proxmark3/client/src/cmdhfxerox.c

808 lines
25 KiB
C

//-----------------------------------------------------------------------------
// High frequency Xerox commands (ISO14443B)
//-----------------------------------------------------------------------------
#include "cmdhfxerox.h"
#include "fileutils.h"
#include "cmdparser.h" // command_t
#include "cliparser.h"
#include "comms.h"
#include "iso14b.h"
#include "crc16.h"
#define TIMEOUT 2000
#define c2l(c,l) (l = ((unsigned long)(*((c)++))), \
l |= ((unsigned long)(*((c)++))) << 8L, \
l |= ((unsigned long)(*((c)++))) << 16L, \
l |= ((unsigned long)(*((c)++))) << 24L)
/* NOTE - c is not incremented as per c2l */
#define c2ln(c,l1,l2,n) { \
c += n; \
l1 = l2 = 0; \
switch (n) { \
case 8: l2 = ((unsigned long)(*(--(c)))) << 24L; \
case 7: l2 |= ((unsigned long)(*(--(c)))) << 16L; \
case 6: l2 |= ((unsigned long)(*(--(c)))) << 8L; \
case 5: l2 |= ((unsigned long)(*(--(c)))); \
case 4: l1 = ((unsigned long)(*(--(c)))) << 24L; \
case 3: l1 |= ((unsigned long)(*(--(c)))) << 16L; \
case 2: l1 |= ((unsigned long)(*(--(c)))) << 8L; \
case 1: l1 |= ((unsigned long)(*(--(c)))); \
} \
}
#define l2c(l,c) (*((c)++) = (uint8_t)(((l)) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 8L) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 16L) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 24L) & 0xff))
/* NOTE - c is not incremented as per l2c */
#define l2cn(l1,l2,c,n) { \
c += n; \
switch (n) { \
case 8: *(--(c)) = (uint8_t)(((l2) >> 24L) & 0xff); \
case 7: *(--(c)) = (uint8_t)(((l2) >> 16L) & 0xff); \
case 6: *(--(c)) = (uint8_t)(((l2) >> 8L) & 0xff); \
case 5: *(--(c)) = (uint8_t)(((l2)) & 0xff); \
case 4: *(--(c)) = (uint8_t)(((l1) >> 24L) & 0xff); \
case 3: *(--(c)) = (uint8_t)(((l1) >> 16L) & 0xff); \
case 2: *(--(c)) = (uint8_t)(((l1) >> 8L) & 0xff); \
case 1: *(--(c)) = (uint8_t)(((l1)) & 0xff); \
} \
}
/* NOTE - c is not incremented as per n2l */
#define n2ln(c,l1,l2,n) { \
c += n; \
l1 = l2 = 0; \
switch (n) { \
case 8: l2 = ((unsigned long)(*(--(c)))); \
case 7: l2 |= ((unsigned long)(*(--(c)))) << 8; \
case 6: l2 |= ((unsigned long)(*(--(c)))) << 16; \
case 5: l2 |= ((unsigned long)(*(--(c)))) << 24; \
case 4: l1 = ((unsigned long)(*(--(c)))); \
case 3: l1 |= ((unsigned long)(*(--(c)))) << 8; \
case 2: l1 |= ((unsigned long)(*(--(c)))) << 16; \
case 1: l1 |= ((unsigned long)(*(--(c)))) << 24; \
} \
}
/* NOTE - c is not incremented as per l2n */
#define l2nn(l1,l2,c,n) { \
c+=n; \
switch (n) { \
case 8: *(--(c)) = (uint8_t)(((l2)) & 0xff); \
case 7: *(--(c)) = (uint8_t)(((l2) >> 8) & 0xff); \
case 6: *(--(c)) = (uint8_t)(((l2) >> 16) & 0xff); \
case 5: *(--(c)) = (uint8_t)(((l2) >> 24) & 0xff); \
case 4: *(--(c)) = (uint8_t)(((l1)) & 0xff); \
case 3: *(--(c)) = (uint8_t)(((l1) >> 8) & 0xff); \
