proxmark3/client/uart.c
iceman1001 1b492a97af ADD: marshmellows new lf command and DetectClock. (works great!)
FIX: a suggested patch for "hf mf csetuid" (https://github.com/Proxmark/proxmark3/issues/35)
FIX: fixed a bug in iso14443a_select_card where the len variable wasnt set,  this made desfire/magic cards not work.
2014-12-26 20:02:59 +01:00

430 lines
12 KiB
C

/*
* Generic uart / rs232/ serial port library
*
* Copyright (c) 2013, Roel Verdult
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @file uart.c
* @brief
*
*/
#include "uart.h"
// Test if we are dealing with unix operating systems
#ifndef _WIN32
#include <termios.h>
typedef struct termios term_info;
typedef struct {
int fd; // Serial port file descriptor
term_info tiOld; // Terminal info before using the port
term_info tiNew; // Terminal info during the transaction
} serial_port_unix;
// Set time-out on 30 miliseconds
const struct timeval timeout = {
.tv_sec = 0, // 0 second
.tv_usec = 30000 // 30000 micro seconds
};
serial_port uart_open(const char* pcPortName)
{
serial_port_unix* sp = malloc(sizeof(serial_port_unix));
if (sp == 0) return INVALID_SERIAL_PORT;
sp->fd = open(pcPortName, O_RDWR | O_NOCTTY | O_NDELAY | O_NONBLOCK);
if(sp->fd == -1) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Finally figured out a way to claim a serial port interface under unix
// We just try to set a (advisory) lock on the file descriptor
struct flock fl;
fl.l_type = F_WRLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 0;
fl.l_len = 0;
fl.l_pid = getpid();
// Does the system allows us to place a lock on this file descriptor
if (fcntl(sp->fd, F_SETLK, &fl) == -1) {
// A conflicting lock is held by another process
free(sp);
return CLAIMED_SERIAL_PORT;
}
// Try to retrieve the old (current) terminal info struct
if(tcgetattr(sp->fd,&sp->tiOld) == -1) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Duplicate the (old) terminal info struct
sp->tiNew = sp->tiOld;
// Configure the serial port
sp->tiNew.c_cflag = CS8 | CLOCAL | CREAD;
sp->tiNew.c_iflag = IGNPAR;
sp->tiNew.c_oflag = 0;
sp->tiNew.c_lflag = 0;
// Block until n bytes are received
sp->tiNew.c_cc[VMIN] = 0;
// Block until a timer expires (n * 100 mSec.)
sp->tiNew.c_cc[VTIME] = 0;
// Try to set the new terminal info struct
if(tcsetattr(sp->fd,TCSANOW,&sp->tiNew) == -1) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Flush all lingering data that may exist
tcflush(sp->fd, TCIOFLUSH);
return sp;
}
void uart_close(const serial_port sp) {
serial_port_unix* spu = (serial_port_unix*)sp;
tcflush(spu->fd,TCIOFLUSH);
tcsetattr(spu->fd,TCSANOW,&(spu->tiOld));
struct flock fl;
fl.l_type = F_UNLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 0;
fl.l_len = 0;
fl.l_pid = getpid();
fcntl(spu->fd, F_SETLK, &fl);
close(spu->fd);
free(sp);
}
bool uart_set_speed(serial_port sp, const uint32_t uiPortSpeed) {
const serial_port_unix* spu = (serial_port_unix*)sp;
speed_t stPortSpeed;
switch (uiPortSpeed) {
case 0: stPortSpeed = B0; break;
case 50: stPortSpeed = B50; break;
case 75: stPortSpeed = B75; break;
case 110: stPortSpeed = B110; break;
case 134: stPortSpeed = B134; break;
case 150: stPortSpeed = B150; break;
case 300: stPortSpeed = B300; break;
case 600: stPortSpeed = B600; break;
case 1200: stPortSpeed = B1200; break;
case 1800: stPortSpeed = B1800; break;
case 2400: stPortSpeed = B2400; break;
case 4800: stPortSpeed = B4800; break;
