proxmark3/client/cmdhficlass.c
2018-07-04 13:08:59 +02:00

2547 lines
77 KiB
C

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>, Hagen Fritsch
// Copyright (C) 2011 Gerhard de Koning Gans
// Copyright (C) 2014 Midnitesnake & Andy Davies & Martin Holst Swende
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency iClass commands
//-----------------------------------------------------------------------------
#include "cmdhficlass.h"
#define NUM_CSNS 9
#define ICLASS_KEYS_MAX 8
static int CmdHelp(const char *Cmd);
static uint8_t iClass_Key_Table[ICLASS_KEYS_MAX][8] = {
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }
};
int usage_hf_iclass_sim(void) {
PrintAndLogEx(NORMAL, "Usage: hf iclass sim <option> [CSN]");
PrintAndLogEx(NORMAL, " options");
PrintAndLogEx(NORMAL, " 0 <CSN> simulate the given CSN");
PrintAndLogEx(NORMAL, " 1 simulate default CSN");
PrintAndLogEx(NORMAL, " 2 Reader-attack, gather reader responses to extract elite key");
PrintAndLogEx(NORMAL, " 3 Full simulation using emulator memory (see 'hf iclass eload')");
PrintAndLogEx(NORMAL, " 4 Reader-attack, adapted for KeyRoll mode, gather reader responses to extract elite key");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass sim 0 031FEC8AF7FF12E0");
PrintAndLogEx(NORMAL, " hf iclass sim 2");
PrintAndLogEx(NORMAL, " hf iclass eload 'tagdump.bin'");
PrintAndLogEx(NORMAL, " hf iclass sim 3");
PrintAndLogEx(NORMAL, " hf iclass sim 4");
return 0;
}
int usage_hf_iclass_eload(void) {
PrintAndLogEx(NORMAL, "Loads iclass tag-dump into emulator memory on device");
PrintAndLogEx(NORMAL, "Usage: hf iclass eload f <filename>");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass eload f iclass_tagdump-aa162d30f8ff12f1.bin");
return 0;
}
int usage_hf_iclass_decrypt(void) {
PrintAndLogEx(NORMAL, "This is simple implementation, it tries to decrypt every block after block 6.");
PrintAndLogEx(NORMAL, "Correct behaviour would be to decrypt only the application areas where the key is valid,");
PrintAndLogEx(NORMAL, "which is defined by the configuration block.");
PrintAndLogEx(NORMAL, "OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside");
PrintAndLogEx(NORMAL, "in the working directory. The file should be 16 bytes binary data");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: hf iclass decrypt f <tagdump>");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, "S hf iclass decrypt f tagdump_12312342343.bin");
return 0;
}
int usage_hf_iclass_encrypt(void) {
PrintAndLogEx(NORMAL, "OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside");
PrintAndLogEx(NORMAL, "in the working directory. The file should be 16 bytes binary data");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: hf iclass encrypt <BlockData>");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass encrypt 0102030405060708");
PrintAndLogEx(NORMAL, "");
return 0;
}
int usage_hf_iclass_dump(void) {
PrintAndLogEx(NORMAL, "Usage: hf iclass dump f <fileName> k <key> c <creditkey> [e|r|v]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " f <filename> : specify a filename to save dump to");
PrintAndLogEx(NORMAL, " k <key> : <required> access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " c <creditkey>: credit key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " e : elite computations applied to key");
PrintAndLogEx(NORMAL, " r : raw, the key is interpreted as raw block 3/4");
PrintAndLogEx(NORMAL, " v : verbose output");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass dump k 001122334455667B");
PrintAndLogEx(NORMAL, " hf iclass dump k AAAAAAAAAAAAAAAA c 001122334455667B");
PrintAndLogEx(NORMAL, " hf iclass dump k AAAAAAAAAAAAAAAA e");
return 0;
}
int usage_hf_iclass_clone(void) {
PrintAndLogEx(NORMAL, "Usage: hf iclass clone f <tagfile.bin> b <first block> l <last block> k <KEY> c e|r");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " f <filename>: specify a filename to clone from");
PrintAndLogEx(NORMAL, " b <Block> : The first block to clone as 2 hex symbols");
PrintAndLogEx(NORMAL, " l <Last Blk>: Set the Data to write as 16 hex symbols");
PrintAndLogEx(NORMAL, " k <Key> : Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " c : If 'c' is specified, the key set is assumed to be the credit key\n");
PrintAndLogEx(NORMAL, " e : If 'e' is specified, elite computations applied to key");
PrintAndLogEx(NORMAL, " r : If 'r' is specified, no computations applied to key");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass clone f iclass_tagdump-121345.bin b 06 l 1A k 1122334455667788 e");
PrintAndLogEx(NORMAL, " hf iclass clone f iclass_tagdump-121345.bin b 05 l 19 k 0");
PrintAndLogEx(NORMAL, " hf iclass clone f iclass_tagdump-121345.bin b 06 l 19 k 0 e");
return 0;
}
int usage_hf_iclass_writeblock(void) {
PrintAndLogEx(NORMAL, "Usage: hf iclass writeblk b <block> d <data> k <key> [c|e|r|v]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " b <Block> : The block number as 2 hex symbols");
PrintAndLogEx(NORMAL, " d <data> : set the Data to write as 16 hex symbols");
PrintAndLogEx(NORMAL, " k <Key> : access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " c : credit key assumed\n");
PrintAndLogEx(NORMAL, " e : elite computations applied to key");
PrintAndLogEx(NORMAL, " r : raw, no computations applied to key");
PrintAndLogEx(NORMAL, " v : verbose output");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass writeblk b 0A d AAAAAAAAAAAAAAAA k 001122334455667B");
PrintAndLogEx(NORMAL, " hf iclass writeblk b 1B d AAAAAAAAAAAAAAAA k 001122334455667B c");
return 0;
}
int usage_hf_iclass_readblock(void) {
PrintAndLogEx(NORMAL, "Usage: hf iclass readblk b <block> k <key> [c|e|r|v]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " b <block> : The block number as 2 hex symbols");
PrintAndLogEx(NORMAL, " k <key> : Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " c : credit key assumed\n");
PrintAndLogEx(NORMAL, " e : elite computations applied to key");
PrintAndLogEx(NORMAL, " r : raw, no computations applied to key");
PrintAndLogEx(NORMAL, " v : verbose output");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass readblk b 06 k 0011223344556677");
PrintAndLogEx(NORMAL, " hf iclass readblk b 1B k 0011223344556677 c");
PrintAndLogEx(NORMAL, " hf iclass readblk b 0A k 0");
return 0;
}
int usage_hf_iclass_readtagfile() {
PrintAndLogEx(NORMAL, "Usage: hf iclass readtagfile <filename> [startblock] [endblock]");
return 0;
}
int usage_hf_iclass_calc_newkey(void) {
PrintAndLogEx(NORMAL, "Calculate new key for updating\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass calc_newkey o <Old key> n <New key> s [csn] e");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " o <oldkey> : *specify a key as 16 hex symbols or a key number as 1 symbol");
PrintAndLogEx(NORMAL, " n <newkey> : *specify a key as 16 hex symbols or a key number as 1 symbol");
PrintAndLogEx(NORMAL, " s <csn> : specify a card Serial number to diversify the key (if omitted will attempt to read a csn)");
PrintAndLogEx(NORMAL, " e : specify new key as elite calc");
PrintAndLogEx(NORMAL, " ee : specify old and new key as elite calc");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " e key to e key given csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899 s deadbeafdeadbeaf ee");
PrintAndLogEx(NORMAL, " std key to e key read csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899 e");
PrintAndLogEx(NORMAL, " std to std read csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899");
PrintAndLogEx(NORMAL, "\nNOTE: * = required\n");
return 0;
}
int usage_hf_iclass_managekeys(void) {
PrintAndLogEx(NORMAL, "HELP : Manage iClass Keys in client memory:\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass managekeys n [keynbr] k [key] f [filename] s l p\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " n <keynbr> : specify the keyNbr to set in memory");
PrintAndLogEx(NORMAL, " k <key> : set a key in memory");
PrintAndLogEx(NORMAL, " f <filename>: specify a filename to use with load or save operations");
PrintAndLogEx(NORMAL, " s : save keys in memory to file specified by filename");
PrintAndLogEx(NORMAL, " l : load keys to memory from file specified by filename");
PrintAndLogEx(NORMAL, " p : print keys loaded into memory\n");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " set key : hf iclass managekeys n 0 k 1122334455667788");
PrintAndLogEx(NORMAL, " save key file: hf iclass managekeys f mykeys.bin s");
PrintAndLogEx(NORMAL, " load key file: hf iclass managekeys f mykeys.bin l");
PrintAndLogEx(NORMAL, " print keys : hf iclass managekeys p\n");
return 0;
}
int usage_hf_iclass_reader(void) {
PrintAndLogEx(NORMAL, "Act as a Iclass reader. Look for iClass tags until a key or the pm3 button is pressed\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass reader [h] [1]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help text");