case 2: *(--(c)) = (uint8_t)(((l1) >> 16) & 0xff); \
case 1: *(--(c)) = (uint8_t)(((l1) >> 24) & 0xff); \
} \
}
#define n2l(c,l) (l = ((unsigned long)(*((c)++))) << 24L, \
l |= ((unsigned long)(*((c)++))) << 16L, \
l |= ((unsigned long)(*((c)++))) << 8L, \
l |= ((unsigned long)(*((c)++))))
#define l2n(l,c) (*((c)++) = (uint8_t)(((l) >> 24L) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 16L) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 8L) & 0xff), \
*((c)++) = (uint8_t)(((l)) & 0xff))
#define C_RC2(n) \
t = (x0 + (x1 & ~x3) + (x2 & x3) + *(p0++)) & 0xffff; \
x0 = (t << 1) | (t >> 15); \
t = (x1 + (x2 & ~x0) + (x3 & x0) + *(p0++)) & 0xffff; \
x1 = (t << 2) | (t >> 14); \
t = (x2 + (x3 & ~x1) + (x0 & x1) + *(p0++)) & 0xffff; \
x2 = (t << 3) | (t >> 13); \
t = (x3 + (x0 & ~x2) + (x1 & x2) + *(p0++)) & 0xffff; \
x3 = (t << 5) | (t >> 11);
#define RC2_ENCRYPT 1
#define RC2_DECRYPT 0
typedef unsigned int RC2_INT;
typedef struct rc2_key_st {
RC2_INT data[64];
} RC2_KEY;
static const uint8_t lut[256] = {
0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79,
0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5,
0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22,
0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f,
0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b,
0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde,
0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e,
0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85,
0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10,
0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b,
0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68,
0xfe, 0x7f, 0xc1, 0xad,
};
static const uint8_t var_list[] = {0x1c, 0x1e, 0x20, 0x26, 0x28, 0x2a, 0x2c, 0x2e};
static int CmdHelp(const char *Cmd);
void RC2_set_key(RC2_KEY *key, int len, const unsigned char *data, int bits);
void RC2_encrypt(unsigned long *d, RC2_KEY *key);
void RC2_decrypt(unsigned long *d, RC2_KEY *key);
void RC2_cbc_encrypt(const unsigned char *in, unsigned char *out, long length, RC2_KEY *ks, unsigned char *iv, int encrypt);
void RC2_set_key(RC2_KEY *key, int len, const unsigned char *data, int bits) {
int i, j;
unsigned char *k;
RC2_INT *ki;
unsigned int c, d;
k = (unsigned char *) & (key->data[0]);
*k = 0; /* for if there is a zero length key */
if (len > 128)
len = 128;
if (bits <= 0)
bits = 1024;
if (bits > 1024)
bits = 1024;
for (i = 0; i < len; i++)
k[i] = data[i];
/* expand table */
d = k[len - 1];
j = 0;
for (i = len; i < 128; i++, j++) {
d = lut[(k[j] + d) & 0xff];
k[i] = d;
}
/* hmm.... key reduction to 'bits' bits */
j = (bits + 7) >> 3;
i = 128 - j;
c = (0xff >> (-bits & 0x07));
d = lut[k[i] & c];
k[i] = d;
while (i--) {
d = lut[k[i + j] ^ d];
k[i] = d;
}
/* copy from bytes into RC2_INT's */
ki = &(key->data[63]);
for (i = 127; i >= 0; i -= 2)
