mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-09 09:39:16 +08:00
1852 lines
50 KiB
C
1852 lines
50 KiB
C
//-----------------------------------------------------------------------------
|
|
// Routines to support ISO 14443 type A.
|
|
//
|
|
// Gerhard de Koning Gans - May 2008
|
|
//-----------------------------------------------------------------------------
|
|
#include <proxmark3.h>
|
|
#include "apps.h"
|
|
#include "../common/iso14443_crc.c"
|
|
|
|
static BYTE *trace = (BYTE *) BigBuf;
|
|
static int traceLen = 0;
|
|
static int rsamples = 0;
|
|
static BOOL tracing = TRUE;
|
|
|
|
typedef enum {
|
|
SEC_D = 1,
|
|
SEC_E = 2,
|
|
SEC_F = 3,
|
|
SEC_X = 4,
|
|
SEC_Y = 5,
|
|
SEC_Z = 6
|
|
} SecType;
|
|
|
|
static const BYTE OddByteParity[256] = {
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
|
|
};
|
|
|
|
// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
|
|
#define RECV_CMD_OFFSET 3032
|
|
#define RECV_RES_OFFSET 3096
|
|
#define DMA_BUFFER_OFFSET 3160
|
|
#define DMA_BUFFER_SIZE 4096
|
|
#define TRACE_LENGTH 3000
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Generate the parity value for a byte sequence
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
DWORD GetParity(const BYTE * pbtCmd, int iLen)
|
|
{
|
|
int i;
|
|
DWORD dwPar = 0;
|
|
|
|
// Generate the encrypted data
|
|
for (i = 0; i < iLen; i++) {
|
|
// Save the encrypted parity bit
|
|
dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
|
|
}
|
|
return dwPar;
|
|
}
|
|
|
|
static void AppendCrc14443a(BYTE* data, int len)
|
|
{
|
|
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
|
|
}
|
|
|
|
BOOL LogTrace(const BYTE * btBytes, int iLen, int iSamples, DWORD dwParity, BOOL bReader)
|
|
{
|
|
// Return when trace is full
|
|
if (traceLen >= TRACE_LENGTH) return FALSE;
|
|
|
|
// Trace the random, i'm curious
|
|
rsamples += iSamples;
|
|
trace[traceLen++] = ((rsamples >> 0) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 8) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 16) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 24) & 0xff);
|
|
if (!bReader) {
|
|
trace[traceLen - 1] |= 0x80;
|
|
}
|
|
trace[traceLen++] = ((dwParity >> 0) & 0xff);
|
|
trace[traceLen++] = ((dwParity >> 8) & 0xff);
|
|
trace[traceLen++] = ((dwParity >> 16) & 0xff);
|
|
trace[traceLen++] = ((dwParity >> 24) & 0xff);
|
|
trace[traceLen++] = iLen;
|
|
memcpy(trace + traceLen, btBytes, iLen);
|
|
traceLen += iLen;
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL LogTraceInfo(byte_t* data, size_t len)
|
|
{
|
|
return LogTrace(data,len,0,GetParity(data,len),TRUE);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// The software UART that receives commands from the reader, and its state
|
|
// variables.
|
|
//-----------------------------------------------------------------------------
|
|
static struct {
|
|
enum {
|
|
STATE_UNSYNCD,
|
|
STATE_START_OF_COMMUNICATION,
|
|
STATE_MILLER_X,
|
|
STATE_MILLER_Y,
|
|
STATE_MILLER_Z,
|
|
STATE_ERROR_WAIT
|
|
} state;
|
|
WORD shiftReg;
|
|
int bitCnt;
|
|
int byteCnt;
|
|
int byteCntMax;
|
|
int posCnt;
|
|
int syncBit;
|
|
int parityBits;
|
|
int samples;
|
|
int highCnt;
|
|
int bitBuffer;
|
|
enum {
|
|
DROP_NONE,
|
|
DROP_FIRST_HALF,
|
|
DROP_SECOND_HALF
|
|
} drop;
|
|
BYTE *output;
|
|
} Uart;
|
|
|
|
static BOOL MillerDecoding(int bit)
|
|
{
|
|
int error = 0;
|
|
int bitright;
|
|
|
|
if(!Uart.bitBuffer) {
|
|
Uart.bitBuffer = bit ^ 0xFF0;
|
|
return FALSE;
|
|
}
|
|
else {
|
|
Uart.bitBuffer <<= 4;
|
|
Uart.bitBuffer ^= bit;
|
|
}
|
|
|
|
BOOL EOC = FALSE;
|
|
|
|
if(Uart.state != STATE_UNSYNCD) {
|
|
Uart.posCnt++;
|
|
|
|
if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
|
|
bit = 0x00;
|
|
}
|
|
else {
|
|
bit = 0x01;
|
|
}
|
|
if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
|
|
bitright = 0x00;
|
|
}
|
|
else {
|
|
bitright = 0x01;
|
|
}
|
|
if(bit != bitright) { bit = bitright; }
|
|
|
|
if(Uart.posCnt == 1) {
|
|
// measurement first half bitperiod
|
|
if(!bit) {
|
|
Uart.drop = DROP_FIRST_HALF;
|
|
}
|
|
}
|
|
else {
|
|
// measurement second half bitperiod
|
|
if(!bit & (Uart.drop == DROP_NONE)) {
|
|
Uart.drop = DROP_SECOND_HALF;
|
|
}
|
|
else if(!bit) {
|
|
// measured a drop in first and second half
|
|
// which should not be possible
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
error = 0x01;
|
|
}
|
|
|
|
Uart.posCnt = 0;
|
|
|
|
switch(Uart.state) {
|
|
case STATE_START_OF_COMMUNICATION:
|
|
Uart.shiftReg = 0;
|
|
if(Uart.drop == DROP_SECOND_HALF) {
|
|
// error, should not happen in SOC
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
error = 0x02;
|
|
}
|
|
else {
|
|
// correct SOC
|
|
Uart.state = STATE_MILLER_Z;
|
|
}
|
|
break;
|
|
|
|
case STATE_MILLER_Z:
|
|
Uart.bitCnt++;
|
|
Uart.shiftReg >>= 1;
|
|
if(Uart.drop == DROP_NONE) {
|
|
// logic '0' followed by sequence Y
|
|
// end of communication
|
|
Uart.state = STATE_UNSYNCD;
|
|
EOC = TRUE;
|
|
}
|
|
// if(Uart.drop == DROP_FIRST_HALF) {
|
|
// Uart.state = STATE_MILLER_Z; stay the same
|
|
// we see a logic '0' }
|
|
if(Uart.drop == DROP_SECOND_HALF) {
|
|
// we see a logic '1'
|
|
Uart.shiftReg |= 0x100;
|
|
Uart.state = STATE_MILLER_X;
|
|
}
|
|
break;
|
|
|
|
case STATE_MILLER_X:
|
|
Uart.shiftReg >>= 1;
|
|
if(Uart.drop == DROP_NONE) {
|
|
// sequence Y, we see a '0'
|
|
Uart.state = STATE_MILLER_Y;
|
|
Uart.bitCnt++;
|
|
}
|
|
