proxmark3/armsrc/legicrf.c

560 lines
17 KiB
C

//-----------------------------------------------------------------------------
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
// 2016 Iceman
// 2018 AntiCat
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// LEGIC RF simulation code
//-----------------------------------------------------------------------------
#include "legicrf.h"
#include "crc.h" /* legic crc-4 */
#include "legic_prng.h" /* legic PRNG impl */
#include "legic.h" /* legic_card_select_t struct */
#include "proxmark3_arm.h"
#include "cmd.h"
#include "BigBuf.h"
#include "fpgaloader.h"
#include "ticks.h"
#include "dbprint.h"
#include "util.h"
#include "string.h"
#include "protocols.h"
static uint8_t *legic_mem; /* card memory, used for read, write */
static legic_card_select_t card;/* metadata of currently selected card */
static crc_t legic_crc;
//-----------------------------------------------------------------------------
// Frame timing and pseudorandom number generator
//
// The Prng is forwarded every 100us (TAG_BIT_PERIOD), except when the reader is
// transmitting. In that case the prng has to be forwarded every bit transmitted:
// - 60us for a 0 (RWD_TIME_0)
// - 100us for a 1 (RWD_TIME_1)
//
// The data dependent timing makes writing comprehensible code significantly
// harder. The current aproach forwards the prng data based if there is data on
// air and time based, using GET_TICKS, during computational and wait periodes.
//
// To not have the necessity to calculate/guess exection time dependend timeouts
// tx_frame and rx_frame use a shared timestamp to coordinate tx and rx timeslots.
//-----------------------------------------------------------------------------
static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */
#define RWD_TIME_PAUSE 30 /* 20us */
#define RWD_TIME_1 150 /* READER_TIME_PAUSE 20us off + 80us on = 100us */
#define RWD_TIME_0 90 /* READER_TIME_PAUSE 20us off + 40us on = 60us */
#define RWD_FRAME_WAIT 330 /* 220us from TAG frame end to READER frame start */
#define TAG_FRAME_WAIT 495 /* 330us from READER frame end to TAG frame start */
#define TAG_BIT_PERIOD 150 /* 100us */
#define TAG_WRITE_TIMEOUT 60 /* 40 * 100us (write should take at most 3.6ms) */
#define LEGIC_CARD_MEMSIZE 1024 /* The largest Legic Prime card is 1k */
#define WRITE_LOWERLIMIT 4 /* UID and MCC are not writable */
#define INPUT_THRESHOLD 8 /* heuristically determined, lower values */
/* lead to detecting false ack during write */
//-----------------------------------------------------------------------------
// I/O interface abstraction (FPGA -> ARM)
//-----------------------------------------------------------------------------
static inline uint8_t rx_byte_from_fpga() {
for (;;) {
WDT_HIT();
// wait for byte be become available in rx holding register
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
return AT91C_BASE_SSC->SSC_RHR;
}
}
}
//-----------------------------------------------------------------------------
// Demodulation
//-----------------------------------------------------------------------------
// Returns am aproximated power measurement
//
// The FPGA running on the xcorrelation kernel samples the subcarrier at ~3 MHz.
// The kernel was initialy designed to receive BSPK/2-PSK. Hance, it reports an
// I/Q pair every 18.9us (8 bits i and 8 bits q).
//
// The subcarrier amplitude can be calculated using Pythagoras sqrt(i^2 + q^2).
// To reduce CPU time the amplitude is approximated by using linear functions:
// am = MAX(ABS(i),ABS(q)) + 1/2*MIN(ABS(i),ABSq))
//
// Note: The SSC receiver is never synchronized the calculation may be performed
// on a i/q pair from two subsequent correlations, but does not matter.
static inline int32_t sample_power() {
int32_t q = (int8_t)rx_byte_from_fpga();
q = ABS(q);
int32_t i = (int8_t)rx_byte_from_fpga();
i = ABS(i);
return MAX(i, q) + (MIN(i, q) >> 1);
}
// Returns a demedulated bit
//
// An aproximated power measurement is available every 18.9us. The bit time
// is 100us. The code samples 5 times and uses the last (most stable) sample.
//
// Note: The demodulator would be drifting (18.9us * 5 != 100us), rx_frame
// has a delay loop that aligns rx_bit calls to the TAG tx timeslots.
static inline bool rx_bit() {
int32_t power;
for (size_t i = 0; i < 5; ++i) {
power = sample_power();
}
return (power > INPUT_THRESHOLD);
}
//-----------------------------------------------------------------------------
// Modulation
//
// I've tried to modulate the Legic specific pause-puls using ssc and the default
// ssc clock of 105.4 kHz (bit periode of 9.4us) - previous commit. However,
// the timing was not precise enough. By increasing the ssc clock this could
// be circumvented, but the adventage over bitbang would be little.