PrintAndLogEx(NORMAL, " 1 read only 1 tag");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass reader 1");
return 0;
}
int usage_hf_iclass_replay(void) {
PrintAndLogEx(NORMAL, "Replay a collected mac message");
PrintAndLogEx(NORMAL, "Usage: hf iclass replay [h] <mac>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help text");
PrintAndLogEx(NORMAL, " <mac> Mac bytes to replay (8 hexsymbols)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass replay 00112233");
return 0;
}
int usage_hf_iclass_sniff(void) {
PrintAndLogEx(NORMAL, "Sniff the communication between reader and tag");
PrintAndLogEx(NORMAL, "Usage: hf iclass sniff [h]");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass sniff");
return 0;
}
int usage_hf_iclass_loclass(void) {
PrintAndLogEx(NORMAL, "Usage: hf iclass loclass [options]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, "h Show this help");
PrintAndLogEx(NORMAL, "t Perform self-test");
PrintAndLogEx(NORMAL, "f <filename> Bruteforce iclass dumpfile");
PrintAndLogEx(NORMAL, " An iclass dumpfile is assumed to consist of an arbitrary number of");
PrintAndLogEx(NORMAL, " malicious CSNs, and their protocol responses");
PrintAndLogEx(NORMAL, " The binary format of the file is expected to be as follows: ");
PrintAndLogEx(NORMAL, " <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLogEx(NORMAL, " <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLogEx(NORMAL, " <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLogEx(NORMAL, " ... totalling N*24 bytes");
return 0;
}
int usage_hf_iclass_chk(void) {
PrintAndLogEx(NORMAL, "Checkkeys loads a dictionary text file with 8byte hex keys to test authenticating against a iClass tag");
PrintAndLogEx(NORMAL, "Usage: hf iclass chk [h|e|r] [f (*.dic)]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h Show this help");
PrintAndLogEx(NORMAL, " f <filename> Dictionary file with default iclass keys");
PrintAndLogEx(NORMAL, " r raw");
PrintAndLogEx(NORMAL, " e elite");
PrintAndLogEx(NORMAL, " c credit key (if not use, default is debit)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass chk f default_iclass_keys.dic");
PrintAndLogEx(NORMAL, " hf iclass chk f default_iclass_keys.dic e");
return 0;
}
int usage_hf_iclass_lookup(void) {
PrintAndLogEx(NORMAL, "Lookup keys takes some sniffed trace data and tries to verify what key was used against a dictionary file");
PrintAndLogEx(NORMAL, "Usage: hf iclass lookup [h|e|r] [f (*.dic)] [u <csn>] [p <epurse>] [m <macs>]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h Show this help");
PrintAndLogEx(NORMAL, " f <filename> Dictionary file with default iclass keys");
PrintAndLogEx(NORMAL, " u CSN");
PrintAndLogEx(NORMAL, " p EPURSE");
PrintAndLogEx(NORMAL, " m macs");
PrintAndLogEx(NORMAL, " r raw");
PrintAndLogEx(NORMAL, " e elite");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass lookup u 9655a400f8ff12e0 p f0ffffffffffffff m 0000000089cb984b f default_iclass_keys.dic");
PrintAndLogEx(NORMAL, " hf iclass lookup u 9655a400f8ff12e0 p f0ffffffffffffff m 0000000089cb984b f default_iclass_keys.dic e");
return 0;
}
int usage_hf_iclass_permutekey(void){
PrintAndLogEx(NORMAL, "Permute function from 'heart of darkness' paper.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: hf iclass permute [h] <r|f> <bytes>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " r reverse permuted key");
PrintAndLogEx(NORMAL, " f permute key");
PrintAndLogEx(NORMAL, " <bytes> input bytes");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass permute r 0123456789abcdef");
return 0;
}
int xorbits_8(uint8_t val) {
uint8_t res = val ^ (val >> 1); //1st pass
res = res ^ (res >> 1); // 2nd pass
res = res ^ (res >> 2); // 3rd pass
res = res ^ (res >> 4); // 4th pass
return res & 1;
}
int CmdHFiClassList(const char *Cmd) {
//PrintAndLogEx(NORMAL, "Deprecated command, use 'hf list iclass' instead");
CmdTraceList("iclass");
return 0;
}
int CmdHFiClassSniff(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') return usage_hf_iclass_sniff();
UsbCommand c = {CMD_SNOOP_ICLASS};
SendCommand(&c);
return 0;
}
int CmdHFiClassSim(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || cmdp == 'H' || cmdp == 'h') return usage_hf_iclass_sim();
uint8_t simType = 0;
uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0};
simType = param_get8ex(Cmd, 0, 0, 10);
if (simType == 0) {
if (param_gethex(Cmd, 1, CSN, 16)) {
PrintAndLogEx(WARNING, "A CSN should consist of 16 HEX symbols");
return usage_hf_iclass_sim();
}
PrintAndLogEx(NORMAL, "--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
}
if (simType > 4) {
PrintAndLogEx(WARNING, "Undefined simptype %d", simType);
return usage_hf_iclass_sim();
}
uint8_t numberOfCSNs = 0;
/*
// pre-defined 8 CSN by Holiman
uint8_t csns[8*NUM_CSNS] = {
0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x13, 0x94, 0x7E, 0x76, 0xFF, 0x12, 0xE0,
0x2A, 0x99, 0xAC, 0x79, 0xEC, 0xFF, 0x12, 0xE0,
0x17, 0x12, 0x01, 0xFD, 0xF7, 0xFF, 0x12, 0xE0,
0xCD, 0x56, 0x01, 0x7C, 0x6F, 0xFF, 0x12, 0xE0,
0x4B, 0x5E, 0x0B, 0x72, 0xEF, 0xFF, 0x12, 0xE0,
0x00, 0x73, 0xD8, 0x75, 0x58, 0xFF, 0x12, 0xE0,
0x0C, 0x90, 0x32, 0xF3, 0x5D, 0xFF, 0x12, 0xE0
};
*/
/*
pre-defined 9 CSN by iceman
only one csn depend on several others.
six depends only on the first csn, (0,1, 0x45)
*/
uint8_t csns[8*NUM_CSNS] = {
0x01, 0x0A, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x0C, 0x06, 0x0C, 0xFE, 0xF7, 0xFF, 0x12, 0xE0,
0x10, 0x97, 0x83, 0x7B, 0xF7, 0xFF, 0x12, 0xE0,
0x13, 0x97, 0x82, 0x7A, 0xF7, 0xFF, 0x12, 0xE0,
0x07, 0x0E, 0x0D, 0xF9, 0xF7, 0xFF, 0x12, 0xE0,
0x14, 0x96, 0x84, 0x76, 0xF7, 0xFF, 0x12, 0xE0,
0x17, 0x96, 0x85, 0x71, 0xF7, 0xFF, 0x12, 0xE0,
0xCE, 0xC5, 0x0F, 0x77, 0xF7, 0xFF, 0x12, 0xE0,
0xD2, 0x5A, 0x82, 0xF8, 0xF7, 0xFF, 0x12, 0xE0
//0x04, 0x08, 0x9F, 0x78, 0x6E, 0xFF, 0x12, 0xE0
};
/*
// pre-defined 15 CSN by Carl55
// remember to change the define NUM_CSNS to match.
uint8_t csns[8*NUM_CSNS] = {
0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x09, 0x0D, 0x05, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0A, 0x0C, 0x06, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0F, 0x0B, 0x03, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x08, 0x0A, 0x0C, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0D, 0x09, 0x09, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0E, 0x08, 0x0A, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x03, 0x07, 0x17, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x3C, 0x06, 0xE0, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x01, 0x05, 0x1D, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x02, 0x04, 0x1E, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x07, 0x03, 0x1B, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x00, 0x02, 0x24, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x05, 0x01, 0x21, 0xF7, 0xFF, 0x12, 0xE0
};
*/
/* DUMPFILE FORMAT:
*
* <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>....
* So, it should wind up as
* 8 * 24 bytes.
*
* The returndata from the pm3 is on the following format
* <4 byte NR><4 byte MAC>
* CC are all zeroes, CSN is the same as was sent in
**/
uint8_t tries = 0;
switch(simType) {
case 2: {
PrintAndLogEx(INFO, "Starting iCLASS sim 2 attack (elite mode)");
PrintAndLogEx(INFO, "press keyboard to cancel");
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, NUM_CSNS}};
UsbCommand resp = {0};
memcpy(c.d.asBytes, csns, 8 * NUM_CSNS);
clearCommandBuffer();
SendCommand(&c);
while ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) {
tries++;
if (ukbhit()) {
int gc = getchar(); (void)gc;
PrintAndLogEx(WARNING, "\naborted via keyboard.");
return 0;
}
if ( tries > 20) {
PrintAndLogEx(WARNING, "\ntimeout while waiting for reply.");
return 0;
}
}
uint8_t num_mac = resp.arg[1];
bool success = ( NUM_CSNS == num_mac );
PrintAndLogEx(NORMAL, "[%c] %d out of %d MAC obtained [%s]", (success) ? '+':'!', num_mac, NUM_CSNS, (success) ? "OK" : "FAIL");
if ( num_mac == 0 )
break;
size_t datalen = NUM_CSNS * 24;
void* dump = malloc(datalen);
if ( !dump ) {
PrintAndLogEx(WARNING, "Failed to allocate memory");
return 2;
}
memset(dump, 0, datalen);//<-- Need zeroes for the EPURSE - field (offical)
uint8_t i = 0;
for (i = 0 ; i < NUM_CSNS ; i++) {
//copy CSN
memcpy(dump + i*24, csns + i*8, 8);
//copy epurse
memcpy(dump + i*24 + 8, resp.d.asBytes + i*16, 8);
// NR_MAC (eight bytes from the response) ( 8b csn + 8b epurse == 16)
memcpy(dump + i*24 + 16, resp.d.asBytes + i*16 + 8, 8);
}
/** Now, save to dumpfile **/
saveFile("iclass_mac_attack", "bin", dump, datalen);
free(dump);
break;
}
case 4: {
// reader in key roll mode, when it has two keys it alternates when trying to verify.