if(Uart.drop == DROP_FIRST_HALF) {
|
|
// Would be STATE_MILLER_Z
|
|
// but Z does not follow X, so error
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
error = 0x03;
|
|
}
|
|
if(Uart.drop == DROP_SECOND_HALF) {
|
|
// We see a '1' and stay in state X
|
|
Uart.shiftReg |= 0x100;
|
|
Uart.bitCnt++;
|
|
}
|
|
break;
|
|
|
|
case STATE_MILLER_Y:
|
|
Uart.bitCnt++;
|
|
Uart.shiftReg >>= 1;
|
|
if(Uart.drop == DROP_NONE) {
|
|
// logic '0' followed by sequence Y
|
|
// end of communication
|
|
Uart.state = STATE_UNSYNCD;
|
|
EOC = TRUE;
|
|
}
|
|
if(Uart.drop == DROP_FIRST_HALF) {
|
|
// we see a '0'
|
|
Uart.state = STATE_MILLER_Z;
|
|
}
|
|
if(Uart.drop == DROP_SECOND_HALF) {
|
|
// We see a '1' and go to state X
|
|
Uart.shiftReg |= 0x100;
|
|
Uart.state = STATE_MILLER_X;
|
|
}
|
|
break;
|
|
|
|
case STATE_ERROR_WAIT:
|
|
// That went wrong. Now wait for at least two bit periods
|
|
// and try to sync again
|
|
if(Uart.drop == DROP_NONE) {
|
|
Uart.highCnt = 6;
|
|
Uart.state = STATE_UNSYNCD;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
break;
|
|
}
|
|
|
|
Uart.drop = DROP_NONE;
|
|
|
|
// should have received at least one whole byte...
|
|
if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
|
|
return TRUE;
|
|
}
|
|
|
|
if(Uart.bitCnt == 9) {
|
|
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
|
|
Uart.byteCnt++;
|
|
|
|
Uart.parityBits <<= 1;
|
|
Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
|
|
|
|
if(EOC) {
|
|
// when End of Communication received and
|
|
// all data bits processed..
|
|
return TRUE;
|
|
}
|
|
Uart.bitCnt = 0;
|
|
}
|
|
|
|
/*if(error) {
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = error & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
return TRUE;
|
|
}*/
|
|
}
|
|
|
|
}
|
|
else {
|
|
bit = Uart.bitBuffer & 0xf0;
|
|
bit >>= 4;
|
|
bit ^= 0x0F;
|
|
if(bit) {
|
|
// should have been high or at least (4 * 128) / fc
|
|
// according to ISO this should be at least (9 * 128 + 20) / fc
|
|
if(Uart.highCnt == 8) {
|
|
// we went low, so this could be start of communication
|
|
// it turns out to be safer to choose a less significant
|
|
// syncbit... so we check whether the neighbour also represents the drop
|
|
Uart.posCnt = 1; // apparently we are busy with our first half bit period
|
|
Uart.syncBit = bit & 8;
|
|
Uart.samples = 3;
|
|
if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
|
|
else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
|
|
if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
|
|
else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
|
|
if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
|
|
if(Uart.syncBit & (Uart.bitBuffer & 8)) {
|
|
Uart.syncBit = 8;
|
|
|
|
// the first half bit period is expected in next sample
|
|
Uart.posCnt = 0;
|
|
Uart.samples = 3;
|
|
}
|
|
}
|
|
else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
|
|
|
|
Uart.syncBit <<= 4;
|
|
Uart.state = STATE_START_OF_COMMUNICATION;
|
|
Uart.drop = DROP_FIRST_HALF;
|
|
Uart.bitCnt = 0;
|
|
Uart.byteCnt = 0;
|
|
Uart.parityBits = 0;
|
|
error = 0;
|
|
}
|
|
else {
|
|
Uart.highCnt = 0;
|
|
}
|
|
}
|
|
else {
|
|
if(Uart.highCnt < 8) {
|
|
Uart.highCnt++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
//=============================================================================
|
|
// ISO 14443 Type A - Manchester
|
|
//=============================================================================
|
|
|
|
static struct {
|
|
enum {
|
|
DEMOD_UNSYNCD,
|
|
DEMOD_START_OF_COMMUNICATION,
|
|
DEMOD_MANCHESTER_D,
|
|
DEMOD_MANCHESTER_E,
|
|
DEMOD_MANCHESTER_F,
|
|
DEMOD_ERROR_WAIT
|
|
} state;
|
|
int bitCount;
|
|
int posCount;
|
|
int syncBit;
|
|
int parityBits;
|
|
WORD shiftReg;
|
|
int buffer;
|
|
int buff;
|
|
int samples;
|
|
int len;
|
|
enum {
|
|
SUB_NONE,
|
|
SUB_FIRST_HALF,
|
|
SUB_SECOND_HALF
|
|
} sub;
|
|
BYTE *output;
|
|
} Demod;
|
|
|
|
static BOOL ManchesterDecoding(int v)
|
|
{
|
|
int bit;
|
|
int modulation;
|
|
int error = 0;
|
|
|
|
if(!Demod.buff) {
|
|
Demod.buff = 1;
|
|
Demod.buffer = v;
|
|
return FALSE;
|
|
}
|
|
else {
|
|
bit = Demod.buffer;
|
|
Demod.buffer = v;
|
|
}
|
|
|
|
if(Demod.state==DEMOD_UNSYNCD) {
|
|
Demod.output[Demod.len] = 0xfa;
|
|
Demod.syncBit = 0;
|
|
//Demod.samples = 0;
|
|
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
|
|
if(bit & 0x08) { Demod.syncBit = 0x08; }
|
|
if(!Demod.syncBit) {
|
|
if(bit & 0x04) { Demod.syncBit = 0x04; }
|
|
}
|
|
else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }
|
|
if(!Demod.syncBit) {
|
|
if(bit & 0x02) { Demod.syncBit = 0x02; }
|
|
}
|
|
else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }
|
|
if(!Demod.syncBit) {
|
|
if(bit & 0x01) { Demod.syncBit = 0x01; }
|
|
|
|
if(Demod.syncBit & (Demod.buffer & 0x08)) {
|
|
Demod.syncBit = 0x08;
|
|
|
|
// The first half bitperiod is expected in next sample
|
|
Demod.posCount = 0;
|
|
Demod.output[Demod.len] = 0xfb;
|
|
}
|
|
}
|
|
else if(bit & 0x01) { Demod.syncBit = 0x01; }
|
|
|
|
if(Demod.syncBit) {
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_START_OF_COMMUNICATION;
|
|
Demod.sub = SUB_FIRST_HALF;
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
Demod.parityBits = 0;
|
|
Demod.samples = 0;
|
|
if(Demod.posCount) {
|
|
switch(Demod.syncBit) {
|
|
case 0x08: Demod.samples = 3; break;
|
|
case 0x04: Demod.samples = 2; break;
|
|
case 0x02: Demod.samples = 1; break;
