proxmark3/armsrc/iso15693.c

1104 lines
No EOL
29 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, split Nov 2006
// Modified by Greg Jones, Jan 2009
// Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
// Modified by Christian Herrmann "iceman", 2017
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 15693. This includes both the reader software and
// the `fake tag' modes, but at the moment I've implemented only the reader
// stuff, and that barely.
// Modified to perform modulation onboard in arm rather than on PC
// Also added additional reader commands (SELECT, READ etc.)
//-----------------------------------------------------------------------------
// The ISO 15693 describes two transmission modes from reader to tag, and 4
// transmission modes from tag to reader. As of Mar 2010 this code only
// supports one of each: "1of4" mode from reader to tag, and the highspeed
// variant with one subcarrier from card to reader.
// As long, as the card fully support ISO 15693 this is no problem, since the
// reader chooses both data rates, but some non-standard tags do not. Further for
// the simulation to work, we will need to support all data rates.
//
// VCD (reader) -> VICC (tag)
// 1 out of 256:
// data rate: 1,66 kbit/s (fc/8192)
// used for long range
// 1 out of 4:
// data rate: 26,48 kbit/s (fc/512)
// used for short range, high speed
//
// VICC (tag) -> VCD (reader)
// Modulation:
// ASK / one subcarrier (423,75 khz)
// FSK / two subcarriers (423,75 khz && 484,28 khz)
// Data Rates / Modes:
// low ASK: 6,62 kbit/s
// low FSK: 6.67 kbit/s
// high ASK: 26,48 kbit/s
// high FSK: 26,69 kbit/s
//-----------------------------------------------------------------------------
// added "1 out of 256" mode (for VCD->PICC) - atrox 20100911
// Random Remarks:
// *) UID is always used "transmission order" (LSB), which is reverse to display order
// TODO / BUGS / ISSUES:
// *) writing to tags takes longer: we miss the answer from the tag in most cases
// -> tweak the read-timeout times
// *) signal decoding from the card is still a bit shaky.
// *) signal decoding is unable to detect collissions.
// *) add anti-collission support for inventory-commands
// *) read security status of a block
// *) sniffing and simulation do only support one transmission mode. need to support
// all 8 transmission combinations
// *) remove or refactor code under "depricated"
// *) document all the functions
#include "proxmark3.h"
#include "util.h"
#include "apps.h"
#include "string.h"
#include "iso15693tools.h"
#include "cmd.h"
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 2 - Air Interface
// This section basicly contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
// 32 + 2 crc + 1
#define ISO15_MAX_FRAME 35
#define CMD_ID_RESP 5
#define CMD_READ_RESP 13
#define CMD_INV_RESP 12
#define FrameSOF Iso15693FrameSOF
#define Logic0 Iso15693Logic0
#define Logic1 Iso15693Logic1
#define FrameEOF Iso15693FrameEOF
#define Crc(data,datalen) Iso15693Crc(data, datalen)
#define AddCrc(data,datalen) Iso15693AddCrc(data, datalen)
#define sprintUID(target,uid) Iso15693sprintUID(target, uid)
int DEBUG = 0;
static void BuildIdentifyRequest(uint8_t *cmdout);
//static void BuildReadBlockRequest(uint8_t *cmdout, uint8_t *uid, uint8_t blockNumber );
static void BuildInventoryResponse(uint8_t *cmdout, uint8_t *uid);
// ---------------------------
// Signal Processing
// ---------------------------
// prepare data using "1 out of 4" code for later transmission
// resulting data rate is 26,48 kbit/s (fc/512)
// cmd ... data
// n ... length of data
static void CodeIso15693AsReader(uint8_t *cmd, int n) {
int i, j;
ToSendReset();
// Give it a bit of slack at the beginning
for(i = 0; i < 24; i++)
ToSendStuffBit(1);
// SOF for 1of4
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
for(i = 0; i < n; i++) {
for(j = 0; j < 8; j += 2) {
int these = (cmd[i] >> j) & 3;
switch(these) {
case 0:
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 1:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 2:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 3:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
break;
}
}
}
// EOF
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// And slack at the end, too.