PrintAndLogEx(INFO, "Starting iCLASS sim 4 attack (elite mode, reader in key roll mode)");
PrintAndLogEx(INFO, "press keyboard to cancel");
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, NUM_CSNS}};
UsbCommand resp = {0};
memcpy(c.d.asBytes, csns, 8*NUM_CSNS);
clearCommandBuffer();
SendCommand(&c);
while ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) {
tries++;
if (ukbhit()) {
int gc = getchar(); (void)gc;
PrintAndLogEx(WARNING, "\naborted via keyboard.");
return 0;
}
if ( tries > 20) {
PrintAndLogEx(WARNING, "\ntimeout while waiting for reply.");
return 0;
}
}
uint8_t num_mac = resp.arg[1];
bool success = ( (NUM_CSNS * 2) == num_mac );
PrintAndLogEx(NORMAL, "[%c] %d out of %d MAC obtained [%s]", (success) ? '+':'!', num_mac, NUM_CSNS*2, (success) ? "OK" : "FAIL");
if ( num_mac == 0 )
break;
size_t datalen = NUM_CSNS * 24;
void* dump = malloc(datalen);
if ( !dump ) {
PrintAndLogEx(WARNING, "Failed to allocate memory");
return 2;
}
#define MAC_ITEM_SIZE 24
//KEYROLL 1
//Need zeroes for the CC-field
memset(dump, 0, datalen);
for (uint8_t i = 0; i < NUM_CSNS ; i++) {
// copy CSN
memcpy(dump + i*MAC_ITEM_SIZE, csns + i*8, 8); //CSN
// copy EPURSE
memcpy(dump + i*MAC_ITEM_SIZE + 8, resp.d.asBytes + i * 16, 8);
// copy NR_MAC (eight bytes from the response) ( 8b csn + 8b epurse == 16)
memcpy(dump + i*MAC_ITEM_SIZE + 16, resp.d.asBytes + i * 16 + 8, 8);
}
saveFile("iclass_mac_attack_keyroll_A", "bin", dump, datalen);
//KEYROLL 2
memset(dump, 0, datalen);
uint8_t resp_index = 0;
for (uint8_t i = 0; i < NUM_CSNS; i++) {
resp_index = (i + NUM_CSNS) * 16;
// Copy CSN
memcpy(dump + i*MAC_ITEM_SIZE, csns + i*8, 8);
// copy EPURSE
memcpy(dump + i*MAC_ITEM_SIZE + 8, resp.d.asBytes + resp_index, 8);
// copy NR_MAC (eight bytes from the response) ( 8b csn + 8 epurse == 16)
memcpy(dump + i*MAC_ITEM_SIZE + 16, resp.d.asBytes + resp_index + 8, 8);
resp_index++;
}
saveFile("iclass_mac_attack_keyroll_B", "bin", dump, datalen);
free(dump);
break;
}
case 1:
case 3:
default: {
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, numberOfCSNs}};
memcpy(c.d.asBytes, CSN, 8);
clearCommandBuffer();
SendCommand(&c);
break;
}
}
return 0;
}
int HFiClassReader(const char *Cmd, bool loop, bool verbose) {
bool tagFound = false;
uint32_t flags = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC | FLAG_ICLASS_READER_AIA |
FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_ONLY_ONCE |
FLAG_ICLASS_READER_ONE_TRY;
UsbCommand c = {CMD_READER_ICLASS, {flags, 0, 0}};
// loop in client not device - else on windows have a communication error
UsbCommand resp;
while (!ukbhit()){
clearCommandBuffer();
SendCommand(&c);
if (WaitForResponseTimeout(CMD_ACK,&resp, 4500)) {
uint8_t readStatus = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (verbose) PrintAndLogEx(NORMAL, "Readstatus:%02x", readStatus);
// no tag found or button pressed
if ( (readStatus == 0 && !loop) || readStatus == 0xFF) {
// abort
if (verbose) {
PrintAndLogEx(FAILED, "Quitting...");
DropField();
return 0;
}
}
if( readStatus & FLAG_ICLASS_READER_CSN){
PrintAndLogEx(NORMAL, " CSN: %s", sprint_hex(data, 8));
tagFound = true;
}
if (readStatus & FLAG_ICLASS_READER_CC) {
PrintAndLogEx(NORMAL, " CC: %s", sprint_hex(data+16, 8));
}
if (readStatus & FLAG_ICLASS_READER_CONF) {
printIclassDumpInfo(data);
}
if (readStatus & FLAG_ICLASS_READER_AIA) {
bool legacy = ( memcmp( (uint8_t *)(data + 8*5), "\xff\xff\xff\xff\xff\xff\xff\xff", 8) == 0 );
PrintAndLogEx(NORMAL, " App IA: %s", sprint_hex(data+8*5, 8));
if ( legacy )
PrintAndLogEx(SUCCESS, " : Possible iClass (legacy tag)");
else
PrintAndLogEx(WARNING, " : Possible iClass (NOT legacy tag)");
}
if (tagFound && !loop) {
DropField();
return 1;
}
} else {
if (verbose)
PrintAndLogEx(WARNING, "command execute timeout");
}
if (!loop) break;
}
DropField();
return 0;
}
int CmdHFiClassReader(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') return usage_hf_iclass_reader();
bool findone = (cmdp == '1') ? false : true;
return HFiClassReader(Cmd, findone, true);
}
int CmdHFiClassReader_Replay(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || cmdp == 'H' || cmdp == 'h') return usage_hf_iclass_replay();
uint8_t readerType = 0;
uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00};
if (param_gethex(Cmd, 0, MAC, 8)) {
PrintAndLogEx(FAILED, "MAC must include 8 HEX symbols");
return 1;
}
UsbCommand c = {CMD_READER_ICLASS_REPLAY, {readerType}};
memcpy(c.d.asBytes, MAC, 4);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int iclassEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
memcpy(c.d.asBytes, data, blocksCount * 16);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdHFiClassELoad(const char *Cmd) {
char ctmp = param_getchar(Cmd, 0);
if (strlen(Cmd)< 1 || ctmp == 'h' || ctmp == 'H') return usage_hf_iclass_eload();
if ( ctmp != 'f' && ctmp != 'F') return usage_hf_iclass_eload();
//File handling and reading
FILE *f;
char filename[FILE_PATH_SIZE];
if ( param_getstr(Cmd, 1, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE ) {
PrintAndLogEx(FAILED, "Filename too long");
return 1;
}
f = fopen(filename, "rb");
if ( !f ){
PrintAndLogEx(FAILED, "File: %s: not found or locked.", filename);
return 1;
}
// get filesize in order to malloc memory
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if (fsize < 0) {
PrintAndLogDevice(WARNING, "error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = calloc(fsize, sizeof(uint8_t));
if (!dump) {
PrintAndLogDevice(WARNING, "error, cannot allocate memory ");
fclose(f);
return 1;
}
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
printIclassDumpInfo(dump);
//Validate
if (bytes_read < fsize) {
PrintAndLogDevice(WARNING, "error, could only read %d bytes (should be %d)", bytes_read, fsize );
free(dump);
return 1;
}
//Send to device
uint32_t bytes_sent = 0;
uint32_t bytes_remaining = bytes_read;
while (bytes_remaining > 0){
uint32_t bytes_in_packet = MIN(USB_CMD_DATA_SIZE, bytes_remaining);
UsbCommand c = {CMD_ICLASS_EML_MEMSET, {bytes_sent, bytes_in_packet, 0}};
memcpy(c.d.asBytes, dump + bytes_sent, bytes_in_packet);
clearCommandBuffer();
SendCommand(&c);
bytes_remaining -= bytes_in_packet;
bytes_sent += bytes_in_packet;
}
free(dump);
PrintAndLogEx(SUCCESS, "sent %d bytes of data to device emulator memory", bytes_sent);
return 0;
}
static int readKeyfile(const char *filename, size_t len, uint8_t* buffer) {
FILE *f = fopen(filename, "rb");
if (!f) {
PrintAndLogEx(WARNING, "Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
size_t bytes_read = fread(buffer, 1, len, f);
fclose(f);
if (fsize != len) {
PrintAndLogEx(WARNING, "Warning, file size is %d, expected %d", fsize, len);
return 1;
}
if (bytes_read != len) {
PrintAndLogEx(WARNING, "Warning, could only read %d bytes, expected %d" ,bytes_read, len);
return 1;
}
return 0;
}
int CmdHFiClassDecrypt(const char *Cmd) {
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h' || opt == 'H') return usage_hf_iclass_decrypt();
uint8_t key[16] = { 0 };
if (readKeyfile("iclass_decryptionkey.bin", 16, key)) return usage_hf_iclass_decrypt();
PrintAndLogEx(SUCCESS, "decryption key loaded from file");
//Open the tagdump-file
FILE *f;
char filename[FILE_PATH_SIZE];
if(opt == 'f' && param_getstr(Cmd, 1, filename, sizeof(filename)) > 0) {
f = fopen(filename, "rb");
if (!f) {
PrintAndLogEx(WARNING, "could not find file %s", filename);
return 1;
}
} else {
return usage_hf_iclass_decrypt();
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if ( fsize < 0 ) {
PrintAndLogEx(WARNING, "error, when getting filesize");
fclose(f);
return 2;
}
uint8_t *decrypted = calloc(fsize, sizeof(uint8_t));
if ( !decrypted ) {
PrintAndLogEx(WARNING, "Failed to allocate memory");
fclose(f);
return 1;
}
size_t bytes_read = fread(decrypted, 1, fsize, f);
fclose(f);
if ( bytes_read == 0) {
PrintAndLogEx(WARNING, "file reading error");
free(decrypted);
return 3;
}
picopass_hdr *hdr = (picopass_hdr *)decrypted;
uint8_t mem = hdr->conf.mem_config;
uint8_t chip = hdr->conf.chip_config;
uint8_t applimit = hdr->conf.app_limit;
uint8_t kb = 2;
uint8_t app_areas = 2;
uint8_t max_blk = 31;