|
|
case 0x01: Demod.samples = 0; break;
|
|
}
|
|
}
|
|
error = 0;
|
|
}
|
|
}
|
|
else {
|
|
//modulation = bit & Demod.syncBit;
|
|
modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
|
|
|
|
Demod.samples += 4;
|
|
|
|
if(Demod.posCount==0) {
|
|
Demod.posCount = 1;
|
|
if(modulation) {
|
|
Demod.sub = SUB_FIRST_HALF;
|
|
}
|
|
else {
|
|
Demod.sub = SUB_NONE;
|
|
}
|
|
}
|
|
else {
|
|
Demod.posCount = 0;
|
|
if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
|
|
if(Demod.state!=DEMOD_ERROR_WAIT) {
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
Demod.output[Demod.len] = 0xaa;
|
|
error = 0x01;
|
|
}
|
|
}
|
|
else if(modulation) {
|
|
Demod.sub = SUB_SECOND_HALF;
|
|
}
|
|
|
|
switch(Demod.state) {
|
|
case DEMOD_START_OF_COMMUNICATION:
|
|
if(Demod.sub == SUB_FIRST_HALF) {
|
|
Demod.state = DEMOD_MANCHESTER_D;
|
|
}
|
|
else {
|
|
Demod.output[Demod.len] = 0xab;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0x02;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_MANCHESTER_D:
|
|
case DEMOD_MANCHESTER_E:
|
|
if(Demod.sub == SUB_FIRST_HALF) {
|
|
Demod.bitCount++;
|
|
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
|
|
Demod.state = DEMOD_MANCHESTER_D;
|
|
}
|
|
else if(Demod.sub == SUB_SECOND_HALF) {
|
|
Demod.bitCount++;
|
|
Demod.shiftReg >>= 1;
|
|
Demod.state = DEMOD_MANCHESTER_E;
|
|
}
|
|
else {
|
|
Demod.state = DEMOD_MANCHESTER_F;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_MANCHESTER_F:
|
|
// Tag response does not need to be a complete byte!
|
|
if(Demod.len > 0 || Demod.bitCount > 0) {
|
|
if(Demod.bitCount > 0) {
|
|
Demod.shiftReg >>= (9 - Demod.bitCount);
|
|
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
|
|
Demod.len++;
|
|
// No parity bit, so just shift a 0
|
|
Demod.parityBits <<= 1;
|
|
}
|
|
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
return TRUE;
|
|
}
|
|
else {
|
|
Demod.output[Demod.len] = 0xad;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0x03;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_ERROR_WAIT:
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
break;
|
|
|
|
default:
|
|
Demod.output[Demod.len] = 0xdd;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
break;
|
|
}
|
|
|
|
if(Demod.bitCount>=9) {
|
|
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
|
|
Demod.len++;
|
|
|
|
Demod.parityBits <<= 1;
|
|
Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
|
|
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
}
|
|
|
|
/*if(error) {
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = error & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = bit & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = Demod.buffer & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
return TRUE;
|
|
}*/
|
|
|
|
}
|
|
|
|
} // end (state != UNSYNCED)
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
//=============================================================================
|
|
// Finally, a `sniffer' for ISO 14443 Type A
|
|
// Both sides of communication!
|
|
//=============================================================================
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Record the sequence of commands sent by the reader to the tag, with
|
|
// triggering so that we start recording at the point that the tag is moved
|
|
// near the reader.
|
|
//-----------------------------------------------------------------------------
|
|
void SnoopIso14443a(void)
|
|
{
|
|
// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
|
|
// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
|
|
// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
|
|
// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
|
|
// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
|
|
|
|
// We won't start recording the frames that we acquire until we trigger;
|
|
// a good trigger condition to get started is probably when we see a
|
|
// response from the tag.
|
|
BOOL triggered = TRUE; // FALSE to wait first for card
|
|
|
|
// The command (reader -> tag) that we're receiving.
|
|
// The length of a received command will in most cases be no more than 18 bytes.
|
|
// So 32 should be enough!
|
|
BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);
|
|
// The response (tag -> reader) that we're receiving.
|
|
BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);
|
|
|
|
// As we receive stuff, we copy it from receivedCmd or receivedResponse
|
|
// into trace, along with its length and other annotations.
|
|
//BYTE *trace = (BYTE *)BigBuf;
|
|
//int traceLen = 0;
|
|
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;
|
|
int lastRxCounter;
|
|
SBYTE *upTo;
|
|
int smpl;
|
|
int maxBehindBy = 0;
|
|
|
|
// Count of samples received so far, so that we can include timing
|
|
// information in the trace buffer.
|
|
int samples = 0;
|
|
int rsamples = 0;
|
|
|
|
memset(trace, 0x44, RECV_CMD_OFFSET);
|
|
|
|
// Set up the demodulator for tag -> reader responses.
|
|
Demod.output = receivedResponse;
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
|
|
// And the reader -> tag commands
|
|
memset(&Uart, 0, sizeof(Uart));
|
|
Uart.output = receivedCmd;
|
|
Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
|
|
Uart.state = STATE_UNSYNCD;
|
|
|
|
// And put the FPGA in the appropriate mode
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// Setup for the DMA.