//-----------------------------------------------------------------------------
static inline void tx_bit(bool bit) {
// insert pause
LOW(GPIO_SSC_DOUT);
last_frame_end += RWD_TIME_PAUSE;
while (GET_TICKS < last_frame_end) { };
HIGH(GPIO_SSC_DOUT);
// return to high, wait for bit periode to end
last_frame_end += (bit ? RWD_TIME_1 : RWD_TIME_0) - RWD_TIME_PAUSE;
while (GET_TICKS < last_frame_end) { };
}
//-----------------------------------------------------------------------------
// Frame Handling
//
// The LEGIC RF protocol from card to reader does not include explicit frame
// start/stop information or length information. The reader must know beforehand
// how many bits it wants to receive.
// Notably: a card sending a stream of 0-bits is indistinguishable from no card
// present.
//-----------------------------------------------------------------------------
static void tx_frame(uint32_t frame, uint8_t len) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
// wait for next tx timeslot
last_frame_end += RWD_FRAME_WAIT;
while (GET_TICKS < last_frame_end) { };
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// transmit frame, MSB first
for (uint8_t i = 0; i < len; ++i) {
bool bit = (frame >> i) & 0x01;
tx_bit(bit ^ legic_prng_get_bit());
legic_prng_forward(1);
};
// add pause to mark end of the frame
LOW(GPIO_SSC_DOUT);
last_frame_end += RWD_TIME_PAUSE;
while (GET_TICKS < last_frame_end) { };
HIGH(GPIO_SSC_DOUT);
// log
uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, true);
}
static uint32_t rx_frame(uint8_t len) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_QUARTER);
// hold sampling until card is expected to respond
last_frame_end += TAG_FRAME_WAIT;
while (GET_TICKS < last_frame_end) { };
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
uint32_t frame = 0;
for (uint8_t i = 0; i < len; ++i) {
frame |= (rx_bit() ^ legic_prng_get_bit()) << i;
legic_prng_forward(1);
// rx_bit runs only 95us, resync to TAG_BIT_PERIOD
last_frame_end += TAG_BIT_PERIOD;
while (GET_TICKS < last_frame_end) { };
}
// log
uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1)};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
return frame;
}
static bool rx_ack() {
// change fpga into rx mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_QUARTER);
// hold sampling until card is expected to respond
last_frame_end += TAG_FRAME_WAIT;
while (GET_TICKS < last_frame_end) { };
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
uint32_t ack = 0;
for (uint8_t i = 0; i < TAG_WRITE_TIMEOUT; ++i) {
// sample bit
ack = rx_bit();
legic_prng_forward(1);
// rx_bit runs only 95us, resync to TAG_BIT_PERIOD
last_frame_end += TAG_BIT_PERIOD;
while (GET_TICKS < last_frame_end) { };
// check if it was an ACK
if (ack) {
break;
}
}
// log
uint8_t cmdbytes[] = {1, BYTEx(ack, 0)};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
return ack;
}
//-----------------------------------------------------------------------------
// Legic Reader
//-----------------------------------------------------------------------------
static int init_card(uint8_t cardtype, legic_card_select_t *p_card) {
p_card->tagtype = cardtype;
switch (p_card->tagtype) {
case 0x0d:
p_card->cmdsize = 6;
p_card->addrsize = 5;
p_card->cardsize = 22;
break;
case 0x1d:
p_card->cmdsize = 9;
p_card->addrsize = 8;
p_card->cardsize = 256;
break;
case 0x3d:
p_card->cmdsize = 11;
p_card->addrsize = 10;
p_card->cardsize = 1024;
break;
default:
p_card->cmdsize = 0;
p_card->addrsize = 0;
p_card->cardsize = 0;
return 2;
}
return 0;
}
static void init_reader(bool clear_mem) {
// configure FPGA
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_QUARTER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
LED_A_ON();
// configure SSC with defaults
FpgaSetupSsc();
// re-claim GPIO_SSC_DOUT as GPIO and enable output
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
HIGH(GPIO_SSC_DOUT);
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
legic_mem = BigBuf_get_EM_addr();
if (legic_mem) {
memset(legic_mem, 0x00, LEGIC_CARD_MEMSIZE);
}
// start trace
clear_trace();
set_tracing(true);
// init crc calculator
crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0);
// start us timer
StartTicks();
}
// Setup reader to card connection
//
// The setup consists of a three way handshake:
// - Transmit initialisation vector 7 bits
// - Receive card type 6 bits
// - Transmit Acknowledge 6 bits
static uint32_t setup_phase(uint8_t iv) {
// init coordination timestamp
last_frame_end = GET_TICKS;
// Switch on carrier and let the card charge for 5ms.
