proxmark3/armsrc/legicrf.c
Andreas Dröscher 78d5188922 change: legic reader now uses xcorrelation and ssc based io
- Even tough legic tags transmit just AM using xcorrelation
   results in a significantly better signal quality.
 - Switching from bit bang to a hardware based ssc frees
   up CPU time for other tasks e.g. demodulation
2018-08-04 23:13:17 +02:00

443 lines
14 KiB
C

//-----------------------------------------------------------------------------
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
// 2016 Iceman
// 2018 AntiCat (rwd rewritten)
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// LEGIC RF simulation code
//-----------------------------------------------------------------------------
#include "legicrf.h"
#include "ticks.h" /* timers */
#include "crc.h" /* legic crc-4 */
#include "legic_prng.h" /* legic PRNG impl */
#include "legic.h" /* legic_card_select_t struct */
struct legic_frame {
uint32_t bits; /* length of frame */
uint8_t data[24]; /* preprocessed bits */
};
union frame_encoder {
uint32_t uint32; /* SAM7S512 does not support unaligned access as a */
uint8_t uint8[4]; /* workaround 32bit values are converted to 4x8bit */
};
static uint8_t* legic_mem; /* card memory, used for read, write and sim */
static legic_card_select_t card;/* metadata of currently selected card */
static crc_t legic_crc;
static int32_t input_threshold; /* values > threshold are 1 else 0 */
// LEGIC RF is using the common timer functions: StartCountUS() and GetCountUS()
#define RWD_TIME_PAUSE 20 /* 20us */
#define RWD_TIME_1 100 /* READER_TIME_PAUSE 20us off + 80us on = 100us */
#define RWD_TIME_0 60 /* READER_TIME_PAUSE 20us off + 40us on = 60us */
#define TAG_FRAME_WAIT 330 /* 330us from READER frame end to TAG frame start */
#define TAG_BIT_PERIOD 100 /* 100us */
#define LEGIC_CARD_MEMSIZE 1024 /* The largest Legic Prime card is 1k */
//-----------------------------------------------------------------------------
// I/O interface abstraction (ARM <-> FPGA)
//-----------------------------------------------------------------------------
static inline uint8_t rx_byte_from_fpga() {
for(;;) {
WDT_HIT();
// wait for byte be become available in rx holding register
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
return AT91C_BASE_SSC->SSC_RHR;
}
}
}
static inline void tx_byte_to_fpga(uint8_t byte) {
for(;;) {
WDT_HIT();
// put byte into tx holding register as soon as it is ready
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = byte;
return;
}
}
}
//-----------------------------------------------------------------------------
// Demodulation
//-----------------------------------------------------------------------------
// Returns am aproximated power measurement
//
// The FPGA running on the xcorrelation kernel samples the subcarrier at ~3 MHz.
// The kernel was initialy designed to receive BSPK/2-PSK. Hance, it reports an
// I/Q pair every 18.9us (8 bits i and 8 bits q).
//
// The subcarrier amplitude can be calculated using Pythagoras sqrt(i^2 + q^2).
// To reduce CPU time the amplitude is approximated by using linear functions:
// am = MAX(ABS(i),ABS(q)) + 1/2*MIN(ABS(i),ABSq))
//
// Note: The SSC receiver is never synchronized the calculation my be performed
// on a i/q pair from two subsequent correlations, but does not matter.
static inline int32_t sample_power() {
int32_t q = (int8_t)rx_byte_from_fpga(); q = ABS(q);
int32_t i = (int8_t)rx_byte_from_fpga(); i = ABS(i);
return MAX(i, q) + (MIN(i, q) >> 1);
}
// Returns a demedulated bit
//
// An aproximated power measurement is available every 18.9us. The bit time
// is 100us. The code samples 5 times and uses samples 3 and 4.
//
// Note: The demodulator is drifting (18.9us * 5 = 94.5us), since the longest
// respons is 12 bits, the demodulator will stay in sync with a margin of
// error of 20us left. Sending the next request will resync the card.