|
|
FpgaSetupSsc();
|
|
upTo = dmaBuf;
|
|
lastRxCounter = DMA_BUFFER_SIZE;
|
|
FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);
|
|
|
|
LED_A_ON();
|
|
|
|
// And now we loop, receiving samples.
|
|
for(;;) {
|
|
WDT_HIT();
|
|
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
|
|
(DMA_BUFFER_SIZE-1);
|
|
if(behindBy > maxBehindBy) {
|
|
maxBehindBy = behindBy;
|
|
if(behindBy > 400) {
|
|
DbpString("blew circular buffer!");
|
|
goto done;
|
|
}
|
|
}
|
|
if(behindBy < 1) continue;
|
|
|
|
smpl = upTo[0];
|
|
upTo++;
|
|
lastRxCounter -= 1;
|
|
if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
|
|
upTo -= DMA_BUFFER_SIZE;
|
|
lastRxCounter += DMA_BUFFER_SIZE;
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)upTo;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
|
|
}
|
|
|
|
samples += 4;
|
|
#define HANDLE_BIT_IF_BODY \
|
|
LED_C_ON(); \
|
|
if(triggered) { \
|
|
trace[traceLen++] = ((rsamples >> 0) & 0xff); \
|
|
trace[traceLen++] = ((rsamples >> 8) & 0xff); \
|
|
trace[traceLen++] = ((rsamples >> 16) & 0xff); \
|
|
trace[traceLen++] = ((rsamples >> 24) & 0xff); \
|
|
trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \
|
|
trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \
|
|
trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \
|
|
trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \
|
|
trace[traceLen++] = Uart.byteCnt; \
|
|
memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
|
|
traceLen += Uart.byteCnt; \
|
|
if(traceLen > TRACE_LENGTH) break; \
|
|
} \
|
|
/* And ready to receive another command. */ \
|
|
Uart.state = STATE_UNSYNCD; \
|
|
/* And also reset the demod code, which might have been */ \
|
|
/* false-triggered by the commands from the reader. */ \
|
|
Demod.state = DEMOD_UNSYNCD; \
|
|
LED_B_OFF(); \
|
|
|
|
if(MillerDecoding((smpl & 0xF0) >> 4)) {
|
|
rsamples = samples - Uart.samples;
|
|
HANDLE_BIT_IF_BODY
|
|
}
|
|
if(ManchesterDecoding(smpl & 0x0F)) {
|
|
rsamples = samples - Demod.samples;
|
|
LED_B_ON();
|
|
|
|
// timestamp, as a count of samples
|
|
trace[traceLen++] = ((rsamples >> 0) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 8) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 16) & 0xff);
|
|
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
|
|
// length
|
|
trace[traceLen++] = Demod.len;
|
|
memcpy(trace+traceLen, receivedResponse, Demod.len);
|
|
traceLen += Demod.len;
|
|
if(traceLen > TRACE_LENGTH) break;
|
|
|
|
triggered = TRUE;
|
|
|
|
// And ready to receive another response.
|
|
memset(&Demod, 0, sizeof(Demod));
|
|
Demod.output = receivedResponse;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
}
|
|
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("cancelled_a");
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
DbpString("COMMAND FINISHED");
|
|
|
|
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
|
|
Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
|
|
|
|
done:
|
|
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
|
|
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
|
|
Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
|
|
LED_A_OFF();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
LED_D_OFF();
|
|
}
|
|
|
|
// Prepare communication bits to send to FPGA
|
|
void Sequence(SecType seq)
|
|
{
|
|
ToSendMax++;
|
|
switch(seq) {
|
|
// CARD TO READER
|
|
case SEC_D:
|
|
// Sequence D: 11110000
|
|
// modulation with subcarrier during first half
|
|
ToSend[ToSendMax] = 0xf0;
|
|
break;
|
|
case SEC_E:
|
|
// Sequence E: 00001111
|
|
// modulation with subcarrier during second half
|
|
ToSend[ToSendMax] = 0x0f;
|
|
break;
|
|
case SEC_F:
|
|
// Sequence F: 00000000
|
|
// no modulation with subcarrier
|
|
ToSend[ToSendMax] = 0x00;
|
|
break;
|
|
// READER TO CARD
|
|
case SEC_X:
|
|
// Sequence X: 00001100
|
|
// drop after half a period
|
|
ToSend[ToSendMax] = 0x0c;
|
|
break;
|
|
case SEC_Y:
|
|
default:
|
|
// Sequence Y: 00000000
|
|
// no drop
|
|
ToSend[ToSendMax] = 0x00;
|
|
break;
|
|
case SEC_Z:
|
|
// Sequence Z: 11000000
|
|
// drop at start
|
|
ToSend[ToSendMax] = 0xc0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Prepare tag messages
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeIso14443aAsTag(const BYTE *cmd, int len)
|
|
{
|
|
int i;
|
|
int oddparity;
|
|
|
|
ToSendReset();
|
|
|
|
// Correction bit, might be removed when not needed
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(1); // 1
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
|
|
// Send startbit
|
|
Sequence(SEC_D);
|
|
|
|
for(i = 0; i < len; i++) {
|
|
int j;
|
|
BYTE b = cmd[i];
|
|
|
|
// Data bits
|
|
oddparity = 0x01;
|
|
for(j = 0; j < 8; j++) {
|
|
oddparity ^= (b & 1);
|
|
if(b & 1) {
|
|
Sequence(SEC_D);
|
|
} else {
|
|
Sequence(SEC_E);
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Parity bit
|
|
if(oddparity) {
|
|
Sequence(SEC_D);
|
|
} else {
|
|
Sequence(SEC_E);
|
|
}
|
|
}
|
|
|
|
// Send stopbit
|
|
Sequence(SEC_F);
|
|
|
|
// Flush the buffer in FPGA!!
|
|
for(i = 0; i < 5; i++) {
|
|
Sequence(SEC_F);
|
|
}
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
|
|
// Add a few more for slop
|
|
ToSend[ToSendMax++] = 0x00;
|
|
ToSend[ToSendMax++] = 0x00;
|
|
//ToSendMax += 2;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeStrangeAnswer()
|
|
{
|
|
int i;
|
|
|
|
ToSendReset();
|
|
|
|
// Correction bit, might be removed when not needed
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(1); // 1
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
|
|
// Send startbit
|
|
Sequence(SEC_D);
|
|
|
|
// 0
|
|
Sequence(SEC_E);
|
|
|
|
// 0
|
|
Sequence(SEC_E);
|
|
|
|
// 1
|
|
Sequence(SEC_D);
|
|
|
|
// Send stopbit
|
|
Sequence(SEC_F);
|
|
|
|
// Flush the buffer in FPGA!!