getMemConfig(mem, chip, &max_blk, &app_areas, &kb);
//Use the first block (CSN) for filename
char outfilename[FILE_PATH_SIZE] = {0};
snprintf(outfilename, FILE_PATH_SIZE, "iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x-decrypted",
hdr->csn[0],hdr->csn[1],hdr->csn[2],hdr->csn[3],
hdr->csn[4],hdr->csn[5],hdr->csn[6],hdr->csn[7]);
// tripledes
des3_context ctx = { DES_DECRYPT ,{ 0 } };
des3_set2key_dec( &ctx, key);
uint8_t enc_dump[8] = {0};
uint8_t empty[8] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
for(uint16_t blocknum=0; blocknum < applimit; ++blocknum) {
uint8_t idx = blocknum*8;
memcpy(enc_dump, decrypted + idx, 8);
// block 7 or higher, and not empty 0xFF
if(blocknum > 6 && memcmp(enc_dump, empty, 8) != 0 ) {
des3_crypt_ecb(&ctx, enc_dump, decrypted + idx );
}
}
saveFile(outfilename, "bin", decrypted, fsize);
free(decrypted);
printIclassDumpContents(decrypted, 1, (fsize/8), fsize);
return 0;
}
static int iClassEncryptBlkData(uint8_t *blkData) {
uint8_t key[16] = { 0 };
if (readKeyfile("iclass_decryptionkey.bin", 16, key)) {
usage_hf_iclass_encrypt();
return 1;
}
PrintAndLogEx(SUCCESS, "decryption file found");
uint8_t encryptedData[16];
uint8_t *encrypted = encryptedData;
des3_context ctx = { DES_DECRYPT ,{ 0 } };
des3_set2key_enc( &ctx, key);
des3_crypt_ecb(&ctx, blkData,encrypted);
memcpy(blkData,encrypted,8);
return 1;
}
int CmdHFiClassEncryptBlk(const char *Cmd) {
uint8_t blkData[8] = {0};
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h' || opt == 'H') return usage_hf_iclass_encrypt();
//get the bytes to encrypt
if (param_gethex(Cmd, 0, blkData, 16)) {
PrintAndLogEx(NORMAL, "BlockData must include 16 HEX symbols");
return 0;
}
if (!iClassEncryptBlkData(blkData)) return 0;
printvar("encrypted block", blkData, 8);
return 1;
}
void Calc_wb_mac(uint8_t blockno, uint8_t *data, uint8_t *div_key, uint8_t MAC[4]) {
uint8_t wb[9];
wb[0] = blockno;
memcpy(wb + 1,data,8);
doMAC_N(wb, sizeof(wb), div_key, MAC);
}
static bool select_only(uint8_t *CSN, uint8_t *CCNR, bool use_credit_key, bool verbose) {
UsbCommand resp;
UsbCommand c = {CMD_READER_ICLASS, {0}};
c.arg[0] = FLAG_ICLASS_READER_ONLY_ONCE | FLAG_ICLASS_READER_CC | FLAG_ICLASS_READER_ONE_TRY;
if (use_credit_key)
c.arg[0] |= FLAG_ICLASS_READER_CEDITKEY;
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4000)) {
PrintAndLogEx(WARNING, "command execute timeout");
return false;
}
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
memcpy(CSN, data, 8);
if (CCNR != NULL)
memcpy(CCNR, data+16, 8);
if (isOK > 0 && verbose) {
PrintAndLogEx(SUCCESS, "CSN | %s", sprint_hex(CSN, 8));
PrintAndLogEx(SUCCESS, "CCNR | %s", sprint_hex(CCNR, 8));
}
if (isOK <= 1){
PrintAndLogEx(FAILED, "failed to obtain CC! Tag-select is aborting... (%d)", isOK);
return false;
}
return true;
}
static bool select_and_auth(uint8_t *KEY, uint8_t *MAC, uint8_t *div_key, bool use_credit_key, bool elite, bool rawkey, bool verbose) {
uint8_t CSN[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
if (!select_only(CSN, CCNR, use_credit_key, verbose)) {
if (verbose) PrintAndLogEx(FAILED, "selecting tag failed");
return false;
}
//get div_key
if (rawkey)
memcpy(div_key, KEY, 8);
else
HFiClassCalcDivKey(CSN, KEY, div_key, elite);
if (verbose) PrintAndLogEx(SUCCESS, "authing with %s: %s", rawkey ? "raw key" : "diversified key", sprint_hex(div_key, 8) );
doMAC(CCNR, div_key, MAC);
UsbCommand resp;
UsbCommand d = {CMD_ICLASS_AUTHENTICATION, {0,0,0}};
memcpy(d.d.asBytes, MAC, 4);
clearCommandBuffer();
SendCommand(&d);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4000)) {
if (verbose) PrintAndLogEx(FAILED, "auth command execute timeout");
return false;
}
uint8_t isOK = resp.arg[0] & 0xFF;
if (!isOK) {
if (verbose) PrintAndLogEx(FAILED, "authentication error");
return false;
}
return true;
}
int CmdHFiClassReader_Dump(const char *Cmd) {
uint8_t MAC[4] = {0x00,0x00,0x00,0x00};
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t c_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t blockno = 0;
uint8_t numblks = 0;
uint8_t maxBlk = 31;
uint8_t app_areas = 1;
uint8_t kb = 2;
uint8_t KEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CreditKEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
uint8_t fileNameLen = 0;
char filename[FILE_PATH_SIZE] = {0};
char tempStr[50] = {0};
bool have_debit_key = false;
bool have_credit_key = false;
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool errors = false;
bool verbose = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
return usage_hf_iclass_dump();
case 'c':
case 'C':
have_credit_key = true;
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, CreditKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(CreditKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLogEx(WARNING, "no filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'k':
case 'K':
have_debit_key = true;
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
case 'v':
case 'V':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors || cmdp < 2) return usage_hf_iclass_dump();
// if no debit key given try credit key on AA1 (not for iclass but for some picopass this will work)
if (!have_debit_key && have_credit_key) use_credit_key = true;
uint32_t flags = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC |
FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_ONLY_ONCE |
FLAG_ICLASS_READER_ONE_TRY;
//get config and first 3 blocks
UsbCommand c = {CMD_READER_ICLASS, {flags, 0, 0}};
UsbCommand resp;
uint8_t tag_data[255*8];
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLogEx(WARNING, "command execute timeout");
DropField();
return 0;
}
DropField();
uint8_t readStatus = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (readStatus == 0){
PrintAndLogEx(FAILED, "no tag found");
return 0;
}
if( readStatus & (FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_CC)){
memcpy(tag_data, data, 8*3);
blockno += 2; // 2 to force re-read of block 2 later. (seems to respond differently..)
numblks = data[8];
getMemConfig(data[13], data[12], &maxBlk, &app_areas, &kb);
// large memory - not able to dump pages currently
if (numblks > maxBlk) numblks = maxBlk;
}
// authenticate debit key and get div_key - later store in dump block 3
if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose)){
//try twice - for some reason it sometimes fails the first time...
PrintAndLogEx(SUCCESS, "retry to select card");
if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose)){
PrintAndLogEx(WARNING, "failed authenticating with debit key");
DropField();
return 0;
}
}
// begin dump
UsbCommand w = {CMD_ICLASS_DUMP, {blockno, numblks-blockno+1}};
clearCommandBuffer();
SendCommand(&w);
while (true) {
printf("."); fflush(stdout);
if (ukbhit()) {
int gc = getchar(); (void)gc;
PrintAndLogEx(NORMAL, "\n[!] aborted via keyboard!\n");
DropField();
return 0;
}
if (WaitForResponseTimeout(CMD_ACK, &resp, 2000) )
break;
}
// dump cmd switch off at device when finised.
uint32_t blocksRead = resp.arg[1];
uint8_t isOK = resp.arg[0] & 0xff;
if (!isOK && !blocksRead) {
PrintAndLogEx(WARNING, "read block failed");
return 0;
}
uint32_t startindex = resp.arg[2];
if (blocksRead*8 > sizeof(tag_data) - (blockno*8)) {
PrintAndLogEx(FAILED, "data exceeded buffer size!");
blocksRead = (sizeof(tag_data)/8) - blockno;
}
// response ok - now get bigbuf content of the dump
if ( !GetFromDevice(BIG_BUF, tag_data+(blockno*8), blocksRead*8, startindex, NULL, 2500, false) ) {
PrintAndLogEx(WARNING, "command execution time out");
return 0;
}
size_t gotBytes = blocksRead*8 + blockno*8;
// try AA2
if (have_credit_key) {
//turn off hf field before authenticating with different key
DropField();
memset(MAC,0,4);
// AA2 authenticate credit key and git c_div_key - later store in dump block 4
if (!select_and_auth(CreditKEY, MAC, c_div_key, true, elite, rawkey, verbose)){
//try twice - for some reason it sometimes fails the first time...
if (!select_and_auth(CreditKEY, MAC, c_div_key, true, elite, rawkey, verbose)){
PrintAndLogEx(WARNING, "failed authenticating with credit key");
DropField();
return 0;
}
}
// do we still need to read more block? (aa2 enabled?)