for(i = 0; i < 24; i++)
ToSendStuffBit(1);
}
// encode data using "1 out of 256" sheme
// data rate is 1,66 kbit/s (fc/8192)
// is designed for more robust communication over longer distances
static void CodeIso15693AsReader256(uint8_t *cmd, int n) {
int i, j;
ToSendReset();
// Give it a bit of slack at the beginning
for(i = 0; i < 24; i++)
ToSendStuffBit(1);
// SOF for 1of256
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
for(i = 0; i < n; i++) {
for (j = 0; j <= 255; j++) {
if (cmd[i] == j) {
ToSendStuffBit(1);
ToSendStuffBit(0);
} else {
ToSendStuffBit(1);
ToSendStuffBit(1);
}
}
}
// EOF
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// And slack at the end, too.
for(i = 0; i < 24; i++)
ToSendStuffBit(1);
}
// Transmit the command (to the tag) that was placed in ToSend[].
static void TransmitTo15693Tag(const uint8_t *cmd, int len, int *samples, int *wait) {
int c;
volatile uint32_t r;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
if (wait) {
if (*wait < 10) { *wait = 10; }
for (c = 0; c < *wait;) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
++c;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
r = AT91C_BASE_SSC->SSC_RHR; (void)r;
}
WDT_HIT();
}
}
c = 0;
for(;;) {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
if( ++c >= len) break;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
r = AT91C_BASE_SSC->SSC_RHR; (void)r;
}
}
if (samples) {
if (wait)
*samples = (c + *wait) << 3;
else
*samples = c << 3;
}
}
//-----------------------------------------------------------------------------
// Transmit the command (to the reader) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitTo15693Reader(const uint8_t *cmd, int len, int *samples, int *wait) {
int c = 0;
volatile uint32_t r;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
if (wait) {
if (*wait < 10) { *wait = 10; }
for (c = 0; c < *wait;) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
++c;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
r = AT91C_BASE_SSC->SSC_RHR; (void)r;
}
WDT_HIT();
}
}
c = 0;
for(;;) {
WDT_HIT();
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
if( ++c >= len) break;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
r = AT91C_BASE_SSC->SSC_RHR; (void)r;
}
}
if (samples) {
if (wait)
*samples = (c + *wait) << 3;
else
*samples = c << 3;
}
}
//-----------------------------------------------------------------------------
// DEMODULATE tag answer
//-----------------------------------------------------------------------------
static int DemodAnswer(uint8_t *received, uint8_t *dest, uint16_t samplecount) {
int i, j;
int max = 0, maxPos = 0, skip = 4;
int k = 0; // this will be our return value
// First, correlate for SOF
for (i = 0; i < samplecount; i++) {
int corr = 0;
for ( j = 0; j < ARRAYLEN(FrameSOF); j += skip) {
corr += FrameSOF[j] * dest[i+(j/skip)];
}
if (corr > max) {
max = corr;
maxPos = i;
}
}
// DbpString("SOF at %d, correlation %d", maxPos,max/(ARRAYLEN(FrameSOF)/skip));
// greg - If correlation is less than 1 then there's little point in continuing
if ((max / (ARRAYLEN(FrameSOF)/skip) ) < 1)
return k;
i = maxPos + ARRAYLEN(FrameSOF) / skip;
uint8_t outBuf[ISO15_MAX_FRAME];
memset(outBuf, 0, sizeof(outBuf));
uint8_t mask = 0x01;
for(;;) {
int corr0 = 0, corr1 = 0, corrEOF = 0;
for (j = 0; j < ARRAYLEN(Logic0); j += skip) {
corr0 += Logic0[j] * dest[i+(j/skip)];
}
for (j = 0; j < ARRAYLEN(Logic1); j += skip) {
corr1 += Logic1[j] * dest[i+(j/skip)];
}
for (j = 0; j < ARRAYLEN(FrameEOF); j += skip) {
corrEOF += FrameEOF[j] * dest[i+(j/skip)];
}
// Even things out by the length of the target waveform.