last_frame_end += 7500;
while (GET_TICKS < last_frame_end) { };
legic_prng_init(0);
tx_frame(iv, 7);
// configure prng
legic_prng_init(iv);
legic_prng_forward(2);
// receive card type
int32_t card_type = rx_frame(6);
legic_prng_forward(3);
// send obsfuscated acknowledgment frame
switch (card_type) {
case 0x0D:
tx_frame(0x19, 6); // MIM22 | READCMD = 0x18 | 0x01
break;
case 0x1D:
case 0x3D:
tx_frame(0x39, 6); // MIM256 | READCMD = 0x38 | 0x01
break;
}
return card_type;
}
static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) {
crc_clear(&legic_crc);
crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz);
return crc_finish(&legic_crc);
}
static int16_t read_byte(uint16_t index, uint8_t cmd_sz) {
uint16_t cmd = (index << 1) | LEGIC_READ;
// read one byte
LED_B_ON();
legic_prng_forward(2);
tx_frame(cmd, cmd_sz);
legic_prng_forward(2);
uint32_t frame = rx_frame(12);
LED_B_OFF();
// split frame into data and crc
uint8_t byte = BYTEx(frame, 0);
uint8_t crc = BYTEx(frame, 1);
// check received against calculated crc
uint8_t calc_crc = calc_crc4(cmd, cmd_sz, byte);
if (calc_crc != crc) {
Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc);
return -1;
}
legic_prng_forward(1);
return byte;
}
// Transmit write command, wait until (3.6ms) the tag sends back an unencrypted
// ACK ('1' bit) and forward the prng time based.
bool write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) {
uint32_t cmd = index << 1 | LEGIC_WRITE; // prepare command
uint8_t crc = calc_crc4(cmd, addr_sz + 1, byte); // calculate crc
cmd |= byte << (addr_sz + 1); // append value
cmd |= (crc & 0xF) << (addr_sz + 1 + 8); // and crc
// send write command
LED_C_ON();
legic_prng_forward(2);
tx_frame(cmd, addr_sz + 1 + 8 + 4); // cmd_sz = addr_sz + cmd + data + crc
legic_prng_forward(3);
LED_C_OFF();
// wait for ack
return rx_ack();
}
//-----------------------------------------------------------------------------
// Command Line Interface
//
// Only this functions are public / called from appmain.c
//-----------------------------------------------------------------------------
legic_card_select_t* getLegicCardInfo(void) {
return &card;
}
void LegicRfInfo(void) {
// configure ARM and FPGA
init_reader(false);
// establish shared secret and detect card type
uint8_t card_type = setup_phase(0x01);
if (init_card(card_type, &card) != 0) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// read UID
for (uint8_t i = 0; i < sizeof(card.uid); ++i) {
int16_t byte = read_byte(i, card.cmdsize);
if (byte == -1) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
card.uid[i] = byte & 0xFF;
}
// read MCC and check against UID
int16_t mcc = read_byte(4, card.cmdsize);
int16_t calc_mcc = CRC8Legic(card.uid, 4);;
if (mcc != calc_mcc) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// OK
reply_mix(CMD_ACK, 1, 0, 0, (uint8_t *)&card, sizeof(legic_card_select_t));
OUT:
switch_off();
StopTicks();
}
int LegicRfReaderEx(uint16_t offset, uint16_t len, uint8_t iv) {
int res = PM3_SUCCESS;
// configure ARM and FPGA
init_reader(false);
// establish shared secret and detect card type
uint8_t card_type = setup_phase(iv);
if (init_card(card_type, &card) != 0) {
res = PM3_ESOFT;
goto OUT;
}
// do not read beyond card memory
if (len + offset > card.cardsize) {
len = card.cardsize - offset;
}
for (uint16_t i = 0; i < len; ++i) {
int16_t byte = read_byte(offset + i, card.cmdsize);
if (byte == -1) {
res = PM3_EOVFLOW;
goto OUT;
}
legic_mem[i] = byte;
if (i < 4) {
card.uid[i] = byte;
}
}
OUT:
switch_off();
StopTicks();
return res;
}
void LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
// configure ARM and FPGA
init_reader(false);
// establish shared secret and detect card type
uint8_t card_type = setup_phase(iv);
if (init_card(card_type, &card) != 0) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// do not read beyond card memory
if (len + offset > card.cardsize) {
len = card.cardsize - offset;
}
for (uint16_t i = 0; i < len; ++i) {
int16_t byte = read_byte(offset + i, card.cmdsize);
if (byte == -1) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
legic_mem[i] = byte;
if (i < 4) {
card.uid[i] = byte;
}
}
// OK
reply_mix(CMD_ACK, 1, len, 0, 0, 0);
OUT:
switch_off();
StopTicks();
}
void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
// configure ARM and FPGA
init_reader(false);
// uid is not writeable
if (offset <= WRITE_LOWERLIMIT) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// establish shared secret and detect card type
uint8_t card_type = setup_phase(iv);
if (init_card(card_type, &card) != 0) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// do not write beyond card memory
if (len + offset > card.cardsize) {
len = card.cardsize - offset;
}
// write in reverse order, only then is DCF (decremental field) writable
while (len-- > 0 && !BUTTON_PRESS()) {
if (!write_byte(len + offset, data[len], card.addrsize)) {
Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len]);
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
}
// OK
reply_mix(CMD_ACK, 1, len, 0, 0, 0);
OUT:
switch_off();
StopTicks();
}