|
|
for(i = 0; i < 5; i++) {
|
|
Sequence(SEC_F);
|
|
}
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
|
|
// Add a few more for slop
|
|
ToSend[ToSendMax++] = 0x00;
|
|
ToSend[ToSendMax++] = 0x00;
|
|
//ToSendMax += 2;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait for commands from reader
|
|
// Stop when button is pressed
|
|
// Or return TRUE when command is captured
|
|
//-----------------------------------------------------------------------------
|
|
static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)
|
|
{
|
|
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
|
|
|
|
// Now run a `software UART' on the stream of incoming samples.
|
|
Uart.output = received;
|
|
Uart.byteCntMax = maxLen;
|
|
Uart.state = STATE_UNSYNCD;
|
|
|
|
for(;;) {
|
|
WDT_HIT();
|
|
|
|
if(BUTTON_PRESS()) return FALSE;
|
|
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
|
|
if(MillerDecoding((b & 0xf0) >> 4)) {
|
|
*len = Uart.byteCnt;
|
|
return TRUE;
|
|
}
|
|
if(MillerDecoding(b & 0x0f)) {
|
|
*len = Uart.byteCnt;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Main loop of simulated tag: receive commands from reader, decide what
|
|
// response to send, and send it.
|
|
//-----------------------------------------------------------------------------
|
|
void SimulateIso14443aTag(int tagType, int TagUid)
|
|
{
|
|
// This function contains the tag emulation
|
|
|
|
// Prepare protocol messages
|
|
// static const BYTE cmd1[] = { 0x26 };
|
|
// static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
|
|
//
|
|
static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
|
|
// static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
|
|
|
|
// UID response
|
|
// static const BYTE cmd2[] = { 0x93, 0x20 };
|
|
//static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
|
|
|
|
|
|
|
|
// my desfire
|
|
static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
|
|
|
|
|
|
// When reader selects us during cascade1 it will send cmd3
|
|
//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
|
|
BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
|
|
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
|
|
|
|
// send cascade2 2nd half of UID
|
|
static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
|
|
// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
|
|
|
|
|
|
// When reader selects us during cascade2 it will send cmd3a
|
|
//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
|
|
BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
|
|
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
|
|
|
|
static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
|
|
|
|
BYTE *resp;
|
|
int respLen;
|
|
|
|
// Longest possible response will be 16 bytes + 2 CRC = 18 bytes
|
|
// This will need
|
|
// 144 data bits (18 * 8)
|
|
// 18 parity bits
|
|
// 2 Start and stop
|
|
// 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
|
|
// 1 just for the case
|
|
// ----------- +
|
|
// 166
|
|
//
|
|
// 166 bytes, since every bit that needs to be send costs us a byte
|
|
//
|
|
|
|
|
|
// Respond with card type
|
|
BYTE *resp1 = (((BYTE *)BigBuf) + 800);
|
|
int resp1Len;
|
|
|
|
// Anticollision cascade1 - respond with uid
|
|
BYTE *resp2 = (((BYTE *)BigBuf) + 970);
|
|
int resp2Len;
|
|
|
|
// Anticollision cascade2 - respond with 2nd half of uid if asked
|
|
// we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
|
|
BYTE *resp2a = (((BYTE *)BigBuf) + 1140);
|
|
int resp2aLen;
|
|
|
|
// Acknowledge select - cascade 1
|
|
BYTE *resp3 = (((BYTE *)BigBuf) + 1310);
|
|
int resp3Len;
|
|
|
|
// Acknowledge select - cascade 2
|
|
BYTE *resp3a = (((BYTE *)BigBuf) + 1480);
|
|
int resp3aLen;
|
|
|
|
// Response to a read request - not implemented atm
|
|
BYTE *resp4 = (((BYTE *)BigBuf) + 1550);
|
|
int resp4Len;
|
|
|
|
// Authenticate response - nonce
|
|
BYTE *resp5 = (((BYTE *)BigBuf) + 1720);
|
|
int resp5Len;
|
|
|
|
BYTE *receivedCmd = (BYTE *)BigBuf;
|
|
int len;
|
|
|
|
int i;
|
|
int u;
|
|
BYTE b;
|
|
|
|
// To control where we are in the protocol
|
|
int order = 0;
|
|
int lastorder;
|
|
|
|
// Just to allow some checks
|
|
int happened = 0;
|
|
int happened2 = 0;
|
|
|
|
int cmdsRecvd = 0;
|
|
|
|
BOOL fdt_indicator;
|
|
|
|
memset(receivedCmd, 0x44, 400);
|
|
|
|
// Prepare the responses of the anticollision phase
|
|
// there will be not enough time to do this at the moment the reader sends it REQA
|
|
|
|
// Answer to request
|
|
CodeIso14443aAsTag(response1, sizeof(response1));
|
|
memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
|
|
|
|
// Send our UID (cascade 1)
|
|
CodeIso14443aAsTag(response2, sizeof(response2));
|
|
memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
|
|
|
|
// Answer to select (cascade1)
|
|
CodeIso14443aAsTag(response3, sizeof(response3));
|
|
memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
|
|
|
|
// Send the cascade 2 2nd part of the uid
|
|
CodeIso14443aAsTag(response2a, sizeof(response2a));
|
|
memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
|
|
|
|
// Answer to select (cascade 2)
|
|
CodeIso14443aAsTag(response3a, sizeof(response3a));
|
|
memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
|
|
|
|
// Strange answer is an example of rare message size (3 bits)
|
|
CodeStrangeAnswer();
|
|
memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
|
|
|
|
// Authentication answer (random nonce)
|
|
CodeIso14443aAsTag(response5, sizeof(response5));
|
|
memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
|
|
|
|
// We need to listen to the high-frequency, peak-detected path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc();
|
|
|
|
cmdsRecvd = 0;
|
|
|
|
LED_A_ON();
|
|
for(;;) {
|
|
|
|
if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
|
|
DbpString("button press");
|
|
break;
|
|
}
|
|
// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
|
|
// Okay, look at the command now.