static inline bool rx_bit() {
static int32_t p[5];
for(size_t i = 0; i<5; ++i) {
p[i] = sample_power();
}
if((p[2] > input_threshold) && (p[3] > input_threshold)) {
return true;
}
if((p[2] < input_threshold) && (p[3] < input_threshold)) {
return false;
}
Dbprintf("rx_bit failed %i vs %i (threshold %i)", p[2], p[3], input_threshold);
return false;
}
//-----------------------------------------------------------------------------
// Modulation
//
// Modulation is a little bit more tricky as demedulation ssp_clk is running at
// 105.4 kHz resulting in a ssc bit periode of 9.4us and ssc frame periode of
// 76us. Legic has a strange pause-puls modulation with a 60us 0-bit and 100us
// 1-bit periode. The following functions use bit stuffing to aproximate the
// modulation. The default state of all bits is 1 the. The code adds pauses:
// - A 1 is aproximated by b1100000000 = 0x0300
// - A 0 is aproximated by b110000 = 0x0030
//
// Note: The modulator expect to be run on a little-endian system and the frame
// length to not exeed 11 bits. The frame length is not checked.
//-----------------------------------------------------------------------------
static void clean_frame(struct legic_frame *f) {
memset(f->data, 0xff, sizeof(f->data));
// add end of frame pause
f->data[0] ^= 0x03;
f->bits = 2;
}
static void append_to_frame(struct legic_frame *f, uint8_t bit) {
uint8_t bit_pos = f->bits % 8; // calculate bits used in partially used byte
uint8_t byte_pos = f->bits / 8; // calculate next free or partially used byte
static union frame_encoder frame_encoder;
if(bit) {
frame_encoder.uint32 = 0x0300 << bit_pos; // appended bits at bit_pos
f->bits += 10; // store amount of bits appended
} else {
frame_encoder.uint32 = 0x0030 << bit_pos; // appended bits at bit_pos
f->bits += 6; // store amount of bits appended
}
// Move data from encoder to frame. This d-tour is necessary bacause the uC
// does not support unaligned access. We use bitwise not and xor to flip bits.
for(uint8_t i = 0; i < sizeof(frame_encoder); ++i) {
f->data[i + byte_pos] ^= frame_encoder.uint8[i];
}
}
static uint8_t finalize_frame(struct legic_frame *f) {
// convert bits into full bytes
return (f->bits + 7) / 8;
}
//-----------------------------------------------------------------------------
// Frame Handling
//
// The LEGIC RF protocol from card to reader does not include explicit frame
// start/stop information or length information. The reader must know beforehand
// how many bits it wants to receive.
// Notably: a card sending a stream of 0-bits is indistinguishable from no card
// present.
//-----------------------------------------------------------------------------
static void tx_frame(uint32_t frame, uint8_t len) {
static struct legic_frame legic_frame;
clean_frame(&legic_frame);
// add bit by bit to frame, MSB (last bit on air) first, this reverses the order
// reverse order keeps last pause aligned to byte boundry and in sync with ret
// of last tx_byte_to_fpga call. this in turn syncs our rx phase perfectly.
while(len > 0) {
uint8_t lsb = (frame >> --len) & 0x01;
append_to_frame(&legic_frame, lsb ^ legic_prng_get_bit());
legic_prng_forward(1);
}
// finalize frame, returns length in bytes
len = finalize_frame(&legic_frame);
// start tx with first frame preloaded
tx_byte_to_fpga(legic_frame.data[--len]);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
// transmit frame, MSB first
while(len > 0) {
tx_byte_to_fpga(legic_frame.data[--len]);
}
// tx queue has 2 cycles, add 2 empty frames to leave function in sync
tx_byte_to_fpga(0xff); // blocks until last frame is loaded into shift register
tx_byte_to_fpga(0xff); // blocks until last frame is done
}
static uint32_t rx_frame(uint8_t len) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_QUARTER);
uint32_t frame = 0;
for(uint8_t i = 0; i < len; i++) {
frame |= (rx_bit() ^ legic_prng_get_bit()) << i;
legic_prng_forward(1);
}
return frame;
}
//-----------------------------------------------------------------------------
// Legic Reader
//-----------------------------------------------------------------------------
int init_card(uint8_t cardtype, legic_card_select_t *p_card) {
p_card->tagtype = cardtype;
switch(p_card->tagtype) {
case 0x0d:
p_card->cmdsize = 6;
p_card->addrsize = 5;
p_card->cardsize = 22;
break;
case 0x1d:
p_card->cmdsize = 9;
p_card->addrsize = 8;
p_card->cardsize = 256;
break;
case 0x3d:
p_card->cmdsize = 11;
p_card->addrsize = 10;
p_card->cardsize = 1024;
break;
default:
p_card->cmdsize = 0;
p_card->addrsize = 0;
p_card->cardsize = 0;
return 2;
}
return 0;
}
static void init_reader(bool clear_mem) {
// configure FPGA
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_QUARTER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// configure SSC with defaults (note: defaults are MSB first - Legic has LSB first,
// the rx stream is bit stuff in reverse to fix this. However, reversing the order
// will align the last pause to a byte boundry and we want that for synchronisation.