if (maxBlk > blockno+numblks+1) {
// setup dump and start
w.arg[0] = blockno + blocksRead;
w.arg[1] = maxBlk - (blockno + blocksRead);
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLogEx(WARNING, "command execute timeout 2");
return 0;
}
uint8_t isOK = resp.arg[0] & 0xff;
blocksRead = resp.arg[1];
if (!isOK && !blocksRead) {
PrintAndLogEx(WARNING, "read block failed 2");
return 0;
}
startindex = resp.arg[2];
if (blocksRead * 8 > sizeof(tag_data) - gotBytes) {
PrintAndLogEx(FAILED, "data exceeded buffer size!");
blocksRead = (sizeof(tag_data) - gotBytes)/8;
}
// get dumped data from bigbuf
if ( !GetFromDevice(BIG_BUF, tag_data + gotBytes, blocksRead * 8, startindex, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "command execution time out");
return 0;
}
gotBytes += blocksRead * 8;
}
}
DropField();
// add diversified keys to dump
if (have_debit_key) memcpy(tag_data+(3*8),div_key,8);
if (have_credit_key) memcpy(tag_data+(4*8),c_div_key,8);
// print the dump
PrintAndLogEx(NORMAL, "------+--+-------------------------+\n");
PrintAndLogEx(NORMAL, "CSN |00| %s|\n", sprint_hex(tag_data, 8));
printIclassDumpContents(tag_data, 1, (gotBytes/8), gotBytes);
if (filename[0] == 0){
snprintf(filename, FILE_PATH_SIZE,"iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x",
tag_data[0],tag_data[1],tag_data[2],tag_data[3],
tag_data[4],tag_data[5],tag_data[6],tag_data[7]);
}
// save the dump to .bin file
PrintAndLogEx(SUCCESS, "saving dump file - %d blocks read", gotBytes/8);
saveFile(filename, "bin", tag_data, gotBytes);
return 1;
}
static int WriteBlock(uint8_t blockno, uint8_t *bldata, uint8_t *KEY, bool use_credit_key, bool elite, bool rawkey, bool verbose) {
uint8_t MAC[4] = {0x00,0x00,0x00,0x00};
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose))
return 0;
UsbCommand resp;
Calc_wb_mac(blockno,bldata,div_key,MAC);
UsbCommand w = {CMD_ICLASS_WRITEBLOCK, {blockno}};
memcpy(w.d.asBytes, bldata, 8);
memcpy(w.d.asBytes + 8, MAC, 4);
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
if ( verbose ) PrintAndLogEx(WARNING, "Write Command execute timeout");
return 0;
}
uint8_t isOK = resp.arg[0] & 0xff;
if (isOK)
PrintAndLogEx(SUCCESS, "Write block successful");
else
PrintAndLogEx(WARNING, "Write block failed");
return isOK;
}
int CmdHFiClass_WriteBlock(const char *Cmd) {
uint8_t blockno = 0;
uint8_t bldata[8] = {0,0,0,0,0,0,0,0};
uint8_t KEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool errors = false;
bool verbose = false;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
return usage_hf_iclass_writeblock();
case 'b':
case 'B':
if (param_gethex(Cmd, cmdp+1, &blockno, 2)) {
PrintAndLogEx(WARNING, "Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'c':
case 'C':
use_credit_key = true;
cmdp++;
break;
case 'd':
case 'D':
if (param_gethex(Cmd, cmdp+1, bldata, 16)) {
PrintAndLogEx(WARNING, "Data must include 16 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'k':
case 'K':
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
case 'v':
case 'V':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors || cmdp < 6) return usage_hf_iclass_writeblock();
int ans = WriteBlock(blockno, bldata, KEY, use_credit_key, elite, rawkey, verbose);
DropField();
return ans;
}
int CmdHFiClassCloneTag(const char *Cmd) {
char filename[FILE_PATH_SIZE] = { 0x00 };
char tempStr[50] = {0};
uint8_t KEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t fileNameLen = 0;
uint8_t startblock = 0;
uint8_t endblock = 0;
uint8_t dataLen = 0;
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool errors = false;
bool verbose = false;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
return usage_hf_iclass_clone();
case 'b':
case 'B':
if (param_gethex(Cmd, cmdp+1, &startblock, 2)) {
PrintAndLogEx(WARNING, "start block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'c':
case 'C':
use_credit_key = true;
cmdp++;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLogEx(WARNING, "No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'k':
case 'K':
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'l':
case 'L':
if (param_gethex(Cmd, cmdp+1, &endblock, 2)) {
PrintAndLogEx(WARNING, "start Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
case 'v':
case 'V':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors || cmdp < 8) return usage_hf_iclass_clone();
FILE *f;
iclass_block_t tag_data[USB_CMD_DATA_SIZE/12];
if ((endblock-startblock+1)*12 > USB_CMD_DATA_SIZE) {
PrintAndLogEx(NORMAL, "Trying to write too many blocks at once. Max: %d", USB_CMD_DATA_SIZE/8);
}
// file handling and reading
f = fopen(filename,"rb");
if(!f) {
PrintAndLogEx(WARNING, "failed to read file '%s'", filename);
return 1;
}
if (startblock<5) {
PrintAndLogEx(WARNING, "you cannot write key blocks this way. yet... make your start block > 4");
fclose(f);
return 0;
}
// now read data from the file from block 6 --- 19
// ok we will use this struct [data 8 bytes][MAC 4 bytes] for each block calculate all mac number for each data
// then copy to usbcommand->asbytes; the max is 32 - 6 = 24 block 12 bytes each block 288 bytes then we can only accept to clone 21 blocks at the time,
// else we have to create a share memory
int i;
fseek(f, startblock*8, SEEK_SET);
size_t bytes_read = fread(tag_data, sizeof(iclass_block_t),endblock - startblock + 1, f);
if ( bytes_read == 0){
PrintAndLogEx(WARNING, "file reading error.");
fclose(f);
return 2;
}
uint8_t MAC[4] = {0x00,0x00,0x00,0x00};
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose))
return 0;
UsbCommand w = {CMD_ICLASS_CLONE,{startblock,endblock}};
uint8_t *ptr;
// calculate all mac for every the block we will write
for (i = startblock; i <= endblock; i++){
Calc_wb_mac(i,tag_data[i - startblock].d,div_key,MAC);
// usb command d start pointer = d + (i - 6) * 12
// memcpy(pointer,tag_data[i - 6],8) 8 bytes
// memcpy(pointer + 8,mac,sizoof(mac) 4 bytes;
// next one
ptr = w.d.asBytes + (i - startblock) * 12;
memcpy(ptr, &(tag_data[i - startblock].d[0]), 8);
memcpy(ptr + 8,MAC, 4);
}
uint8_t p[12];
for (i = 0; i <= endblock - startblock;i++){
memcpy(p,w.d.asBytes + (i * 12),12);
PrintAndLogEx(NORMAL, "Block |%02x|",i + startblock);
PrintAndLogEx(NORMAL, " %02x%02x%02x%02x%02x%02x%02x%02x |",p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7]);
PrintAndLogEx(NORMAL, " MAC |%02x%02x%02x%02x|\n",p[8],p[9],p[10],p[11]);
}
UsbCommand resp;
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLogEx(WARNING, "command execute timeout");
return 0;
}
return 1;
}
static int ReadBlock(uint8_t *KEY, uint8_t blockno, uint8_t keyType, bool elite, bool rawkey, bool verbose, bool auth) {
uint8_t MAC[4] = {0x00,0x00,0x00,0x00};
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
// block 0,1 should always be able to read, and block 5 on some cards.
if (auth || blockno >= 2) {
if (!select_and_auth(KEY, MAC, div_key, (keyType == 0x18), elite, rawkey, verbose))
return 0;
} else {
uint8_t CSN[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
if (!select_only(CSN, CCNR, (keyType == 0x18), verbose))
return 0;
}
UsbCommand resp;
UsbCommand c = {CMD_ICLASS_READBLOCK, {blockno}};
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLogEx(WARNING, "Command execute timeout");
return 0;
}
uint8_t isOK = resp.arg[0] & 0xff;
if (!isOK) {
PrintAndLogEx(WARNING, "read block failed");
return 0;
}
//data read is stored in: resp.d.asBytes[0-15]
PrintAndLogEx(NORMAL, "block %02X: %s\n", blockno, sprint_hex(resp.d.asBytes, 8));
return 1;
}
int CmdHFiClass_ReadBlock(const char *Cmd) {
uint8_t blockno = 0;
uint8_t keyType = 0x88; //debit key
uint8_t KEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool elite = false;
bool rawkey = false;
bool errors = false;
bool auth = false;
bool verbose = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
return usage_hf_iclass_readblock();
case 'b':
case 'B':
if (param_gethex(Cmd, cmdp+1, &blockno, 2)) {
PrintAndLogEx(WARNING, "Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'c':
case 'C':
keyType = 0x18;
cmdp++;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'k':
case 'K':
auth = true;
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
case 'v':
case 'V':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors || cmdp < 4) return usage_hf_iclass_readblock();
if (!auth)
PrintAndLogEx(FAILED, "warning: no authentication used with read, only a few specific blocks can be read accurately without authentication.");
return ReadBlock(KEY, blockno, keyType, elite, rawkey, verbose, auth);
}
int CmdHFiClass_loclass(const char *Cmd) {
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h')
usage_hf_iclass_loclass();
char fileName[FILE_PATH_SIZE] = {0};
if (opt == 'f') {
if (param_getstr(Cmd, 1, fileName, sizeof(fileName)) > 0) {
return bruteforceFileNoKeys(fileName);
} else {
PrintAndLogEx(WARNING, "You must specify a filename");
return 0;
}
}
else if (opt == 't') {
int errors = testCipherUtils();
errors += testMAC();
errors += doKeyTests(0);
errors += testElite();
if (errors) PrintAndLogDevice(WARNING, "There were errors!!!");
return errors;
}
return 0;
}
void printIclassDumpContents(uint8_t *iclass_dump, uint8_t startblock, uint8_t endblock, size_t filesize) {
uint8_t mem_config;
memcpy(&mem_config, iclass_dump + 13,1);
uint8_t maxmemcount;
uint8_t filemaxblock = filesize / 8;
if (mem_config & 0x80)
maxmemcount = 255;
else
maxmemcount = 31;
if (startblock == 0)
startblock = 6;
if ((endblock > maxmemcount) || (endblock == 0))
endblock = maxmemcount;
// remember endblock needs to relate to zero-index arrays.