corr0 *= 4;
corr1 *= 4;
// if (DEBUG)
// Dbprintf("Corr1 %d, Corr0 %d, CorrEOF %d", corr1, corr0, corrEOF);
if (corrEOF > corr1 && corrEOF > corr0)
break;
if (corr1 > corr0) {
i += ARRAYLEN(Logic1) / skip;
outBuf[k] |= mask;
} else {
i += ARRAYLEN(Logic0) / skip;
}
mask <<= 1;
if (mask == 0) {
k++;
mask = 0x01;
}
if ( ( i + (int)ARRAYLEN(FrameEOF)) >= samplecount-1) {
//Dbprintf("ran off end! %d | %d",( i + (int)ARRAYLEN(FrameEOF)), samplecount-1);
break;
}
}
if (DEBUG) Dbprintf("ice: demod bytes %u", k);
if (mask != 0x01) { // this happens, when we miss the EOF
// TODO: for some reason this happens quite often
if (DEBUG) Dbprintf("error, uneven octet! (extra bits!) mask %02x", mask);
//if (mask < 0x08) k--; // discard the last uneven octet;
// 0x08 is an assumption - but works quite often
}
for(i = 0; i < k; i++)
received[i] = outBuf[i];
// return the number of bytes demodulated
return k;
}
// Read from Tag
// Parameters:
// received
// samples
// elapsed
// returns:
// number of decoded bytes
// logging enabled
static int GetIso15693AnswerFromTag(uint8_t *received, int *elapsed) {
#define SIGNAL_BUFF_SIZE 15000
// get current clock
uint32_t time_0 = GetCountSspClk();
uint32_t time_stop = 0;
bool getNext = false;
int counter = 0, ci = 0, cq = 0;
//volatile uint32_t r;
uint8_t *buf = BigBuf_malloc(SIGNAL_BUFF_SIZE);
if (elapsed) *elapsed = 0;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
// for (counter = 0; counter < wait;) {
// WDT_HIT();
// if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
// AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
// counter++;
// }
// if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
// r = AT91C_BASE_SSC->SSC_RHR; (void)r;
// }
// }
// counter = 0;
for(;;) {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; //0x43;
// To make use of exact timing of next command from reader!!
if (elapsed) (*elapsed)++;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
ci = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// LSB is a FPGA singal bit
ci >>= 1;
ci = ABS(ci);
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
// iceman 2016, amplitude sqrt(abs(i) + abs(q))
if (getNext) {
buf[counter++] = (uint8_t)(MAX(ci,cq) + (MIN(ci, cq) >> 1));
if (counter >= SIGNAL_BUFF_SIZE)
break;
} else {
cq = ci;
}
getNext = !getNext;
}
}
time_stop = GetCountSspClk() - time_0 ;
int len = DemodAnswer(received, buf, counter);
LogTrace(received, len, time_0 << 4, time_stop << 4, NULL, false);
BigBuf_free();
return len;
}
// Now the GetISO15693 message from sniffing command
// logging enable,
static int GetIso15693AnswerFromSniff(uint8_t *received, int *samples, int *elapsed) {
bool getNext = false;
int counter = 0, ci = 0, cq = 0;
uint32_t time_0 = 0, time_stop = 0;
uint8_t *buf = BigBuf_get_addr();
// get current clock
time_0 = GetCountSspClk();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
for(;;) {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
AT91C_BASE_SSC->SSC_THR = 0x43;
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
ci = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// LSB is a FPGA singal bit
ci >>= 1;
ci = ABS(ci);
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
if (getNext) {
buf[counter++] = (uint8_t)(MAX(ci,cq) + (MIN(ci, cq) >> 1));
if(counter >= 20000)
break;
} else {
cq = ci;
}
getNext = !getNext;
}
}
time_stop = GetCountSspClk() - time_0;
int k = DemodAnswer(received, buf, counter);
LogTrace(received, k, time_0 << 4, time_stop << 4, NULL, false);
return k;
}
//-----------------------------------------------------------------------------
// Start to read an ISO 15693 tag. We send an identify request, then wait
// for the response. The response is not demodulated, just left in the buffer
// so that it can be downloaded to a PC and processed there.