case 9600: stPortSpeed = B9600; break;
case 19200: stPortSpeed = B19200; break;
case 38400: stPortSpeed = B38400; break;
# ifdef B57600
case 57600: stPortSpeed = B57600; break;
# endif
# ifdef B115200
case 115200: stPortSpeed = B115200; break;
# endif
# ifdef B230400
case 230400: stPortSpeed = B230400; break;
# endif
# ifdef B460800
case 460800: stPortSpeed = B460800; break;
# endif
# ifdef B921600
case 921600: stPortSpeed = B921600; break;
# endif
default: return false;
};
struct termios ti;
if (tcgetattr(spu->fd,&ti) == -1) return false;
// Set port speed (Input and Output)
cfsetispeed(&ti,stPortSpeed);
cfsetospeed(&ti,stPortSpeed);
return (tcsetattr(spu->fd,TCSANOW,&ti) != -1);
}
uint32_t uart_get_speed(const serial_port sp) {
struct termios ti;
uint32_t uiPortSpeed;
const serial_port_unix* spu = (serial_port_unix*)sp;
if (tcgetattr(spu->fd,&ti) == -1) return 0;
// Set port speed (Input)
speed_t stPortSpeed = cfgetispeed(&ti);
switch (stPortSpeed) {
case B0: uiPortSpeed = 0; break;
case B50: uiPortSpeed = 50; break;
case B75: uiPortSpeed = 75; break;
case B110: uiPortSpeed = 110; break;
case B134: uiPortSpeed = 134; break;
case B150: uiPortSpeed = 150; break;
case B300: uiPortSpeed = 300; break;
case B600: uiPortSpeed = 600; break;
case B1200: uiPortSpeed = 1200; break;
case B1800: uiPortSpeed = 1800; break;
case B2400: uiPortSpeed = 2400; break;
case B4800: uiPortSpeed = 4800; break;
case B9600: uiPortSpeed = 9600; break;
case B19200: uiPortSpeed = 19200; break;
case B38400: uiPortSpeed = 38400; break;
# ifdef B57600
case B57600: uiPortSpeed = 57600; break;
# endif
# ifdef B115200
case B115200: uiPortSpeed = 115200; break;
# endif
# ifdef B230400
case B230400: uiPortSpeed = 230400; break;
# endif
# ifdef B460800
case B460800: uiPortSpeed = 460800; break;
# endif
# ifdef B921600
case B921600: uiPortSpeed = 921600; break;
# endif
default: return 0;
};
return uiPortSpeed;
}
bool uart_set_parity(serial_port sp, serial_port_parity spp) {
struct termios ti;
const serial_port_unix* spu = (serial_port_unix*)sp;
if (tcgetattr(spu->fd,&ti) == -1) return false;
switch(spp) {
case SP_INVALID: return false;
case SP_NONE: ti.c_cflag &= ~(PARENB | PARODD); break;
case SP_EVEN: ti.c_cflag |= PARENB; ti.c_cflag &= ~(PARODD); break;
case SP_ODD: ti.c_cflag |= PARENB | PARODD; break;
}
return (tcsetattr(spu->fd,TCSANOW,&ti) != -1);
}
serial_port_parity uart_get_parity(const serial_port sp) {
struct termios ti;
const serial_port_unix* spu = (serial_port_unix*)sp;
if (tcgetattr(spu->fd,&ti) == -1) return SP_INVALID;
if (ti.c_cflag & PARENB) {
if (ti.c_cflag & PARODD) {
return SP_ODD;
} else {
return SP_EVEN;
}
} else {
return SP_NONE;
}
}
bool uart_cts(const serial_port sp) {
char status;
if (ioctl(((serial_port_unix*)sp)->fd,TIOCMGET,&status) < 0) return false;
return (status & TIOCM_CTS);
}
bool uart_receive(const serial_port sp, byte_t* pbtRx, size_t* pszRxLen) {
int res;
int byteCount;
fd_set rfds;
struct timeval tv;
// Reset the output count
*pszRxLen = 0;
do {
// Reset file descriptor
FD_ZERO(&rfds);
FD_SET(((serial_port_unix*)sp)->fd,&rfds);
tv = timeout;
res = select(((serial_port_unix*)sp)->fd+1, &rfds, NULL, NULL, &tv);
// Read error
if (res < 0) {
return false;
}
// Read time-out
if (res == 0) {
if (*pszRxLen == 0) {
// Error, we received no data
return false;
} else {
// We received some data, but nothing more is available
return true;
}
}