if (endblock > filemaxblock-1)
endblock = filemaxblock-1;
//PrintAndLog ("startblock: %d, endblock: %d, filesize: %d, maxmemcount: %d, filemaxblock: %d",startblock, endblock,filesize, maxmemcount, filemaxblock);
int i = startblock;
PrintAndLogEx(NORMAL, "------+--+-------------------------+\n");
while (i <= endblock){
uint8_t *blk = iclass_dump + (i * 8);
PrintAndLogEx(NORMAL, " |%02X| %s\n", i, sprint_hex_ascii(blk, 8) );
i++;
}
PrintAndLogEx(NORMAL, "------+--+-------------------------+\n");
}
int CmdHFiClassReadTagFile(const char *Cmd) {
int startblock = 0;
int endblock = 0;
char tempnum[5];
FILE *f;
char filename[FILE_PATH_SIZE];
if (param_getstr(Cmd, 0, filename, sizeof(filename)) < 1)
return usage_hf_iclass_readtagfile();
if (param_getstr(Cmd, 1, tempnum, sizeof(tempnum)) < 1)
startblock = 0;
else
sscanf(tempnum,"%d",&startblock);
if (param_getstr(Cmd,2, tempnum, sizeof(tempnum)) < 1)
endblock = 0;
else
sscanf(tempnum,"%d",&endblock);
// file handling and reading
f = fopen(filename,"rb");
if(!f) {
PrintAndLogEx(WARNING, "Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if ( fsize < 0 ) {
PrintAndLogEx(WARNING, "Error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = calloc(fsize, sizeof(uint8_t));
if ( !dump ) {
PrintAndLogEx(WARNING, "Failed to allocate memory");
fclose(f);
return 1;
}
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
uint8_t *csn = dump;
PrintAndLogEx(NORMAL, "------+--+-------------------------+\n");
PrintAndLogEx(NORMAL, "CSN |00| %s|\n", sprint_hex(csn, 8) );
printIclassDumpContents(dump, startblock, endblock, bytes_read);
free(dump);
return 0;
}
void HFiClassCalcDivKey(uint8_t *CSN, uint8_t *KEY, uint8_t *div_key, bool elite){
uint8_t keytable[128] = {0};
uint8_t key_index[8] = {0};
if (elite) {
uint8_t key_sel[8] = { 0 };
uint8_t key_sel_p[8] = { 0 };
hash2(KEY, keytable);
hash1(CSN, key_index);
for(uint8_t i = 0; i < 8 ; i++)
key_sel[i] = keytable[key_index[i]] & 0xFF;
//Permute from iclass format to standard format
permutekey_rev(key_sel, key_sel_p);
diversifyKey(CSN, key_sel_p, div_key);
} else {
diversifyKey(CSN, KEY, div_key);
}
}
//when told CSN, oldkey, newkey, if new key is elite (elite), and if old key was elite (oldElite)
//calculate and return xor_div_key (ready for a key write command)
//print all div_keys if verbose
static void HFiClassCalcNewKey(uint8_t *CSN, uint8_t *OLDKEY, uint8_t *NEWKEY, uint8_t *xor_div_key, bool elite, bool oldElite, bool verbose){
uint8_t old_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t new_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
//get old div key
HFiClassCalcDivKey(CSN, OLDKEY, old_div_key, oldElite);
//get new div key
HFiClassCalcDivKey(CSN, NEWKEY, new_div_key, elite);
for (uint8_t i = 0; i < sizeof(old_div_key); i++){
xor_div_key[i] = old_div_key[i] ^ new_div_key[i];
}
if (verbose) {
PrintAndLogEx(SUCCESS, "Old div key : %s\n",sprint_hex(old_div_key,8));
PrintAndLogEx(SUCCESS, "New div key : %s\n",sprint_hex(new_div_key,8));
PrintAndLogEx(SUCCESS, "Xor div key : %s\n",sprint_hex(xor_div_key,8));
}
}
int CmdHFiClassCalcNewKey(const char *Cmd) {
uint8_t OLDKEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t NEWKEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t xor_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool givenCSN = false;
bool oldElite = false;
bool elite = false;
bool errors = false;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
return usage_hf_iclass_calc_newkey();
case 'e':
case 'E':
dataLen = param_getstr(Cmd, cmdp, tempStr, sizeof(tempStr));
if (dataLen==2)
oldElite = true;
elite = true;
cmdp++;
break;
case 'n':
case 'N':
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, NEWKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(NEWKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: NewKey Nbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: NewKey is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'o':
case 'O':
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, OLDKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(OLDKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 's':
case 'S':
givenCSN = true;
if (param_gethex(Cmd, cmdp+1, CSN, 16))
return usage_hf_iclass_calc_newkey();
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors || cmdp < 4) return usage_hf_iclass_calc_newkey();
if (!givenCSN)
if (!select_only(CSN, CCNR, false, true))
return 0;
HFiClassCalcNewKey(CSN, OLDKEY, NEWKEY, xor_div_key, elite, oldElite, true);
return 0;
}
static int loadKeys(char *filename) {
FILE *f;
f = fopen(filename,"rb");
if(!f) {
PrintAndLogEx(WARNING, "Failed to read from file '%s'", filename);
return 0;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if ( fsize < 0 ) {
PrintAndLogEx(WARNING, "Error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = calloc(fsize, sizeof(uint8_t));
if ( !dump ) {
PrintAndLogEx(WARNING, "Failed to allocate memory");
fclose(f);
return 1;
}
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
if (bytes_read > ICLASS_KEYS_MAX * 8){
PrintAndLogEx(WARNING, "File is too long to load - bytes: %u", bytes_read);
free(dump);
return 0;
}
uint8_t i = 0;
for (; i < bytes_read/8; i++)
memcpy(iClass_Key_Table[i],dump+(i*8),8);
free(dump);
PrintAndLogEx(SUCCESS, "%u keys loaded", i);
return 1;
}
static int saveKeys(char *filename) {
FILE *f;
f = fopen(filename,"wb");
if (!f) {
PrintAndLogEx(NORMAL, "[!] error opening file %s\n",filename);
return 0;
}
for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++){
if (fwrite(iClass_Key_Table[i],8,1,f) != 1){
PrintAndLogEx(WARNING, "save key failed to write to file: %s", filename);
break;
}
}
fclose(f);
return 0;
}
static int printKeys(void) {
PrintAndLogEx(NORMAL, "");
for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++)
PrintAndLogEx(NORMAL, "%u: %s", i, sprint_hex(iClass_Key_Table[i],8));
PrintAndLogEx(NORMAL, "");
return 0;
}
int CmdHFiClassManageKeys(const char *Cmd) {
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
uint8_t KEY[8] = {0};
char filename[FILE_PATH_SIZE];
uint8_t fileNameLen = 0;
bool errors = false;
uint8_t operation = 0;
char tempStr[20];
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
return usage_hf_iclass_managekeys();
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLogEx(WARNING, "No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'n':
case 'N':
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr >= ICLASS_KEYS_MAX) {
PrintAndLogEx(WARNING, "Invalid block number");
errors = true;
}
cmdp += 2;
break;
case 'k':
case 'K':
operation += 3; //set key
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) { //ul-c or ev1/ntag key length
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else {
PrintAndLogEx(WARNING, "\nERROR: Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'p':
case 'P':
operation += 4; //print keys in memory
cmdp++;
break;
case 'l':
case 'L':
operation += 5; //load keys from file
cmdp++;
break;
case 's':
case 'S':
operation += 6; //save keys to file
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors) return usage_hf_iclass_managekeys();
if (operation == 0){
PrintAndLogEx(WARNING, "no operation specified (load, save, or print)\n");
return usage_hf_iclass_managekeys();
}
if (operation > 6){
PrintAndLogEx(WARNING, "Too many operations specified\n");
return usage_hf_iclass_managekeys();
}