|
|
lastorder = order;
|
|
i = 1; // first byte transmitted
|
|
if(receivedCmd[0] == 0x26) {
|
|
// Received a REQUEST
|
|
resp = resp1; respLen = resp1Len; order = 1;
|
|
//DbpString("Hello request from reader:");
|
|
} else if(receivedCmd[0] == 0x52) {
|
|
// Received a WAKEUP
|
|
resp = resp1; respLen = resp1Len; order = 6;
|
|
// //DbpString("Wakeup request from reader:");
|
|
|
|
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
|
|
// Received request for UID (cascade 1)
|
|
resp = resp2; respLen = resp2Len; order = 2;
|
|
// DbpString("UID (cascade 1) request from reader:");
|
|
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
|
|
|
|
|
|
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
|
|
// Received request for UID (cascade 2)
|
|
resp = resp2a; respLen = resp2aLen; order = 20;
|
|
// DbpString("UID (cascade 2) request from reader:");
|
|
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
|
|
|
|
|
|
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
|
|
// Received a SELECT
|
|
resp = resp3; respLen = resp3Len; order = 3;
|
|
// DbpString("Select (cascade 1) request from reader:");
|
|
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
|
|
|
|
|
|
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
|
|
// Received a SELECT
|
|
resp = resp3a; respLen = resp3aLen; order = 30;
|
|
// DbpString("Select (cascade 2) request from reader:");
|
|
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
|
|
|
|
|
|
} else if(receivedCmd[0] == 0x30) {
|
|
// Received a READ
|
|
resp = resp4; respLen = resp4Len; order = 4; // Do nothing
|
|
Dbprintf("Read request from reader: %x %x %x",
|
|
receivedCmd[0], receivedCmd[1], receivedCmd[2]);
|
|
|
|
|
|
} else if(receivedCmd[0] == 0x50) {
|
|
// Received a HALT
|
|
resp = resp1; respLen = 0; order = 5; // Do nothing
|
|
DbpString("Reader requested we HALT!:");
|
|
|
|
} else if(receivedCmd[0] == 0x60) {
|
|
// Received an authentication request
|
|
resp = resp5; respLen = resp5Len; order = 7;
|
|
Dbprintf("Authenticate request from reader: %x %x %x",
|
|
receivedCmd[0], receivedCmd[1], receivedCmd[2]);
|
|
|
|
} else if(receivedCmd[0] == 0xE0) {
|
|
// Received a RATS request
|
|
resp = resp1; respLen = 0;order = 70;
|
|
Dbprintf("RATS request from reader: %x %x %x",
|
|
receivedCmd[0], receivedCmd[1], receivedCmd[2]);
|
|
} else {
|
|
// Never seen this command before
|
|
Dbprintf("Unknown command received from reader: %x %x %x %x %x %x %x %x %x",
|
|
receivedCmd[0], receivedCmd[1], receivedCmd[2],
|
|
receivedCmd[3], receivedCmd[3], receivedCmd[4],
|
|
receivedCmd[5], receivedCmd[6], receivedCmd[7]);
|
|
// Do not respond
|
|
resp = resp1; respLen = 0; order = 0;
|
|
}
|
|
|
|
// Count number of wakeups received after a halt
|
|
if(order == 6 && lastorder == 5) { happened++; }
|
|
|
|
// Count number of other messages after a halt
|
|
if(order != 6 && lastorder == 5) { happened2++; }
|
|
|
|
// Look at last parity bit to determine timing of answer
|
|
if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
|
|
// 1236, so correction bit needed
|
|
i = 0;
|
|
}
|
|
|
|
memset(receivedCmd, 0x44, 32);
|
|
|
|
if(cmdsRecvd > 999) {
|
|
DbpString("1000 commands later...");
|
|
break;
|
|
}
|
|
else {
|
|
cmdsRecvd++;
|
|
}
|
|
|
|
if(respLen <= 0) continue;
|
|
|
|
// Modulate Manchester
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
FpgaSetupSsc();
|
|
|
|
// ### Transmit the response ###
|
|
u = 0;
|
|
b = 0x00;
|
|
fdt_indicator = FALSE;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
|
|
(void)b;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
if(i > respLen) {
|
|
b = 0x00;
|
|
u++;
|
|
} else {
|
|
b = resp[i];
|
|
i++;
|
|
}
|
|
AT91C_BASE_SSC->SSC_THR = b;
|
|
|
|
if(u > 4) {
|
|
break;
|
|
}
|
|
}
|
|
if(BUTTON_PRESS()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Transmit the command (to the tag) that was placed in ToSend[].
|
|
//-----------------------------------------------------------------------------
|
|
static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)
|
|
{
|
|
int c;
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
|
|
if (wait)
|
|
if(*wait < 10)
|
|
*wait = 10;
|
|
|
|
for(c = 0; c < *wait;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
|
|
c++;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
c = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = cmd[c];
|
|
c++;
|
|
if(c >= len) {
|
|
break;
|
|
}
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
if (samples) *samples = (c + *wait) << 3;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// To generate an arbitrary stream from reader
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void ArbitraryFromReader(const BYTE *cmd, int parity, int len)
|
|
{
|
|
int i;
|
|
int j;
|
|
int last;
|
|
BYTE b;
|
|
|
|
ToSendReset();
|
|
|
|
// Start of Communication (Seq. Z)
|
|
Sequence(SEC_Z);
|
|
last = 0;
|
|
|
|
for(i = 0; i < len; i++) {
|
|
// Data bits
|
|
b = cmd[i];
|
|
for(j = 0; j < 8; j++) {
|
|
if(b & 1) {
|
|
// Sequence X
|
|
Sequence(SEC_X);
|
|
last = 1;
|
|
} else {
|
|
if(last == 0) {
|
|
// Sequence Z
|
|
Sequence(SEC_Z);
|
|
}
|
|
else {
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
last = 0;
|
|
}
|
|
}
|
|
b >>= 1;
|
|
|
|
}
|
|
|
|
// Predefined parity bit, the flipper flips when needed, because of flips in byte sent
|
|
if(((parity >> (len - i - 1)) & 1)) {
|
|
// Sequence X
|
|
Sequence(SEC_X);
|
|
last = 1;
|
|
} else {
|
|
if(last == 0) {
|
|
// Sequence Z
|
|
Sequence(SEC_Z);
|
|
}
|
|
else {
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
last = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// End of Communication
|
|
if(last == 0) {
|
|
// Sequence Z
|
|
Sequence(SEC_Z);
|
|
}
|
|
else {
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
last = 0;
|
|
}
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
|
|
// Just to be sure!
