 18.9us off + 42.4us on = 61.3us */
#define RWD_CMD_TIMEOUT 120 /* 120 * 99.1us (arbitrary value) */
#define RWD_MIN_FRAME_LEN 6 /* Shortest frame is 6 bits */
#define RWD_MAX_FRAME_LEN 23 /* Longest frame is 23 bits */
#define RWD_PULSE 1 /* Pulse is signaled with GPIO_SSC_DIN high */
#define RWD_PAUSE 0 /* Pause is signaled with GPIO_SSC_DIN low */
//-----------------------------------------------------------------------------
// Demodulation
//-----------------------------------------------------------------------------
// Returns true if a pulse/pause is received within timeout
// Note: inlining this function would fail with -Os
static bool wait_for(bool value, const uint32_t timeout) {
while ((bool)(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN) != value) {
if (GetCountSspClk() > timeout) {
return false;
}
}
return true;
}
// Returns a demedulated bit or -1 on code violation
//
// rx_bit decodes bits using a thresholds. rx_bit has to be called by as soon as
// a frame starts (first pause is received). rx_bit checks for a pause up to
// 18.9us followed by a pulse of 80.2us or 42.4us:
// - A bit length <18.9us is a code violation
// - A bit length >80.2us is a 1
// - A bit length <80.2us is a 0
// - A bit length >148.6us is a code violation
static int8_t rx_bit(void) {
// backup ts for threshold calculation
uint32_t bit_start = last_frame_end;
// wait for pause to end
if (!wait_for(RWD_PULSE, bit_start + RWD_TIME_1 * 3 / 2)) {
return -1;
}
// wait for next pause
if (!wait_for(RWD_PAUSE, bit_start + RWD_TIME_1 * 3 / 2)) {
return -1;
}
// update bit and frame end
last_frame_end = GetCountSspClk();
// check for code violation (bit to short)
if (last_frame_end - bit_start < RWD_TIME_PAUSE) {
return -1;
}
// apply threshold (average of RWD_TIME_0 and )
return (last_frame_end - bit_start > (RWD_TIME_0 + RWD_TIME_1) / 2);
}
//-----------------------------------------------------------------------------
// Modulation
//
// LEGIC RF uses a very basic load modulation from card to reader:
// - Subcarrier on for a 1
// - Subcarrier off for for a 0
//
// The 212kHz subcarrier is generated by the FPGA as well as a mathcing ssp clk.
// Each bit is transfered in a 99.1us slot and the first timeslot starts 330us
// after the final 20us pause generated by the reader.
//-----------------------------------------------------------------------------
// Transmits a bit
//
// Note: The Subcarrier is not disabled during bits to prevent glitches. This is
// not mandatory but results in a cleaner signal. tx_frame will disable
// the subcarrier when the frame is done.
// Note: inlining this function would fail with -Os
static void tx_bit(bool bit) {
LED_C_ON();
if (bit) {
// modulate subcarrier
HIGH(GPIO_SSC_DOUT);
} else {
// do not modulate subcarrier
LOW(GPIO_SSC_DOUT);
}
// wait for tx timeslot to end
last_frame_end += TAG_BIT_PERIOD;
while (GetCountSspClk() < last_frame_end) { };
LED_C_OFF();
}
//-----------------------------------------------------------------------------
// Frame Handling
//
// The LEGIC RF protocol from reader to card does not include explicit frame
// start/stop information or length information. The tag detects end of frame
// trough an extended pulse (>99.1us) without a pause.
// In reverse direction (card to reader) the number of bites is well known
// and depends only the command received (IV, ACK, READ or WRITE).