* (ki--) = ((k[i] << 8) | k[i - 1]) & 0xffff;
}
void RC2_encrypt(unsigned long *d, RC2_KEY *key) {
int i, n;
register RC2_INT *p0, *p1;
register RC2_INT x0, x1, x2, x3;
unsigned long l;
l = d[0];
x0 = (RC2_INT)l & 0xffff;
x1 = (RC2_INT)(l >> 16L);
l = d[1];
x2 = (RC2_INT)l & 0xffff;
x3 = (RC2_INT)(l >> 16L);
n = 3;
i = 5;
p0 = p1 = &(key->data[0]);
for (;;) {
register RC2_INT t = (x0 + (x1 & ~x3) + (x2 & x3) + * (p0++)) & 0xffff;
x0 = (t << 1) | (t >> 15);
t = (x1 + (x2 & ~x0) + (x3 & x0) + * (p0++)) & 0xffff;
x1 = (t << 2) | (t >> 14);
t = (x2 + (x3 & ~x1) + (x0 & x1) + * (p0++)) & 0xffff;
x2 = (t << 3) | (t >> 13);
t = (x3 + (x0 & ~x2) + (x1 & x2) + * (p0++)) & 0xffff;
x3 = (t << 5) | (t >> 11);
if (--i == 0) {
if (--n == 0) break;
i = (n == 2) ? 6 : 5;
x0 += p1[x3 & 0x3f];
x1 += p1[x0 & 0x3f];
x2 += p1[x1 & 0x3f];
x3 += p1[x2 & 0x3f];
}
}
d[0] = (unsigned long)(x0 & 0xffff) | ((unsigned long)(x1 & 0xffff) << 16L);
d[1] = (unsigned long)(x2 & 0xffff) | ((unsigned long)(x3 & 0xffff) << 16L);
}
void RC2_decrypt(unsigned long *d, RC2_KEY *key) {
int i, n;
register RC2_INT *p0, *p1;
register RC2_INT x0, x1, x2, x3;
unsigned long l;
l = d[0];
x0 = (RC2_INT)l & 0xffff;
x1 = (RC2_INT)(l >> 16L);
l = d[1];
x2 = (RC2_INT)l & 0xffff;
x3 = (RC2_INT)(l >> 16L);
n = 3;
i = 5;
p0 = &(key->data[63]);
p1 = &(key->data[0]);
for (;;) {
register RC2_INT t = ((x3 << 11) | (x3 >> 5)) & 0xffff;
x3 = (t - (x0 & ~x2) - (x1 & x2) - * (p0--)) & 0xffff;
t = ((x2 << 13) | (x2 >> 3)) & 0xffff;
x2 = (t - (x3 & ~x1) - (x0 & x1) - * (p0--)) & 0xffff;
t = ((x1 << 14) | (x1 >> 2)) & 0xffff;
x1 = (t - (x2 & ~x0) - (x3 & x0) - * (p0--)) & 0xffff;
t = ((x0 << 15) | (x0 >> 1)) & 0xffff;
x0 = (t - (x1 & ~x3) - (x2 & x3) - * (p0--)) & 0xffff;
if (--i == 0) {
if (--n == 0)
break;
i = (n == 2) ? 6 : 5;
x3 = (x3 - p1[x2 & 0x3f]) & 0xffff;
x2 = (x2 - p1[x1 & 0x3f]) & 0xffff;
x1 = (x1 - p1[x0 & 0x3f]) & 0xffff;
x0 = (x0 - p1[x3 & 0x3f]) & 0xffff;
}
}
d[0] = (unsigned long)(x0 & 0xffff) | ((unsigned long)(x1 & 0xffff) << 16L);
d[1] = (unsigned long)(x2 & 0xffff) | ((unsigned long)(x3 & 0xffff) << 16L);
}
void RC2_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
RC2_KEY *ks, unsigned char *iv, int encrypt) {
register unsigned long tin0, tin1;
register unsigned long tout0, tout1, xor0, xor1;
register long l = length;
unsigned long tin[2];
if (encrypt) {
c2l(iv, tout0);
c2l(iv, tout1);
iv -= 8;
for (l -= 8; l >= 0; l -= 8) {
c2l(in, tin0);
c2l(in, tin1);
tin0 ^= tout0;
tin1 ^= tout1;
tin[0] = tin0;
tin[1] = tin1;
RC2_encrypt(tin, ks);
tout0 = tin[0];
l2c(tout0, out);
tout1 = tin[1];
l2c(tout1, out);
}
if (l != -8) {
c2ln(in, tin0, tin1, l + 8);
tin0 ^= tout0;
tin1 ^= tout1;
tin[0] = tin0;
tin[1] = tin1;
RC2_encrypt(tin, ks);
tout0 = tin[0];
l2c(tout0, out);
tout1 = tin[1];
l2c(tout1, out);
}
l2c(tout0, iv);