|
|
Sequence(SEC_Y);
|
|
Sequence(SEC_Y);
|
|
Sequence(SEC_Y);
|
|
|
|
// Convert from last character reference to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Code a 7-bit command without parity bit
|
|
// This is especially for 0x26 and 0x52 (REQA and WUPA)
|
|
//-----------------------------------------------------------------------------
|
|
void ShortFrameFromReader(const BYTE bt)
|
|
{
|
|
int j;
|
|
int last;
|
|
BYTE b;
|
|
|
|
ToSendReset();
|
|
|
|
// Start of Communication (Seq. Z)
|
|
Sequence(SEC_Z);
|
|
last = 0;
|
|
|
|
b = bt;
|
|
for(j = 0; j < 7; j++) {
|
|
if(b & 1) {
|
|
// Sequence X
|
|
Sequence(SEC_X);
|
|
last = 1;
|
|
} else {
|
|
if(last == 0) {
|
|
// Sequence Z
|
|
Sequence(SEC_Z);
|
|
}
|
|
else {
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
last = 0;
|
|
}
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// End of Communication
|
|
if(last == 0) {
|
|
// Sequence Z
|
|
Sequence(SEC_Z);
|
|
}
|
|
else {
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
last = 0;
|
|
}
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
|
|
// Just to be sure!
|
|
Sequence(SEC_Y);
|
|
Sequence(SEC_Y);
|
|
Sequence(SEC_Y);
|
|
|
|
// Convert from last character reference to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Prepare reader command to send to FPGA
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void CodeIso14443aAsReaderPar(const BYTE * cmd, int len, DWORD dwParity)
|
|
{
|
|
int i, j;
|
|
int last;
|
|
BYTE b;
|
|
|
|
ToSendReset();
|
|
|
|
// Start of Communication (Seq. Z)
|
|
Sequence(SEC_Z);
|
|
last = 0;
|
|
|
|
// Generate send structure for the data bits
|
|
for (i = 0; i < len; i++) {
|
|
// Get the current byte to send
|
|
b = cmd[i];
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
if (b & 1) {
|
|
// Sequence X
|
|
Sequence(SEC_X);
|
|
last = 1;
|
|
} else {
|
|
if (last == 0) {
|
|
// Sequence Z
|
|
Sequence(SEC_Z);
|
|
} else {
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
last = 0;
|
|
}
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Get the parity bit
|
|
if ((dwParity >> i) & 0x01) {
|
|
// Sequence X
|
|
Sequence(SEC_X);
|
|
last = 1;
|
|
} else {
|
|
if (last == 0) {
|
|
// Sequence Z
|
|
Sequence(SEC_Z);
|
|
} else {
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
last = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// End of Communication
|
|
if (last == 0) {
|
|
// Sequence Z
|
|
Sequence(SEC_Z);
|
|
} else {
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
last = 0;
|
|
}
|
|
// Sequence Y
|
|
Sequence(SEC_Y);
|
|
|
|
// Just to be sure!
|
|
Sequence(SEC_Y);
|
|
Sequence(SEC_Y);
|
|
Sequence(SEC_Y);
|
|
|
|
// Convert from last character reference to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait a certain time for tag response
|
|
// If a response is captured return TRUE
|
|
// If it takes to long return FALSE
|
|
//-----------------------------------------------------------------------------
|
|
static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer
|
|
{
|
|
// buffer needs to be 512 bytes
|
|
int c;
|
|
|
|
// Set FPGA mode to "reader listen mode", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
// Now get the answer from the card
|
|
Demod.output = receivedResponse;
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
|
|
BYTE b;
|
|
if (elapsed) *elapsed = 0;
|
|
|
|
c = 0;
|
|
for(;;) {
|
|
WDT_HIT();
|
|
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
|
|
if (elapsed) (*elapsed)++;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
if(c < 512) { c++; } else { return FALSE; }
|
|
b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
|
|
if(ManchesterDecoding((b & 0xf0) >> 4)) {
|
|
*samples = ((c - 1) << 3) + 4;
|
|
return TRUE;
|
|
}
|
|
if(ManchesterDecoding(b & 0x0f)) {
|
|
*samples = c << 3;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReaderTransmitShort(const BYTE* bt)
|
|
{
|
|
int wait = 0;
|
|
int samples = 0;
|
|
|
|
ShortFrameFromReader(*bt);
|
|
|
|
// Select the card
|
|
TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
|
|
|
|
// Store reader command in buffer
|
|
if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
|
|
}
|
|
|
|
void ReaderTransmitPar(BYTE* frame, int len, DWORD par)
|
|
{
|
|
int wait = 0;
|
|
int samples = 0;
|
|
|
|
// This is tied to other size changes
|
|
// BYTE* frame_addr = ((BYTE*)BigBuf) + 2024;
|
|
CodeIso14443aAsReaderPar(frame,len,par);
|
|
|
|
// Select the card
|
|
TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
|
|
|
|
// Store reader command in buffer
|
|
if (tracing) LogTrace(frame,len,0,par,TRUE);
|
|
}
|
|
|
|
|
|
void ReaderTransmit(BYTE* frame, int len)
|
|
{
|
|
// Generate parity and redirect
|
|
ReaderTransmitPar(frame,len,GetParity(frame,len));
|
|
}
|
|
|
|
BOOL ReaderReceive(BYTE* receivedAnswer)
|
|
{
|
|
int samples = 0;
|
|
if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE;
|
|
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
|
|
return TRUE;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read an ISO 14443a tag. Send out commands and store answers.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void ReaderIso14443a(DWORD parameter)
|
|
{
|
|
// Anticollision
|
|
BYTE wupa[] = { 0x52 };
|
|
BYTE sel_all[] = { 0x93,0x20 };
|
|
BYTE sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
|
BYTE sel_all_c2[] = { 0x95,0x20 };
|
|
BYTE sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
|
|
|
// Mifare AUTH
|
|
BYTE mf_auth[] = { 0x60,0x00,0xf5,0x7b };
|
|
// BYTE mf_nr_ar[] = { 0x00,0x00,0x00,0x00 };
|
|
|
|
BYTE* receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes
|
|
traceLen = 0;
|
|
|
|
// Setup SSC
|
|
FpgaSetupSsc();
|
|
|
|
// Start from off (no field generated)
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc();
|
|
|
|
// Now give it time to spin up.