//-----------------------------------------------------------------------------
static void tx_frame(uint32_t frame, uint8_t len) {
// wait for next tx timeslot
last_frame_end += TAG_FRAME_WAIT;
legic_prng_forward(TAG_FRAME_WAIT / TAG_BIT_PERIOD - 1);
while (GetCountSspClk() < last_frame_end) { };
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// transmit frame, MSB first
for (uint8_t i = 0; i < len; ++i) {
bool bit = (frame >> i) & 0x01;
tx_bit(bit ^ legic_prng_get_bit());
legic_prng_forward(1);
};
// disable subcarrier
LOW(GPIO_SSC_DOUT);
// log
uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1)};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
}
static void tx_ack(void) {
// wait for ack timeslot
last_frame_end += TAG_ACK_WAIT;
legic_prng_forward(TAG_ACK_WAIT / TAG_BIT_PERIOD - 1);
while (GetCountSspClk() < last_frame_end) { };
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// transmit ack (ack is not encrypted)
tx_bit(true);
legic_prng_forward(1);
// disable subcarrier
LOW(GPIO_SSC_DOUT);
// log
uint8_t cmdbytes[] = {1, 1};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
}
// Returns a demedulated frame or -1 on code violation
//
// Since TX to RX delay is arbitrary rx_frame has to:
// - detect start of frame (first pause)
// - forward prng based on ts/TAG_BIT_PERIOD
// - receive the frame
// - detect end of frame (last pause)
static int32_t rx_frame(uint8_t *len) {
int32_t frame = 0;
// add 2 SSP clock cycles (1 for tx and 1 for rx pipeline delay)
// those will be substracted at the end of the rx phase
last_frame_end -= 2;
// wait for first pause (start of frame)
for (uint8_t i = 0; true; ++i) {
// increment prng every TAG_BIT_PERIOD
last_frame_end += TAG_BIT_PERIOD;
legic_prng_forward(1);
// if start of frame was received exit delay loop
if (wait_for(RWD_PAUSE, last_frame_end)) {
last_frame_end = GetCountSspClk();
break;
}
// check for code violation
if (i > RWD_CMD_TIMEOUT) {
return -1;
}
}
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// receive frame
for (*len = 0; true; ++(*len)) {
// receive next bit
LED_B_ON();
int8_t bit = rx_bit();
LED_B_OFF();
// check for code violation and to short / long frame
if ((bit < 0) && ((*len < RWD_MIN_FRAME_LEN) || (*len > RWD_MAX_FRAME_LEN))) {
return -1;
}
// check for code violation caused by end of frame
if (bit < 0) {
break;
}
// append bit
frame |= (bit ^ legic_prng_get_bit()) << (*len);
legic_prng_forward(1);
}
// rx_bit sets coordination timestamp to start of pause, append pause duration
// and substract 2 SSP clock cycles (1 for rx and 1 for tx pipeline delay) to
// obtain exact end of frame.
last_frame_end += RWD_TIME_PAUSE - 2;
// log
uint8_t cmdbytes[] = {*len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, true);
return frame;
}
//-----------------------------------------------------------------------------
// Legic Simulator
//-----------------------------------------------------------------------------
static int32_t init_card(uint8_t cardtype, legic_card_select_t *p_card) {
p_card->tagtype = cardtype;
switch (p_card->tagtype) {
case 0:
p_card->cmdsize = 6;
p_card->addrsize = 5;
p_card->cardsize = 22;
break;
case 1:
p_card->cmdsize = 9;
p_card->addrsize = 8;
p_card->cardsize = 256;
break;
case 2:
p_card->cmdsize = 11;
p_card->addrsize = 10;
p_card->cardsize = 1024;
break;
default:
p_card->cmdsize = 0;
p_card->addrsize = 0;
p_card->cardsize = 0;
return 2;
}
return 0;
}
static void init_tag(void) {
// configure FPGA
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// configure SSC with defaults
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
// first pull output to low to prevent glitches then re-claim GPIO_SSC_DOUT