l2c(tout1, iv);
} else {
c2l(iv, xor0);
c2l(iv, xor1);
iv -= 8;
for (l -= 8; l >= 0; l -= 8) {
c2l(in, tin0);
tin[0] = tin0;
c2l(in, tin1);
tin[1] = tin1;
RC2_decrypt(tin, ks);
tout0 = tin[0] ^ xor0;
tout1 = tin[1] ^ xor1;
l2c(tout0, out);
l2c(tout1, out);
xor0 = tin0;
xor1 = tin1;
}
if (l != -8) {
c2l(in, tin0);
tin[0] = tin0;
c2l(in, tin1);
tin[1] = tin1;
RC2_decrypt(tin, ks);
tout0 = tin[0] ^ xor0;
tout1 = tin[1] ^ xor1;
l2cn(tout0, tout1, out, l + 8);
xor0 = tin0;
xor1 = tin1;
}
l2c(xor0, iv);
l2c(xor1, iv);
}
tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
tin[0] = tin[1] = 0;
}
static int switch_off_field(void) {
SetISODEPState(ISODEP_INACTIVE);
iso14b_raw_cmd_t packet = {
.flags = ISO14B_DISCONNECT,
.timeout = 0,
.rawlen = 0,
};
clearCommandBuffer();
SendCommandNG(CMD_HF_ISO14443B_COMMAND, (uint8_t *)&packet, sizeof(iso14b_raw_cmd_t));
return PM3_SUCCESS;
}
static int findXerox(iso14b_card_select_t *card, bool disconnect) {
if (card == NULL) {
return PM3_EINVARG;
}
int8_t retry = 3;
while (retry--) {
iso14b_raw_cmd_t packet = {
.flags = (ISO14B_CONNECT | ISO14B_SELECT_XRX | (disconnect ? ISO14B_DISCONNECT : 0)),
.timeout = 0,
.rawlen = 0,
};
clearCommandBuffer();
SendCommandNG(CMD_HF_ISO14443B_COMMAND, (uint8_t *)&packet, sizeof(iso14b_raw_cmd_t));
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, TIMEOUT)) {
if (resp.status == PM3_SUCCESS) {
memcpy(card, (iso14b_card_select_t *)resp.data.asBytes, sizeof(iso14b_card_select_t));
}
return resp.length;
}
} // retry
// switch_off_field();
PrintAndLogEx(FAILED, "command execution timeout");
return PM3_ESOFT;
}
static uint8_t info_blocks[] = { 0x15, 0x16, 0x17, 0x18, 0x22 };
static const char *c_type[] = { "drum", "yellow", "magenta", "cyan", "black" };
static inline char dec_digit(uint8_t dig) {
return (dig <= 9) ? dig + '0' : '?';
}
static void gen_pn(const uint8_t *data, char *pn) {
pn[0] = dec_digit(data[0] >> 4);
pn[1] = dec_digit(data[0] & 0xF);
pn[2] = dec_digit(data[1] >> 4);
char sym = ((data[1] & 0xF) << 4) | (data[2] >> 4);
pn[3] = (sym >= 'A' && sym <= 'Z') ? sym : '?';
pn[4] = dec_digit(data[2] & 0xF);
pn[5] = dec_digit(data[3] >> 4);
pn[6] = dec_digit(data[3] & 0xF);
pn[7] = dec_digit(data[4] >> 4);
pn[8] = dec_digit(data[4] & 0xF);
pn[9] = '-';
pn[10] = dec_digit(data[5] >> 4);
pn[11] = dec_digit(data[5] & 0xF);
pn[12] = 0;
}
int read_xerox_uid(bool loop, bool verbose) {
do {
iso14b_card_select_t card;
int status = findXerox(&card, true);
if (loop) {
if (status != PM3_SUCCESS) {
continue;
}
} else {
if (status == PM3_SUCCESS) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, " UID : %s", sprint_hex(card.uid, card.uidlen));
PrintAndLogEx(SUCCESS, " ATQB : %s", sprint_hex(card.atqb, sizeof(card.atqb)));
} else {
return PM3_ESOFT;
}
}
} while (loop && kbd_enter_pressed() == false);
return PM3_SUCCESS;