//-----------------------------------------------------------------------------
void AcquireRawAdcSamplesIso15693(void) {
int c = 0, getNext = false;
volatile uint32_t r;
int ci = 0, cq = 0;
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Give the tags time to energize
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(100);
// Now send the command
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
uint8_t *buf = BigBuf_get_addr();
uint32_t time_start = GetCountSspClk();
uint8_t cmd[CMD_ID_RESP] = {0};
BuildIdentifyRequest(cmd);
// sending command
c = 0;
for(;;) {
WDT_HIT();
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = ToSend[c];
c++;
if(c == ToSendMax + 3) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
r = AT91C_BASE_SSC->SSC_RHR; (void)r;
}
}
LogTrace(cmd, CMD_ID_RESP, time_start << 4, (GetCountSspClk() - time_start) << 4, NULL, true);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
c = 0;
for(;;) {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
AT91C_BASE_SSC->SSC_THR = 0x43;
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
ci = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// LSB is a FPGA singal bit
ci >>= 1;
ci = ABS(ci);
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
// iceman 2016, amplitude sqrt(abs(i) + abs(q))
if (getNext) {
buf[c++] = (uint8_t)(MAX(ci,cq) + (MIN(ci, cq) >> 1));
if (c >= 7000) break;
} else {
cq = ci;
}
getNext = !getNext;
}
}
}
// switch_off, initreader, no logging
void RecordRawAdcSamplesIso15693(void) {
int c = 0, getNext = false;
int ci = 0, cq = 0;
Iso15693InitReader();
uint8_t *buf = BigBuf_get_addr();
for(;;) {
WDT_HIT();
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
ci = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// LSB is a FPGA singal bit
ci >>= 1;
ci = ABS(ci);
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
if (getNext) {
buf[c++] = (uint8_t)(MAX(ci,cq) + (MIN(ci, cq) >> 1));
if(c >= 7000)
break;
} else {
cq = ci;
}
getNext = !getNext;
}
}
Dbprintf("done");
switch_off();
}
// Initialize the proxmark as iso15k reader
// (this might produces glitches that confuse some tags
void Iso15693InitReader(void) {
LEDsoff();
clear_trace();
set_tracing(true);
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(10);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Give the tags time to energize
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(100);
// Start the timer
StartCountSspClk();
if (DEBUG) DbpString("Iso15693InitReader Exit");
LED_A_ON();
}
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 3 - Air Interface
// This section basicly contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
// Encode (into the ToSend buffers) an identify request, which is the first
// thing that you must send to a tag to get a response.
static void BuildIdentifyRequest(uint8_t *out) {
uint8_t cmd[CMD_ID_RESP] = {0, ISO15_CMD_INVENTORY, 0, 0, 0};
// flags
cmd[0] = ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH | ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1;
// no mask
cmd[2] = 0x00;
// CRC
uint16_t crc = Crc(cmd, 3);
cmd[3] = crc & 0xff;
cmd[4] = crc >> 8;
// coding as high speed (1 out of 4)
CodeIso15693AsReader(cmd, CMD_ID_RESP);
memcpy(out, cmd, CMD_ID_RESP);
}
// uid is in transmission order (which is reverse of display order)
/*
static void BuildReadBlockRequest(uint8_t **out, uint8_t *uid, uint8_t blockNumber ) {
uint8_t cmd[CMD_READ_RESP] = {0,0,0,0,0,0,0,0,0,0,0,0,0};
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit
// READ BLOCK command code
cmd[1] = 0x20;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = uid[0];
cmd[3] = uid[1];
cmd[4] = uid[2];
cmd[5] = uid[3];
cmd[6] = uid[4];
cmd[7] = uid[5];
cmd[8] = uid[6];
cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
// Block number to read
cmd[10] = blockNumber;//0x00;
// CRC
uint16_t crc = Crc(cmd, 11); // the crc needs to be calculated over 12 bytes
cmd[11] = crc & 0xff;