if (operation > 4 && fileNameLen == 0){
PrintAndLogEx(WARNING, "You must enter a filename when loading or saving\n");
return usage_hf_iclass_managekeys();
}
switch (operation){
case 3: memcpy(iClass_Key_Table[keyNbr], KEY, 8); return 1;
case 4: return printKeys();
case 5: return loadKeys(filename);
case 6: return saveKeys(filename);
break;
}
return 0;
}
int CmdHFiClassCheckKeys(const char *Cmd) {
// empty string
if (strlen(Cmd) == 0) return usage_hf_iclass_chk();
uint8_t CSN[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
// elite key, raw key, standard key
bool use_elite = false;
bool use_raw = false;
bool use_credit_key = false;
bool found_debit = false;
//bool found_credit = false;
bool got_csn = false;
bool errors = false;
uint8_t cmdp = 0x00;
char filename[FILE_PATH_SIZE] = {0};
uint8_t fileNameLen = 0;
uint8_t *keyBlock = NULL;
iclass_premac_t *pre = NULL;
int keycnt = 0;
// time
uint64_t t1 = msclock();
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch ( tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_chk();
case 'f':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLogEx(WARNING, "no filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'e':
use_elite = true;
cmdp++;
break;
case 'c':
use_credit_key = true;
cmdp++;
break;
case 'r':
use_raw = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors) return usage_hf_iclass_chk();
// Get CSN / UID and CCNR
PrintAndLogEx(SUCCESS, "Reading tag CSN");
for (uint8_t i=0; i<10 && !got_csn; i++) {
if (select_only(CSN, CCNR, false, false)) {
got_csn = true;
} else {
PrintAndLogEx(WARNING, "one more try\n");
}
}
if ( !got_csn ) {
PrintAndLogEx(WARNING, "can't select card, aborting...");
return 1;
}
// load keys into keyblock
int res = LoadDictionaryKeyFile( filename, &keyBlock, &keycnt);
if ( res > 0) {
free(keyBlock);
return 1;
}
pre = calloc(keycnt, sizeof(iclass_premac_t));
if ( !pre ) {
free(keyBlock);
return 1;
}
PrintAndLogEx(SUCCESS, "Generating diversified keys, MAC");
if (use_elite)
PrintAndLogEx(SUCCESS, "Using elite algo");
if (use_raw)
PrintAndLogEx(SUCCESS, "Using raw mode");
PrintAndLogEx(SUCCESS, "Searching for %s key", (use_credit_key) ? "CREDIT" : "DEBIT");
PrintAndLogEx(SUCCESS,"Tag info");
PrintAndLogEx(SUCCESS, "CSN | %s", sprint_hex( CSN, sizeof(CSN) ));
PrintAndLogEx(SUCCESS, "CCNR | %s", sprint_hex( CCNR, sizeof(CCNR) ));
res = GenerateMacFromKeyFile( CSN, CCNR, use_raw, use_elite, keyBlock, keycnt, pre );
if ( res > 0) {
free(keyBlock);
free(pre);
return 1;
}
PrintPreCalcMac(keyBlock, keycnt, pre);
// max 42 keys inside USB_COMMAND. 512/4 = 103 mac
uint32_t chunksize = keycnt > (USB_CMD_DATA_SIZE/4) ? (USB_CMD_DATA_SIZE/4) : keycnt;
bool lastChunk = false;
// main keychunk loop
for (uint32_t i = 0; i < keycnt; i += chunksize) {
uint64_t t2 = msclock();
uint8_t timeout = 0;
if (ukbhit()) {
int gc = getchar(); (void)gc;
PrintAndLogEx(NORMAL, "\n[!] Aborted via keyboard!\n");
goto out;
}
uint32_t keys = ((keycnt - i) > chunksize) ? chunksize : keycnt - i;
// last chunk?
if ( keys == keycnt - i)
lastChunk = true;
UsbCommand c = {CMD_ICLASS_CHECK_KEYS, { (lastChunk << 8), keys, 0}};
// bit 16
// - 1 indicates credit key
// - 0 indicates debit key (default)
c.arg[0] |= (use_credit_key << 16);
memcpy(c.d.asBytes, pre + i, 4 * keys);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
while ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) {
timeout++;
printf("."); fflush(stdout);
if (timeout > 120) {
PrintAndLogEx(WARNING, "\nNo response from Proxmark. Aborting...");
goto out;
}
}
uint8_t found = resp.arg[1] & 0xFF;
uint8_t isOK = resp.arg[0] & 0xFF;
t2 = msclock() - t2;
switch ( isOK ) {
case 1: {
found_debit = true;
PrintAndLogEx(NORMAL, "\n[-] Chunk [%d/%d]: %.1fs [%s] found key %s (index %u)"
, i
, keycnt
, (float)(t2/1000.0)
, (use_credit_key) ? "credit" : "debit"
, sprint_hex(keyBlock + (i+found)*8, 8)
, found
);
break;
}
case 0: {
PrintAndLogEx(NORMAL, "\n[-] Chunk [%d/%d] : %.1fs [%s]"
, i
, keycnt
, (float)(t2/1000.0)
, (use_credit_key) ? "credit" : "debit"
);
break;
}
case 99: {
}
default: break;
}
// both keys found.
if ( found_debit ) {
PrintAndLogEx(SUCCESS, "All keys found, exiting");
break;
}
} // end chunks of keys
out:
t1 = msclock() - t1;
PrintAndLogEx(SUCCESS, "\nTime in iclass checkkeys: %.0f seconds\n", (float)t1/1000.0);
DropField();
free(pre);
free(keyBlock);
return 0;
}
static int cmp_uint32( const void *a, const void *b) {
const iclass_prekey_t* x = (const iclass_prekey_t *)a;
const iclass_prekey_t* y = (const iclass_prekey_t *)b;
uint32_t mx = bytes_to_num( (uint8_t*)x->mac, 4);
uint32_t my = bytes_to_num( (uint8_t*)y->mac, 4);
if (mx < my)
return -1;
else
return mx > my;
}
// this method tries to identify in which configuration mode a iClass / iClass SE reader is in.
// Standard or Elite / HighSecurity mode. It uses a default key dictionary list in order to work.
int CmdHFiClassLookUp(const char *Cmd) {
uint8_t CSN[8];
uint8_t EPURSE[8];
uint8_t MACS[8];
uint8_t CCNR[12];
uint8_t MAC_TAG[4] = {0x00,0x00,0x00,0x00};
// elite key, raw key, standard key
bool use_elite = false;
bool use_raw = false;
bool errors = false;
uint8_t cmdp = 0x00;
char filename[FILE_PATH_SIZE] = {0};
uint8_t fileNameLen = 0;
uint8_t *keyBlock = NULL;
iclass_prekey_t *prekey = NULL;
int keycnt = 0, len = 0;
// if empty string
if (strlen(Cmd) == 0) errors = true;
// time
uint64_t t1 = msclock();
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_lookup();
case 'f':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLogEx(WARNING, "No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'u':
param_gethex_ex(Cmd, cmdp+1, CSN, &len);
if ( len>>1 != sizeof(CSN) ) {
PrintAndLogEx(WARNING, "Wrong CSN length, expected %d got [%d]", sizeof(CSN), len>>1);
errors = true;
}
cmdp += 2;
break;
case 'm':
param_gethex_ex(Cmd, cmdp+1, MACS, &len);
if ( len>>1 != sizeof(MACS) ) {
PrintAndLogEx(WARNING, "Wrong MACS length, expected %d got [%d] ", sizeof(MACS), len>>1);
errors = true;
} else {
memcpy(MAC_TAG, MACS+4, 4);
}
cmdp += 2;
break;
case 'p':
param_gethex_ex(Cmd, cmdp+1, EPURSE, &len);
if ( len>>1 != sizeof(EPURSE) ) {
PrintAndLogEx(WARNING, "Wrong EPURSE length, expected %d got [%d] ", sizeof(EPURSE), len>>1);
errors = true;
}
cmdp += 2;
break;
break;
case 'e':
use_elite = true;
cmdp++;
break;
case 'r':
use_raw = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors) return usage_hf_iclass_lookup();
// stupid copy.. CCNR is a combo of epurse and reader nonce
memcpy(CCNR, EPURSE, 8);
memcpy(CCNR+8, MACS, 4);
PrintAndLogEx(SUCCESS, "CSN | %s", sprint_hex( CSN, sizeof(CSN) ));
PrintAndLogEx(SUCCESS, "Epurse | %s", sprint_hex( EPURSE, sizeof(EPURSE) ));
PrintAndLogEx(SUCCESS, "MACS | %s", sprint_hex( MACS, sizeof(MACS) ));
PrintAndLogEx(SUCCESS, "CCNR | %s", sprint_hex( CCNR, sizeof(CCNR) ));
PrintAndLogEx(SUCCESS, "MAC_TAG | %s", sprint_hex( MAC_TAG, sizeof(MAC_TAG) ));
int res = LoadDictionaryKeyFile( filename, &keyBlock, &keycnt);
if ( res > 0) {
free(keyBlock);
return 1;
}
//iclass_prekey_t
prekey = calloc(keycnt, sizeof(iclass_prekey_t));
if ( !prekey ) {
free(keyBlock);
return 1;
}
PrintAndLogEx(FAILED, "Generating diversified keys and MAC");
res = GenerateFromKeyFile( CSN, CCNR, use_raw, use_elite, keyBlock, keycnt, prekey );
if ( res > 0) {
free(keyBlock);
free(prekey);
return 1;
}
PrintAndLogEx(FAILED, "Sorting");
// sort mac list.