}
static int CmdHFXeroxReader(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hf xerox reader",
"Act as a 14443B reader to identify a tag",
"hf xerox reader\n"
"hf xerox reader -@ \n"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("v", "verbose", "verbose output"),
arg_lit0("@", NULL, "optional - continuous reader mode"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool verbose = arg_get_lit(ctx, 1);
bool cm = arg_get_lit(ctx, 2);
CLIParserFree(ctx);
if (cm) {
PrintAndLogEx(INFO, "Press " _GREEN_("<Enter>") " to exit");
}
return read_xerox_uid(cm, verbose);
}
static int CmdHFXeroxInfo(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hf xerox info",
"Tag information for ISO/IEC 14443 type B / XEROX based tags",
"hf xerox info"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("v", "verbose", "verbose output"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool verbose = arg_get_lit(ctx, 1);
CLIParserFree(ctx);
iso14b_card_select_t card;
int status = findXerox(&card, false);
if (status != PM3_SUCCESS) {
switch_off_field();
if (verbose) {
PrintAndLogEx(FAILED, "Fuji/Xerox tag select failed");
}
return status;
}
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, " UID : %s", sprint_hex(card.uid, card.uidlen));
PrintAndLogEx(SUCCESS, " ATQB : %s", sprint_hex(card.atqb, sizeof(card.atqb)));
iso14b_raw_cmd_t *packet = (iso14b_raw_cmd_t *)calloc(1, sizeof(iso14b_raw_cmd_t) + 11);
if (packet == NULL) {
PrintAndLogEx(FAILED, "failed to allocate memory");
return PM3_EMALLOC;
}
int blocknum = 0;
uint8_t data[sizeof(info_blocks) * 4] = {0};
// set up the read command
packet->flags = (ISO14B_APPEND_CRC | ISO14B_RAW);
packet->rawlen = 11;
packet->raw[0] = 0x02;
packet->raw[1] = 0x20; // set command: read mem
memcpy(packet->raw + 2, card.uid, 8); // store uid
for (int retry = 0; (retry < 5 && blocknum < sizeof(info_blocks)); retry++) {
packet->raw[10] = info_blocks[blocknum];
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_HF_ISO14443B_COMMAND, (uint8_t *)packet, sizeof(iso14b_raw_cmd_t) + packet->rawlen);
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, 2000)) {
/*
PrintAndLogEx(INFO, "%X %X %X %X %X %I64X %I64X %I64X %X %X %X %c",
resp.cmd, resp.length, resp.magic, resp.status, resp.crc, resp.oldarg[0], resp.oldarg[1], resp.oldarg[2],
resp.data.asBytes[0], resp.data.asBytes[1], resp.data.asBytes[2], resp.ng ? 't' : 'f');
*/
// 14b raw command send data_len instead of status
if (resp.length < 7) {
PrintAndLogEx(FAILED, "retrying one more time");
continue;
}
uint8_t *recv = resp.data.asBytes;
if (check_crc(CRC_14443_B, recv, 7) == false) {
PrintAndLogEx(FAILED, "crc fail, retrying one more time");
continue;
}
if (recv[0] != 2) {
PrintAndLogEx(FAILED, "Tag returned Error %x %x", recv[0], recv[1]);
break;
}
memcpy(data + (blocknum * 4), resp.data.asBytes + 1, 4);