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
SpinDelay(200);
|
|
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
|
|
while(traceLen < TRACE_LENGTH)
|
|
{
|
|
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
|
|
ReaderTransmitShort(wupa);
|
|
|
|
// Test if the action was cancelled
|
|
if(BUTTON_PRESS()) {
|
|
break;
|
|
}
|
|
|
|
// Receive the ATQA
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
|
|
// Transmit SELECT_ALL
|
|
ReaderTransmit(sel_all,sizeof(sel_all));
|
|
|
|
// Receive the UID
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
|
|
// Construct SELECT UID command
|
|
// First copy the 5 bytes (Mifare Classic) after the 93 70
|
|
memcpy(sel_uid+2,receivedAnswer,5);
|
|
// Secondly compute the two CRC bytes at the end
|
|
AppendCrc14443a(sel_uid,7);
|
|
|
|
// Transmit SELECT_UID
|
|
ReaderTransmit(sel_uid,sizeof(sel_uid));
|
|
|
|
// Receive the SAK
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
|
|
// OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in
|
|
// which case we need to make a cascade 2 request and select - this is a long UID
|
|
// When the UID is not complete, the 3nd bit (from the right) is set in the SAK.
|
|
if (receivedAnswer[0] &= 0x04)
|
|
{
|
|
// Transmit SELECT_ALL
|
|
ReaderTransmit(sel_all_c2,sizeof(sel_all_c2));
|
|
|
|
// Receive the UID
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
|
|
// Construct SELECT UID command
|
|
memcpy(sel_uid_c2+2,receivedAnswer,5);
|
|
// Secondly compute the two CRC bytes at the end
|
|
AppendCrc14443a(sel_uid_c2,7);
|
|
|
|
// Transmit SELECT_UID
|
|
ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2));
|
|
|
|
// Receive the SAK
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
}
|
|
|
|
// Transmit MIFARE_CLASSIC_AUTH
|
|
ReaderTransmit(mf_auth,sizeof(mf_auth));
|
|
|
|
// Receive the (16 bit) "random" nonce
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
}
|
|
|
|
// Thats it...
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
Dbprintf("%x %x %x", rsamples, 0xCC, 0xCC);
|
|
DbpString("ready..");
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read an ISO 14443a tag. Send out commands and store answers.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void ReaderMifare(DWORD parameter)
|
|
{
|
|
|
|
// Anticollision
|
|
BYTE wupa[] = { 0x52 };
|
|
BYTE sel_all[] = { 0x93,0x20 };
|
|
BYTE sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
|
|
|
// Mifare AUTH
|
|
BYTE mf_auth[] = { 0x60,0x00,0xf5,0x7b };
|
|
BYTE mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
|
|
|
BYTE* receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes
|
|
traceLen = 0;
|
|
tracing = false;
|
|
|
|
// Setup SSC
|
|
FpgaSetupSsc();
|
|
|
|
// Start from off (no field generated)
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc();
|
|
|
|
// Now give it time to spin up.
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
SpinDelay(200);
|
|
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
|
|
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
|
|
ReaderTransmitShort(wupa);
|
|
// Receive the ATQA
|
|
ReaderReceive(receivedAnswer);
|
|
// Transmit SELECT_ALL
|
|
ReaderTransmit(sel_all,sizeof(sel_all));
|
|
// Receive the UID
|
|
ReaderReceive(receivedAnswer);
|
|
// Construct SELECT UID command
|
|
// First copy the 5 bytes (Mifare Classic) after the 93 70
|
|
memcpy(sel_uid+2,receivedAnswer,5);
|
|
// Secondly compute the two CRC bytes at the end
|
|
AppendCrc14443a(sel_uid,7);
|
|
|
|
byte_t nt_diff = 0;
|
|
LED_A_OFF();
|
|
byte_t par = 0;
|
|
byte_t par_mask = 0xff;
|
|
byte_t par_low = 0;
|
|
BOOL led_on = TRUE;
|
|
|
|
tracing = FALSE;
|
|
byte_t nt[4];
|
|
byte_t nt_attacked[4];
|
|
byte_t par_list[8];
|
|
byte_t ks_list[8];
|
|
num_to_bytes(parameter,4,nt_attacked);
|
|
|
|
while(TRUE)
|
|
{
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
|
|
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
|
|
ReaderTransmitShort(wupa);
|
|
|
|
// Test if the action was cancelled
|
|
if(BUTTON_PRESS()) {
|
|
break;
|
|
}
|
|
|
|
// Receive the ATQA
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
|
|
// Transmit SELECT_ALL
|
|
ReaderTransmit(sel_all,sizeof(sel_all));
|
|
|
|
// Receive the UID
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
|
|
// Transmit SELECT_UID
|
|
ReaderTransmit(sel_uid,sizeof(sel_uid));
|
|
|
|
// Receive the SAK
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
|
|
// Transmit MIFARE_CLASSIC_AUTH
|
|
ReaderTransmit(mf_auth,sizeof(mf_auth));
|
|
|
|
// Receive the (16 bit) "random" nonce
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
memcpy(nt,receivedAnswer,4);
|
|
|
|
// Transmit reader nonce and reader answer
|
|
ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par);
|
|
|
|
// Receive 4 bit answer
|
|
if (ReaderReceive(receivedAnswer))
|
|
{
|
|
if (nt_diff == 0)
|
|
{
|
|
LED_A_ON();
|
|
memcpy(nt_attacked,nt,4);
|
|
par_mask = 0xf8;
|
|
par_low = par & 0x07;
|
|
}
|
|
|
|
if (memcmp(nt,nt_attacked,4) != 0) continue;
|
|
|
|
led_on = !led_on;
|
|
if(led_on) LED_B_ON(); else LED_B_OFF();
|
|
par_list[nt_diff] = par;
|
|
ks_list[nt_diff] = receivedAnswer[0]^0x05;
|
|
|
|
// Test if the information is complete
|
|
if (nt_diff == 0x07) break;
|
|
|
|
nt_diff = (nt_diff+1) & 0x07;
|
|
mf_nr_ar[3] = nt_diff << 5;
|
|
par = par_low;
|
|
} else {
|
|
if (nt_diff == 0)
|
|
{
|
|
par++;
|
|
} else {
|
|
par = (((par>>3)+1) << 3) | par_low;
|
|
}
|
|
}
|
|
}
|
|
|
|
LogTraceInfo(sel_uid+2,4);
|
|
LogTraceInfo(nt,4);
|
|
LogTraceInfo(par_list,8);
|
|
LogTraceInfo(ks_list,8);
|
|
|
|
// Thats it...
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
tracing = TRUE;
|
|
}
|