cmd[12] = crc >> 8;
CodeIso15693AsReader(cmd, CMD_READ_RESP);
memcpy(out, cmd, CMD_ID_RESP);
}
*/
// Now the VICC>VCD responses when we are simulating a tag
static void BuildInventoryResponse(uint8_t *out, uint8_t *uid) {
uint8_t cmd[CMD_INV_RESP] = {0,0,0,0,0,0,0,0,0,0,0,0};
// one sub-carrier, inventory, 1 slot, fast rate
// AFI is at bit 5 (1<<4) when doing an INVENTORY
//(1 << 2) | (1 << 5) | (1 << 1);
cmd[0] = 0; //
cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
// 64-bit UID
cmd[2] = uid[7]; //0x32;
cmd[3] = uid[6]; //0x4b;
cmd[4] = uid[5]; //0x03;
cmd[5] = uid[4]; //0x01;
cmd[6] = uid[3]; //0x00;
cmd[7] = uid[2]; //0x10;
cmd[8] = uid[1]; //0x05;
cmd[9] = uid[0]; //0xe0;
// CRC
uint16_t crc = Crc(cmd, 10);
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
CodeIso15693AsReader(cmd, CMD_INV_RESP);
memcpy(out, cmd, CMD_ID_RESP);
}
// Universal Method for sending to and recv bytes from a tag
// init ... should we initialize the reader?
// speed ... 0 low speed, 1 hi speed
// **recv will return you a pointer to the received data
// If you do not need the answer use NULL for *recv[]
// return: lenght of received data
// logging enabled
int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *outdata) {
int t_samples = 0, wait = 0, elapsed = 0, answer_len = 0;
LEDsoff();
if (init) Iso15693InitReader();
LED_A_ON();
if (!speed)
CodeIso15693AsReader256(send, sendlen); // low speed (1 out of 256)
else
CodeIso15693AsReader(send, sendlen); // high speed (1 out of 4)
LED_A_INV();
uint32_t time_start = GetCountSspClk();
TransmitTo15693Tag(ToSend, ToSendMax, &t_samples, &wait);
LogTrace(send, sendlen, time_start << 4, (GetCountSspClk() - time_start) << 4, NULL, true);
// Now wait for a response
if (outdata != NULL) {
LED_B_INV();
answer_len = GetIso15693AnswerFromTag(outdata, &elapsed);
}
LEDsoff();
return answer_len;
}
// --------------------------------------------------------------------
// Debug Functions
// --------------------------------------------------------------------
// Decodes a message from a tag and displays its metadata and content
#define DBD15STATLEN 48
void DbdecodeIso15693Answer(int len, uint8_t *d) {
char status[DBD15STATLEN+1] = {0};
uint16_t crc;
if (len > 3) {
if (d[0] & ( 1 << 3 ))
strncat(status, "ProtExt ", DBD15STATLEN);
if (d[0] & 1) {
// error
strncat(status, "Error ", DBD15STATLEN);
switch (d[1]) {
case 0x01:
strncat(status, "01:notSupp", DBD15STATLEN);
break;
case 0x02:
strncat(status, "02:notRecog", DBD15STATLEN);
break;
case 0x03:
strncat(status, "03:optNotSupp", DBD15STATLEN);
break;
case 0x0f:
strncat(status, "0f:noInfo", DBD15STATLEN);
break;
case 0x10:
strncat(status, "10:dontExist", DBD15STATLEN);
break;
case 0x11:
strncat(status, "11:lockAgain", DBD15STATLEN);
break;
case 0x12:
strncat(status, "12:locked", DBD15STATLEN);
break;
case 0x13:
strncat(status, "13:progErr", DBD15STATLEN);
break;
case 0x14:
strncat(status, "14:lockErr", DBD15STATLEN);
break;
default:
strncat(status, "unknownErr", DBD15STATLEN);
}
strncat(status ," " ,DBD15STATLEN);
} else {
strncat(status ,"No err ", DBD15STATLEN);
}
crc = Crc(d, len-2);
if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
strncat(status, "Crc OK", DBD15STATLEN);
else
strncat(status, "Crc Fail!", DBD15STATLEN);
if ( DEBUG ) Dbprintf("%s", status);
}
}
///////////////////////////////////////////////////////////////////////
// Functions called via USB/Client
///////////////////////////////////////////////////////////////////////
void SetDebugIso15693(uint32_t debug) {
DEBUG = debug;
Dbprintf("Iso15693 Debug is now %s", DEBUG ? "on" : "off");
return;
}
//-----------------------------------------------------------------------------
// Act as ISO15693 reader, perform anti-collision and then attempt to read a sector
// all demodulation performed in arm rather than host. - greg
//-----------------------------------------------------------------------------
// ok
// parameter is unused !?!