LOW(GPIO_SSC_DOUT);
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
legic_mem = BigBuf_get_EM_addr();
// start trace
clear_trace();
set_tracing(true);
// init crc calculator
crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0);
// start 212kHz timer (running from SSP Clock)
StartCountSspClk();
}
// Setup reader to card connection
//
// The setup consists of a three way handshake:
// - Receive initialisation vector 7 bits
// - Transmit card type 6 bits
// - Receive Acknowledge 6 bits
static int32_t setup_phase(legic_card_select_t *p_card) {
uint8_t len = 0;
// init coordination timestamp
last_frame_end = GetCountSspClk();
// reset prng
legic_prng_init(0);
// wait for iv
int32_t iv = rx_frame(&len);
if ((len != 7) || (iv < 0)) {
return -1;
}
// configure prng
legic_prng_init(iv);
// reply with card type
switch (p_card->tagtype) {
case 0:
tx_frame(0x0D, 6);
break;
case 1:
tx_frame(0x1D, 6);
break;
case 2:
tx_frame(0x3D, 6);
break;
}
// wait for ack
int32_t ack = rx_frame(&len);
if ((len != 6) || (ack < 0)) {
return -1;
}
// validate data
switch (p_card->tagtype) {
case 0:
if (ack != 0x19) return -1;
break;
case 1:
if (ack != 0x39) return -1;
break;
case 2:
if (ack != 0x39) return -1;
break;
}
// During rx the prng is clocked using the variable reader period.
// Since rx_frame detects end of frame by detecting a code violation,
// the prng is off by one bit period after each rx phase. Hence, tx
// code advances the prng by (TAG_FRAME_WAIT/TAG_BIT_PERIOD - 1).
// This is not possible for back to back rx, so this quirk reduces
// the gap by one period.
last_frame_end += TAG_BIT_PERIOD;
return 0;
}
static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) {
crc_clear(&legic_crc);
crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz);
return crc_finish(&legic_crc);
}
static int32_t connected_phase(legic_card_select_t *p_card) {
uint8_t len = 0;
// wait for command
int32_t cmd = rx_frame(&len);
if (cmd < 0) {
return -1;
}
// check if command is LEGIC_READ
if (len == p_card->cmdsize) {
// prepare data
uint8_t byte = legic_mem[cmd >> 1];
uint8_t crc = calc_crc4(cmd, p_card->cmdsize, byte);
// transmit data
tx_frame((crc << 8) | byte, 12);
return 0;
}
// check if command is LEGIC_WRITE
if (len == p_card->cmdsize + 8 + 4) {
// decode data
uint16_t mask = (1 << p_card->addrsize) - 1;
uint16_t addr = (cmd >> 1) & mask;
uint8_t byte = (cmd >> p_card->cmdsize) & 0xff;
uint8_t crc = (cmd >> (p_card->cmdsize + 8)) & 0xf;
// check received against calculated crc
uint8_t calc_crc = calc_crc4(addr << 1, p_card->cmdsize, byte);
if (calc_crc != crc) {
Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc);
return -1;
}
// store data
legic_mem[addr] = byte;
// transmit ack
tx_ack();
return 0;
}
return -1;
}
//-----------------------------------------------------------------------------
// Command Line Interface
//
// Only this function is public / called from appmain.c
//-----------------------------------------------------------------------------
void LegicRfSimulate(uint8_t cardtype) {
// configure ARM and FPGA
init_tag();
// verify command line input
if (init_card(cardtype, &card) != 0) {
DbpString("[!] Unknown tagtype.");
goto OUT;
}
LED_A_ON();
DbpString("[=] Starting Legic emulator, press " _YELLOW_("button") " to end");
while (!BUTTON_PRESS() && !data_available()) {
WDT_HIT();
// wait for carrier, restart after timeout
if (!wait_for(RWD_PULSE, GetCountSspClk() + TAG_BIT_PERIOD)) {
continue;
}
// wait for connection, restart on error
if (setup_phase(&card)) {
continue;
}
// conection is established, process commands until one fails
while (!connected_phase(&card)) {
WDT_HIT();
}
}
OUT:
DbpString("[=] Sim stopped");
switch_off();
StopTicks();
}