retry = 0;
blocknum++;
}
}
switch_off_field();
free(packet);
if (blocknum != sizeof(info_blocks)) {
PrintAndLogEx(FAILED, "Fuji/Xerox tag read failed");
return PM3_ERFTRANS;
}
char pn[13];
gen_pn(data, pn);
PrintAndLogEx(SUCCESS, " PartNo : %s", pn);
PrintAndLogEx(SUCCESS, " Date : %02d.%02d.%02d", data[8], data[9], data[10]);
PrintAndLogEx(SUCCESS, " Serial : %d", (data[14] << 16) | (data[13] << 8) | data[12]);
PrintAndLogEx(SUCCESS, " Type : %s", (data[18] <= 4) ? c_type[data[18]] : "Unknown");
return PM3_SUCCESS;
}
static int CmdHFXeroxDump(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hf xerox dump",
"Dump all memory from a Fuji/Xerox tag",
"hf xerox dump\n"
);
void *argtable[] = {
arg_param_begin,
arg_str0("f", "file", "<fn>", "filename to save dump to"),
arg_lit0("d", "decrypt", "decrypt secret blocks"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int fnlen = 0;
char filename[FILE_PATH_SIZE] = {0};
CLIParamStrToBuf(arg_get_str(ctx, 1), (uint8_t *)filename, FILE_PATH_SIZE, &fnlen);
bool decrypt = arg_get_lit(ctx, 2);
CLIParserFree(ctx);
iso14b_raw_cmd_t *packet = (iso14b_raw_cmd_t *)calloc(1, sizeof(iso14b_raw_cmd_t) + 11);
if (packet == NULL) {
PrintAndLogEx(FAILED, "failed to allocate memory");
return PM3_EMALLOC;
}
iso14b_card_select_t card;
int status = findXerox(&card, false); // remain RF on
if (status != PM3_SUCCESS) {
free(packet);
switch_off_field();
return PM3_ERFTRANS;
}
PrintAndLogEx(INFO, "Reading memory from tag UID " _GREEN_("%s"), sprint_hex(card.uid, card.uidlen));
int blocknum = 1; // block 0 all zeros
uint8_t data[256 * 4] = {0};
// set up the read command
packet->flags = (ISO14B_APPEND_CRC | ISO14B_RAW);
packet->rawlen = 11;
packet->raw[0] = 0x02;
memcpy(packet->raw + 2, card.uid, 8); // store uid
PrintAndLogEx(INFO, "." NOLF);
for (int retry = 0; (retry < 5 && blocknum < 0x100); retry++) {
packet->raw[1] = (blocknum < 12) ? 0x30 : 0x20; // set command: read ext mem or read mem
packet->raw[10] = blocknum & 0xFF;
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_HF_ISO14443B_COMMAND, (uint8_t *)packet, sizeof(iso14b_raw_cmd_t) + packet->rawlen);
if (WaitForResponseTimeout(CMD_HF_ISO14443B_COMMAND, &resp, 2000)) {
/*
PrintAndLogEx(INFO, "%X %X %X %X %X %I64X %I64X %I64X %X %X %X %c",
resp.cmd, resp.length, resp.magic, resp.status, resp.crc, resp.oldarg[0], resp.oldarg[1], resp.oldarg[2],
resp.data.asBytes[0], resp.data.asBytes[1], resp.data.asBytes[2], resp.ng ? 't' : 'f');
*/
if (resp.length < 7) {
PrintAndLogEx(FAILED, "retrying one more time");
continue;
}
uint8_t *recv = resp.data.asBytes;
if (check_crc(CRC_14443_B, recv, 7) == false) {
PrintAndLogEx(FAILED, "crc fail, retrying one more time");
continue;
}
if (recv[0] != 2) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(FAILED, "Tag returned Error %x %x", recv[0], recv[1]);