void ReaderIso15693(uint32_t parameter) {
int answerLen1 = 0;
//int answerLen2 = 0;
//int answerLen3 = 0;
int tsamples = 0, wait = 0, elapsed = 0;
uint8_t uid[8] = {0,0,0,0,0,0,0,0};
// set up device/fpga
Iso15693InitReader();
uint8_t *answer1 = BigBuf_malloc(50);
uint8_t *answer2 = BigBuf_malloc(50);
//uint8_t *answer3 = BigBuf_malloc(50);
// Blank arrays
memset(answer1, 0x00, 50);
memset(answer2, 0x00, 50);
//memset(answer3, 0x00, 50);
// Now send the IDENTIFY command
// FIRST WE RUN AN INVENTORY TO GET THE TAG UID
// THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
uint32_t time_start = GetCountSspClk();
uint8_t cmd[CMD_ID_RESP] = {0};
BuildIdentifyRequest( cmd );
TransmitTo15693Tag(ToSend, ToSendMax, &tsamples, &wait);
LogTrace(cmd, CMD_ID_RESP, time_start << 4, (GetCountSspClk() - time_start) << 4, NULL, true);
// Now wait for a response
answerLen1 = GetIso15693AnswerFromTag(answer1, &elapsed) ;
// we should do a better check than this
if (answerLen1 >= 12) {
uid[0] = answer1[9]; // always E0
uid[1] = answer1[8]; // IC Manufacturer code
uid[2] = answer1[7];
uid[3] = answer1[6];
uid[4] = answer1[5];
uid[5] = answer1[4];
uid[6] = answer1[3];
uid[7] = answer1[2];
if ( DEBUG ) {
Dbprintf("UID = %02X%02X%02X%02X%02X%02X%02X%02X",
uid[0], uid[1], uid[2], uid[3],
uid[4], uid[5], uid[5], uid[6]
);
}
// send UID back to client.
// arg0 = 1 = OK
// arg1 = len of response (12 bytes)
// arg2 = rtf
// asbytes = uid.
cmd_send(CMD_ACK, 1, sizeof(uid), 0, uid, sizeof(uid));
}
if ( DEBUG ) {
Dbprintf("%d octets read from IDENTIFY request:", answerLen1);
DbdecodeIso15693Answer(answerLen1, answer1);
Dbhexdump(answerLen1, answer1, true);
}
// DEBUG read all pages
/*
if (answerLen1 >= 12 && DEBUG) {
i = 0;
while ( i < 32 ) { // sanity check, assume max 32 pages
cmdlen = BuildReadBlockRequest(cmd, uid, i);
TransmitTo15693Tag(ToSend, ToSendMax, &tsamples, &wait);
LogTrace(cmd, cmdlen, time_start<<4, (GetCountSspClk()-time_start)<<4, NULL, true);
answerLen2 = GetIso15693AnswerFromTag(answer2, &elapsed);
if (answerLen2 > 0) {
Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen2);
DbdecodeIso15693Answer(answerLen2, answer2);
Dbhexdump(answerLen2, answer2, true);
if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr
}
i++;
}
}
*/
switch_off();
}
// Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands
// all demodulation performed in arm rather than host. - greg
void SimTagIso15693(uint32_t parameter, uint8_t *uid) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
LED_A_ON();
uint32_t time_start = 0;
int ans = 0, samples = 0, tsamples = 0;
int wait = 0, elapsed = 0;
Dbprintf("ISO-15963 Simulating uid: %02X%02X%02X%02X%02X%02X%02X%02X", uid[0], uid[1], uid[2], uid[3], uid[4], uid[5], uid[6], uid[7]);
uint8_t buf[ISO15_MAX_FRAME];
memset(buf, 0x00, sizeof(buf));
LED_C_ON();
// Build a suitable reponse to the reader INVENTORY cocmmand
// not so obsvious, but in the call to BuildInventoryResponse, the command is copied to the global ToSend buffer used below.