qsort( prekey, keycnt, sizeof(iclass_prekey_t), cmp_uint32);
//PrintPreCalc(prekey, keycnt);
PrintAndLogEx(FAILED, "Searching");
iclass_prekey_t *item;
iclass_prekey_t lookup;
memcpy(lookup.mac, MAC_TAG, 4);
// binsearch
item = (iclass_prekey_t*) bsearch(&lookup, prekey, keycnt, sizeof(iclass_prekey_t), cmp_uint32);
if( item != NULL )
PrintAndLogEx(SUCCESS, "\n[debit] found key %s", sprint_hex(item->key, 8));
t1 = msclock() - t1;
PrintAndLogEx(NORMAL, "\nTime in iclass : %.0f seconds\n", (float)t1/1000.0);
DropField();
free(prekey);
free(keyBlock);
PrintAndLogEx(NORMAL, "");
return 0;
}
int LoadDictionaryKeyFile( char* filename, uint8_t **keys, int *keycnt) {
char buf[17];
FILE * f;
uint8_t *p;
int keyitems = 0;
if ( !(f = fopen( filename , "r")) ) {
PrintAndLogEx(ERR, "file: %s: not found or locked.", filename);
return 1;
}
while( fgets(buf, sizeof(buf), f) ){
if (strlen(buf) < 16 || buf[15] == '\n')
continue;
//goto next line
while (fgetc(f) != '\n' && !feof(f)) {};
//The line start with # is comment, skip
if( buf[0]=='#' ) continue;
// doesn't this only test first char only?
if (!isxdigit(buf[0])){
PrintAndLogEx(ERR, "file content error. '%s' must include 16 HEX symbols", buf);
continue;
}
// null terminator (skip the rest of the line)
buf[16] = 0;
p = realloc(*keys, 8 * (keyitems += 64));
if (!p) {
PrintAndLogEx(NORMAL, _RED_([!])" cannot allocate memory for default keys");
fclose(f);
return 2;
}
*keys = p;
memset(*keys + 8 * (*keycnt), 0, 8);
num_to_bytes(strtoull(buf, NULL, 16), 8, *keys + 8 * (*keycnt));
(*keycnt)++;
memset(buf, 0, sizeof(buf));
}
fclose(f);
PrintAndLogEx(NORMAL, _BLUE_([+]) "Loaded " _GREEN_(%2d) " keys from %s", *keycnt, filename);
return 0;
}
// precalc diversified keys and their MAC
int GenerateMacFromKeyFile( uint8_t* CSN, uint8_t* CCNR, bool use_raw, bool use_elite, uint8_t* keys, int keycnt, iclass_premac_t* list ) {
uint8_t key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
for ( int i=0; i < keycnt; i++) {
memcpy(key, keys + 8 * i , 8);
if (use_raw)
memcpy(div_key, key, 8);
else
HFiClassCalcDivKey(CSN, key, div_key, use_elite);
doMAC(CCNR, div_key, list[i].mac);
}
return 0;
}
int GenerateFromKeyFile( uint8_t* CSN, uint8_t* CCNR, bool use_raw, bool use_elite, uint8_t* keys, int keycnt, iclass_prekey_t* list ) {
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
for ( int i=0; i < keycnt; i++) {
memcpy(list[i].key, keys + 8 * i , 8);
// generate diversifed key
if (use_raw)
memcpy(div_key, list[i].key, 8);
else
HFiClassCalcDivKey(CSN, list[i].key, div_key, use_elite);
// generate MAC
doMAC(CCNR, div_key, list[i].mac);
}
return 0;
}
// print diversified keys
void PrintPreCalcMac(uint8_t* keys, int keycnt, iclass_premac_t* pre_list) {
iclass_prekey_t* b = calloc(keycnt, sizeof(iclass_prekey_t));
if ( !b )
return;
for ( int i=0; i < keycnt; i++) {
memcpy(b[i].key, keys + 8 * i , 8);
memcpy(b[i].mac, pre_list[i].mac, 4);
}
PrintPreCalc(b, keycnt);
free(b);
}
void PrintPreCalc(iclass_prekey_t* list, int itemcnt) {
PrintAndLogEx(NORMAL, "-----+------------------+---------");
PrintAndLogEx(NORMAL, "#key | key | mac");
PrintAndLogEx(NORMAL, "-----+------------------+---------");
for ( int i=0; i < itemcnt; i++) {
if (i < 10 ) {
PrintAndLogEx(NORMAL, "[%2d] | %016" PRIx64 " | %08" PRIx32, i, bytes_to_num(list[i].key, 8), bytes_to_num( list[i].mac, 4) );
} else if ( i == 10 ) {
PrintAndLogEx(SUCCESS, "... skip printing the rest");
}
}
}
static void permute(uint8_t *data, uint8_t len, uint8_t *output){
#define KEY_SIZE 8
if ( len > KEY_SIZE ) {
for(uint8_t m = 0; m < len; m += KEY_SIZE){
permute(data+m, KEY_SIZE, output+m);
}
return;
}
if ( len != KEY_SIZE ) {
PrintAndLogEx(NORMAL, "[!] wrong key size\n");
return;
}
uint8_t i,j,p, mask;
for( i=0; i < KEY_SIZE; ++i){
p = 0;
mask = 0x80 >> i;
for( j=0; j < KEY_SIZE; ++j){
p >>= 1;
if (data[j] & mask)
p |= 0x80;
}
output[i] = p;
}
}
static void permute_rev(uint8_t *data, uint8_t len, uint8_t *output){
permute(data, len, output);
permute(output, len, data);
permute(data, len, output);
}
static void simple_crc(uint8_t *data, uint8_t len, uint8_t *output){
uint8_t crc = 0;
for( uint8_t i=0; i < len; ++i){
// seventh byte contains the crc.
if ( (i & 0x7) == 0x7 ) {
output[i] = crc ^ 0xFF;
crc = 0;
} else {
output[i] = data[i];
crc ^= data[i];
}
}
}
// DES doesn't use the MSB.
static void shave(uint8_t *data, uint8_t len){
for (uint8_t i=0; i<len; ++i)
data[i] &= 0xFE;
}
static void generate_rev(uint8_t *data, uint8_t len) {
uint8_t *key = calloc(len,1);
PrintAndLogEx(SUCCESS, "input permuted key | %s \n", sprint_hex(data, len));
permute_rev(data, len, key);
PrintAndLogEx(SUCCESS, " unpermuted key | %s \n", sprint_hex(key, len));
shave(key, len);
PrintAndLogEx(SUCCESS, " key | %s \n", sprint_hex(key, len));
free(key);
}
static void generate(uint8_t *data, uint8_t len) {
uint8_t *key = calloc(len,1);
uint8_t *pkey = calloc(len,1);
PrintAndLogEx(SUCCESS, " input key | %s \n", sprint_hex(data, len));
permute(data, len, pkey);
PrintAndLogEx(SUCCESS, "permuted key | %s \n", sprint_hex(pkey, len));
simple_crc(pkey, len, key );
PrintAndLogEx(SUCCESS, " CRC'ed key | %s \n", sprint_hex(key, len));
free(key);
free(pkey);
}
int CmdHFiClassPermuteKey(const char *Cmd) {
uint8_t key[8] = {0};
uint8_t key_std_format[8] = {0};
uint8_t key_iclass_format[8] = {0};
uint8_t data[16] = {0};
bool isReverse = false;
int len = 0;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) == 0|| cmdp == 'h' || cmdp == 'H') return usage_hf_iclass_permutekey();
isReverse = ( cmdp == 'r' || cmdp == 'R' );
param_gethex_ex(Cmd, 1, data, &len);
if ( len%2 ) return usage_hf_iclass_permutekey();
len >>= 1;
memcpy(key, data, 8);
if ( isReverse ) {
generate_rev(data, len);
permutekey_rev(key, key_std_format);
PrintAndLogEx(SUCCESS, "holiman iclass key | %s \n", sprint_hex(key_std_format, 8));
}
else {
generate(data, len);
permutekey(key, key_iclass_format);
PrintAndLogEx(SUCCESS, "holiman std key | %s \n", sprint_hex(key_iclass_format, 8));
}
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"calcnewkey", CmdHFiClassCalcNewKey, 1, "[options..] Calc Diversified keys (blocks 3 & 4) to write new keys"},
{"chk", CmdHFiClassCheckKeys, 1, " Check keys"},
{"clone", CmdHFiClassCloneTag, 0, "[options..] Authenticate and Clone from iClass bin file"},
{"decrypt", CmdHFiClassDecrypt, 1, "[f <fname>] Decrypt tagdump" },
{"dump", CmdHFiClassReader_Dump, 0, "[options..] Authenticate and Dump iClass tag's AA1"},
{"eload", CmdHFiClassELoad, 0, "[f <fname>] (experimental) Load data into iClass emulator memory"},
{"encryptblk", CmdHFiClassEncryptBlk, 1, "<BlockData> Encrypt given block data"},
{"list", CmdHFiClassList, 0, " (Deprecated) List iClass history"},
{"loclass", CmdHFiClass_loclass, 1, "[options..] Use loclass to perform bruteforce of reader attack dump"},
{"lookup", CmdHFiClassLookUp, 0, "[options..] Uses authentication trace to check for key in dictionary file"},
{"managekeys", CmdHFiClassManageKeys, 1, "[options..] Manage the keys to use with iClass"},
{"permutekey", CmdHFiClassPermuteKey, 0, " Permute function from 'heart of darkness' paper"},
{"readblk", CmdHFiClass_ReadBlock, 0, "[options..] Authenticate and Read iClass block"},
{"reader", CmdHFiClassReader, 0, " Act like an iClass reader"},
{"readtagfile", CmdHFiClassReadTagFile, 1, "[options..] Display Content from tagfile"},
{"replay", CmdHFiClassReader_Replay, 0, "<mac> Read an iClass tag via Reply Attack"},
{"sim", CmdHFiClassSim, 0, "[options..] Simulate iClass tag"},
{"sniff", CmdHFiClassSniff, 0, " Eavesdrop iClass communication"},
{"writeblk", CmdHFiClass_WriteBlock, 0, "[options..] Authenticate and Write iClass block"},
{NULL, NULL, 0, NULL}
};
int CmdHFiClass(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}