FpgaSetupSsc();
// and additonaly set Data Default to 1, to prevent glitches when switching to tx.
AT91C_BASE_SSC->SSC_TFMR |= AT91C_SSC_DATDEF;
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
legic_mem = BigBuf_get_EM_addr();
if(legic_mem) {
memset(legic_mem, 0x00, LEGIC_CARD_MEMSIZE);
}
// start trace
clear_trace();
set_tracing(true);
// init crc calculator
crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0);
// start us timer
StartCountUS();
}
// Setup reader to card connection
//
// The setup consists of a three way handshake:
// - Transmit initialisation vector 7 bits
// - Receive card type 6 bits
// - Acknowledge frame 6 bits
static uint32_t setup_phase_reader(uint8_t iv) {
uint32_t ts = GetCountUS();
// Switch on carrier and let the card charge for 5ms.
// Use the time to calibrate the treshhold.
input_threshold = 8; // heuristically determined
do {
int32_t sample = sample_power();
if(sample > input_threshold) {
input_threshold = sample;
}
} while(GetCountUS() < ts + 5000);
// Set threshold to noise floor * 2
input_threshold <<= 1;
legic_prng_init(0);
tx_frame(iv, 7);
ts = GetCountUS();
// configure iv
legic_prng_init(iv);
legic_prng_forward(2);
// wait until card is expect to respond
while(GetCountUS() < ts + TAG_FRAME_WAIT) { };
// receive card type
int32_t card_type = rx_frame(6);
// send obsfuscated acknowledgment frame
switch (card_type) {
case 0x0D:
tx_frame(0x19, 6); // MIM22 | READCMD = 0x18 | 0x01
break;
case 0x1D:
case 0x3D:
tx_frame(0x39, 6); // MIM256 | READCMD = 0x38 | 0x01
break;
}
return card_type;
}
static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) {
crc_clear(&legic_crc);
crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz);
return crc_finish(&legic_crc);
}
static int16_t read_byte(uint16_t index, uint8_t cmd_sz) {
uint16_t cmd = (index << 1) | LEGIC_READ;
// read one byte
tx_frame(cmd, cmd_sz);
uint32_t frame = rx_frame(12);
// split frame into data and crc
uint8_t byte = BYTEx(frame, 0);
uint8_t crc = BYTEx(frame, 1);
// check received against calculated crc
uint8_t calc_crc = calc_crc4(cmd, cmd_sz, byte);
if(calc_crc != crc) {
Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc);
return -1;
}
return byte;
}
//-----------------------------------------------------------------------------
// Command Line Interface
//
// Only this functions are public / called from appmain.c
//-----------------------------------------------------------------------------
void LegicRfInfo(void) {
// configure ARM and FPGA
init_reader(false);
// establish shared secret and detect card type
uint8_t card_type = setup_phase_reader(0x01);
if(init_card(card_type, &card) != 0) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// read UID
for(uint8_t i = 0; i < sizeof(card.uid); ++i) {
int16_t byte = read_byte(i, card.cmdsize);
if(byte == -1) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
card.uid[i] = byte & 0xFF;
}
// read MCC and check against UID
int16_t mcc = read_byte(4, card.cmdsize);
int16_t calc_mcc = CRC8Legic(card.uid, 4);;
if(mcc != calc_mcc) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// OK
cmd_send(CMD_ACK, 1, 0, 0, (uint8_t*)&card, sizeof(legic_card_select_t));
OUT:
switch_off();
}
void LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
// configure ARM and FPGA
init_reader(false);
// establish shared secret and detect card type
uint8_t card_type = setup_phase_reader(iv);
if(init_card(card_type, &card) != 0) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// do not read beyond card memory
if(len + offset > card.cardsize) {
len = card.cardsize - offset;
}
for(uint16_t i = 0; i < len; ++i) {
int16_t byte = read_byte(offset + i, card.cmdsize);
if(byte == -1) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
legic_mem[i] = byte;
}
// OK
cmd_send(CMD_ACK, 1, len, 0, legic_mem, len);
OUT:
switch_off();
}
void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0); //TODO Implement
}
void LegicRfSimulate(int phase, int frame, int reqresp) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0); //TODO Implement
}