uint8_t cmd[CMD_INV_RESP] = {0};
BuildInventoryResponse(cmd, uid);
while (!BUTTON_PRESS() && !usb_poll_validate_length() ) {
WDT_HIT();
// Listen to reader
ans = GetIso15693AnswerFromSniff(buf, &samples, &elapsed) ;
// we should do a better check than this
if (ans >= 1 ) {
time_start = GetCountSspClk();
TransmitTo15693Reader(ToSend, ToSendMax, &tsamples, &wait);
LogTrace(cmd, CMD_INV_RESP, time_start << 4, (GetCountSspClk() - time_start) << 4, NULL, true);
if (DEBUG) {
Dbprintf("%d octets read from reader command: %x %x %x %x %x %x %x %x", ans,
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7]
);
}
}
}
switch_off();
}
// Since there is no standardized way of reading the AFI out of a tag, we will brute force it
// (some manufactures offer a way to read the AFI, though)
void BruteforceIso15693Afi(uint32_t speed) {
uint8_t data[7] = {0,0,0,0,0,0,0};
uint8_t buf[ISO15_MAX_FRAME];
memset(buf, 0x00, sizeof(buf));
int datalen = 0, recvlen = 0;
Iso15693InitReader();
// first without AFI
// Tags should respond wihtout AFI and with AFI=0 even when AFI is active
data[0] = ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH | ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1;
data[1] = ISO15_CMD_INVENTORY;
data[2] = 0; // mask length
datalen = AddCrc(data, 3);
recvlen = SendDataTag(data, datalen, false, speed, buf);
WDT_HIT();
if (recvlen >= 12) {
Dbprintf("NoAFI UID = %s", sprintUID(NULL, buf + 2) );
}
// now with AFI
data[0] |= ISO15_REQINV_AFI;
//data[1] = ISO15_CMD_INVENTORY;
data[2] = 0; // AFI
data[3] = 0; // mask length
for (int i = 0; i < 256; i++) {
data[2] = i & 0xFF;
datalen = AddCrc(data, 4);
recvlen = SendDataTag(data, datalen, false, speed, buf);
WDT_HIT();
if (recvlen >= 12) {
Dbprintf("AFI = %i UID = %s", i, sprintUID(NULL, buf + 2) );
}
if (BUTTON_PRESS()) {
DbpString("button pressed, aborting..");
break;
}
}
DbpString("AFI Bruteforcing done.");
switch_off();
}
// Allows to directly send commands to the tag via the client
// Has to increase dialog between device and client.
void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t *data) {
bool init = true;
int buflen = 0;
uint8_t buf[ISO15_MAX_FRAME];
memset(buf, 0x00, sizeof(buf));
if (DEBUG) {
DbpString("SEND");
Dbhexdump(datalen, data, true);
}
buflen = SendDataTag(data, datalen, init, speed, (recv ? buf : NULL));
if (recv) {
buflen = (buflen > ISO15_MAX_FRAME) ? ISO15_MAX_FRAME : buflen;
LED_B_ON();
cmd_send(CMD_ACK, buflen, 0, 0, buf, buflen);
LED_B_OFF();
if (DEBUG) {
DbpString("RECV");
DbdecodeIso15693Answer(buflen, buf);
Dbhexdump(buflen, buf, true);
}
} else {
cmd_send(CMD_ACK,1,0,0,0,0);
}
}