break;
}
memcpy(data + (blocknum * 4), resp.data.asBytes + 1, 4);
retry = 0;
blocknum++;
PrintAndLogEx(NORMAL, "." NOLF);
fflush(stdout);
}
}
switch_off_field();
free(packet);
PrintAndLogEx(NORMAL, "");
if (blocknum != 0x100) {
PrintAndLogEx(FAILED, "dump failed at block %d", blocknum);
}
if (decrypt) {
PrintAndLogEx(INFO, "Decrypting secret blocks...");
RC2_KEY exp_key;
uint8_t k1[8], iv[8], k2[8], decr[8];
k1[0] = data[8];
k1[1] = data[5];
k1[2] = data[6];
k1[3] = data[7];
k1[4] = data[0x18 * 4 + 0];
k1[5] = data[0x18 * 4 + 1];
k1[6] = data[0x22 * 4 + 0];
k1[7] = 0;
RC2_set_key(&exp_key, 8, k1, 64);
memset(iv, 0, sizeof(iv));
iv[0] = k1[6];
iv[1] = k1[7];
iv[2] = 1;
RC2_cbc_encrypt(k1, k2, 8, &exp_key, iv, RC2_ENCRYPT);
memcpy(k1, k2, sizeof(k1));
k1[2] = k2[3] ^ data[0x22 * 4 + 0];
k1[3] = k2[4] ^ data[0x22 * 4 + 1]; // first_key[7];
k1[5] = k2[1] ^ 0x01; // 01 = crypto method? rfid[23][2]
RC2_set_key(&exp_key, 8, k1, 64);
for (int n = 0; n < sizeof(var_list); n++) {
uint8_t dadr = var_list[n];
if (dadr + 1 >= blocknum) {
PrintAndLogEx(INFO, "secret block %02X skipped.", dadr);
continue;
}
memset(iv, 0, sizeof(iv));
iv[0] = dadr;
RC2_cbc_encrypt(&data[dadr * 4], decr, 8, &exp_key, iv, RC2_DECRYPT);
memcpy(&data[dadr * 4], decr, 8);
int b;
uint16_t cs, csd;
// calc checksum
for (b = 0, cs = 0; b < sizeof(decr) - 2; b += 2) {
cs += decr[b] | (decr[b + 1] << 8);
}
cs = ~cs;
csd = (decr[7] << 8) | decr[6];
if (cs != csd) {
PrintAndLogEx(FAILED, "Secret block %02X checksum " _RED_("failed"), dadr);
}
}
}
PrintAndLogEx(INFO, "block# | data | ascii");
PrintAndLogEx(INFO, "---------+--------------+----------");
for (int i = 0; i < blocknum; i++) {
PrintAndLogEx(INFO,
"%3d/0x%02X | %s | %s",
i,
i,
sprint_hex(data + (i * 4), 4),
sprint_ascii(data + (i * 4), 4)
);
}
PrintAndLogEx(INFO, "---------+--------------+----------");
PrintAndLogEx(NORMAL, "");
if (0 == filename[0]) { // generate filename from uid
char *fptr = filename;
PrintAndLogEx(INFO, "Using UID as filename");
fptr += snprintf(fptr, sizeof(filename), "hf-xerox-");
FillFileNameByUID(fptr, SwapEndian64(card.uid, card.uidlen, 8), decrypt ? "-dump-dec" : "-dump", card.uidlen);
}
pm3_save_dump(filename, data, blocknum * 4, jsf14b_v2);
return PM3_SUCCESS;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"info", CmdHFXeroxInfo, IfPm3Iso14443b, "Short info on Fuji/Xerox tag"},
{"reader", CmdHFXeroxReader, IfPm3Iso14443b, "Act like a Fuji/Xerox reader"},
{"dump", CmdHFXeroxDump, IfPm3Iso14443b, "Read all memory pages of an Fuji/Xerox tag, save to file"},
// {"rdbl", CmdHFXeroxRdBl, IfPm3Iso14443b, "Read Fuji/Xerox block"},
// {"wrbl", CmdHFXeroxWrBl, IfPm3Iso14443b, "Write Fuji/Xerox block"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}
int CmdHFXerox(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}