// Retrieve the count of the incoming bytes
res = ioctl(((serial_port_unix*)sp)->fd, FIONREAD, &byteCount);
if (res < 0) return false;
// There is something available, read the data
res = read(((serial_port_unix*)sp)->fd,pbtRx+(*pszRxLen),byteCount);
// Stop if the OS has some troubles reading the data
if (res <= 0) return false;
*pszRxLen += res;
if(res==byteCount)
return true;
} while (byteCount);
return true;
}
bool uart_send(const serial_port sp, const byte_t* pbtTx, const size_t szTxLen) {
int32_t res;
size_t szPos = 0;
fd_set rfds;
struct timeval tv;
while (szPos < szTxLen) {
// Reset file descriptor
FD_ZERO(&rfds);
FD_SET(((serial_port_unix*)sp)->fd,&rfds);
tv = timeout;
res = select(((serial_port_unix*)sp)->fd+1, NULL, &rfds, NULL, &tv);
// Write error
if (res < 0) {
return false;
}
// Write time-out
if (res == 0) {
return false;
}
// Send away the bytes
res = write(((serial_port_unix*)sp)->fd,pbtTx+szPos,szTxLen-szPos);
// Stop if the OS has some troubles sending the data
if (res <= 0) return false;
szPos += res;
}
return true;
}
#else
// The windows serial port implementation
typedef struct {
HANDLE hPort; // Serial port handle
DCB dcb; // Device control settings
COMMTIMEOUTS ct; // Serial port time-out configuration
} serial_port_windows;
void upcase(char *p) {
while(*p != '\0') {
if(*p >= 97 && *p <= 122) {
*p -= 32;
}
++p;
}
}
serial_port uart_open(const char* pcPortName) {
char acPortName[255];
serial_port_windows* sp = malloc(sizeof(serial_port_windows));
// Copy the input "com?" to "\\.\COM?" format
sprintf(acPortName,"\\\\.\\%s",pcPortName);
upcase(acPortName);
// Try to open the serial port
sp->hPort = CreateFileA(acPortName,GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTING,0,NULL);
if (sp->hPort == INVALID_HANDLE_VALUE) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Prepare the device control
memset(&sp->dcb, 0, sizeof(DCB));
sp->dcb.DCBlength = sizeof(DCB);
if(!BuildCommDCBA("baud=9600 data=8 parity=N stop=1",&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
// Update the active serial port
if(!SetCommState(sp->hPort,&sp->dcb)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
sp->ct.ReadIntervalTimeout = 0;
sp->ct.ReadTotalTimeoutMultiplier = 0;
sp->ct.ReadTotalTimeoutConstant = 30;
sp->ct.WriteTotalTimeoutMultiplier = 0;
sp->ct.WriteTotalTimeoutConstant = 30;
if(!SetCommTimeouts(sp->hPort,&sp->ct)) {
uart_close(sp);
return INVALID_SERIAL_PORT;
}
PurgeComm(sp->hPort, PURGE_RXABORT | PURGE_RXCLEAR);
return sp;
}
void uart_close(const serial_port sp) {
CloseHandle(((serial_port_windows*)sp)->hPort);
free(sp);
}
bool uart_set_speed(serial_port sp, const uint32_t uiPortSpeed) {
serial_port_windows* spw;
spw = (serial_port_windows*)sp;
spw->dcb.BaudRate = uiPortSpeed;
return SetCommState(spw->hPort, &spw->dcb);
}
uint32_t uart_get_speed(const serial_port sp) {
const serial_port_windows* spw = (serial_port_windows*)sp;
if (!GetCommState(spw->hPort, (serial_port)&spw->dcb)) {
return spw->dcb.BaudRate;
}
return 0;
}
bool uart_receive(const serial_port sp, byte_t* pbtRx, size_t* pszRxLen) {
ReadFile(((serial_port_windows*)sp)->hPort,pbtRx,*pszRxLen,(LPDWORD)pszRxLen,NULL);
return (*pszRxLen != 0);
}
bool uart_send(const serial_port sp, const byte_t* pbtTx, const size_t szTxLen) {
DWORD dwTxLen = 0;
return WriteFile(((serial_port_windows*)sp)->hPort,pbtTx,szTxLen,&dwTxLen,NULL);
return (dwTxLen != 0);
}
#endif