mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-11-11 18:33:18 +08:00
522 lines
12 KiB
C
522 lines
12 KiB
C
//-----------------------------------------------------------------------------
|
|
// Copyright (C) 2009 Michael Gernoth <michael at gernoth.net>
|
|
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// UI utilities
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include <stdarg.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdbool.h>
|
|
#include <time.h>
|
|
#include <readline/readline.h>
|
|
#include <pthread.h>
|
|
#include "loclass/cipherutils.h"
|
|
#include "ui.h"
|
|
#include "cmdmain.h"
|
|
#include "cmddata.h"
|
|
//#include <liquid/liquid.h>
|
|
#define M_PI 3.14159265358979323846264338327
|
|
|
|
double CursorScaleFactor;
|
|
int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
|
|
int offline;
|
|
int flushAfterWrite = 0; //buzzy
|
|
extern pthread_mutex_t print_lock;
|
|
|
|
static char *logfilename = "proxmark3.log";
|
|
|
|
void PrintAndLog(char *fmt, ...)
|
|
{
|
|
char *saved_line;
|
|
int saved_point;
|
|
va_list argptr, argptr2;
|
|
static FILE *logfile = NULL;
|
|
static int logging=1;
|
|
|
|
// lock this section to avoid interlacing prints from different threats
|
|
pthread_mutex_lock(&print_lock);
|
|
|
|
if (logging && !logfile) {
|
|
logfile=fopen(logfilename, "a");
|
|
if (!logfile) {
|
|
fprintf(stderr, "Can't open logfile, logging disabled!\n");
|
|
logging=0;
|
|
}
|
|
}
|
|
|
|
int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0;
|
|
|
|
if (need_hack) {
|
|
saved_point = rl_point;
|
|
saved_line = rl_copy_text(0, rl_end);
|
|
rl_save_prompt();
|
|
rl_replace_line("", 0);
|
|
rl_redisplay();
|
|
}
|
|
|
|
va_start(argptr, fmt);
|
|
va_copy(argptr2, argptr);
|
|
vprintf(fmt, argptr);
|
|
printf(" "); // cleaning prompt
|
|
va_end(argptr);
|
|
printf("\n");
|
|
|
|
if (need_hack) {
|
|
rl_restore_prompt();
|
|
rl_replace_line(saved_line, 0);
|
|
rl_point = saved_point;
|
|
rl_redisplay();
|
|
free(saved_line);
|
|
}
|
|
|
|
if (logging && logfile) {
|
|
vfprintf(logfile, fmt, argptr2);
|
|
fprintf(logfile,"\n");
|
|
fflush(logfile);
|
|
}
|
|
va_end(argptr2);
|
|
|
|
if (flushAfterWrite == 1) //buzzy
|
|
{
|
|
fflush(NULL);
|
|
}
|
|
//release lock
|
|
pthread_mutex_unlock(&print_lock);
|
|
}
|
|
|
|
void SetLogFilename(char *fn)
|
|
{
|
|
logfilename = fn;
|
|
}
|
|
|
|
int manchester_decode( int * data, const size_t len, uint8_t * dataout, size_t dataoutlen){
|
|
|
|
int bitlength = 0;
|
|
int i, clock, high, low, startindex;
|
|
low = startindex = 0;
|
|
high = 1;
|
|
uint8_t * bitStream = (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);
|
|
memset(bitStream, 0x00, dataoutlen);
|
|
|
|
/* Detect high and lows */
|
|
for (i = 0; i < len; i++) {
|
|
if (data[i] > high)
|
|
high = data[i];
|
|
else if (data[i] < low)
|
|
low = data[i];
|
|
}
|
|
|
|
/* get clock */
|
|
clock = GetT55x7Clock( data, len, high );
|
|
startindex = DetectFirstTransition(data, len, high);
|
|
|
|
//PrintAndLog(" Clock : %d", clock);
|
|
|
|
if (high != 1)
|
|
bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
|
|
else
|
|
bitlength= ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
|
|
|
|
memcpy(dataout, bitStream, bitlength);
|
|
free(bitStream);
|
|
return bitlength;
|
|
}
|
|
|
|
int GetT55x7Clock( const int * data, const size_t len, int peak ){
|
|
|
|
int i,lastpeak,clock;
|
|
clock = 0xFFFF;
|
|
lastpeak = 0;
|
|
|
|
/* Detect peak if we don't have one */
|
|
if (!peak) {
|
|
for (i = 0; i < len; ++i) {
|
|
if (data[i] > peak) {
|
|
peak = data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < len; ++i) {
|
|
/* if this is the beginning of a peak */
|
|
if ( data[i-1] != data[i] && data[i] == peak) {
|
|
/* find lowest difference between peaks */
|
|
if (lastpeak && i - lastpeak < clock)
|
|
clock = i - lastpeak;
|
|
lastpeak = i;
|
|
}
|
|
}
|
|
|
|
// When detected clock is 31 or 33 then then return
|
|
int clockmod = clock%8;
|
|
if ( clockmod == 0) return clock;
|
|
|
|
if ( clockmod == 7 ) clock += 1;
|
|
else if ( clockmod == 1 ) clock -= 1;
|
|
|
|
return clock;
|
|
}
|
|
|
|
int DetectFirstTransition(const int * data, const size_t len, int threshold){
|
|
|
|
int i =0;
|
|
/* now look for the first threshold */
|
|
for (; i < len; ++i) {
|
|
if (data[i] == threshold) {
|
|
break;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
|
|
|
|
int i, j, z, hithigh, hitlow, bitIndex, startType;
|
|
i = 0;
|
|
bitIndex = 0;
|
|
|
|
int isDamp = 0;
|
|
int damplimit = (int)((high / 2) * 0.3);
|
|
int dampHi = (high/2)+damplimit;
|
|
int dampLow = (high/2)-damplimit;
|
|
int firstST = 0;
|
|
|
|
// i = clock frame of data
|
|
for (; i < (int)(len/clock); i++)
|
|
{
|
|
hithigh = 0;
|
|
hitlow = 0;
|
|
startType = -1;
|
|
z = startIndex + (i*clock);
|
|
isDamp = 0;
|
|
|
|
/* Find out if we hit both high and low peaks */
|
|
for (j = 0; j < clock; j++)
|
|
{
|
|
if (data[z+j] == high){
|
|
hithigh = 1;
|
|
if ( startType == -1)
|
|
startType = 1;
|
|
}
|
|
|
|
if (data[z+j] == low ){
|
|
hitlow = 1;
|
|
if ( startType == -1)
|
|
startType = 0;
|
|
}
|
|
|
|
if (hithigh && hitlow)
|
|
break;
|
|
}
|
|
|
|
// No high value found, are we in a dampening field?
|
|
if ( !hithigh ) {
|
|
//PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
|
|
for (j = 0; j < clock; j++) {
|
|
if (
|
|
(data[z+j] <= dampHi && data[z+j] >= dampLow)
|
|
){
|
|
isDamp++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Manchester Switching..
|
|
0: High -> Low
|
|
1: Low -> High
|
|
*/
|
|
if (startType == 0)
|
|
dataout[bitIndex++] = 1;
|
|
else if (startType == 1)
|
|
dataout[bitIndex++] = 0;
|
|
else
|
|
dataout[bitIndex++] = 2;
|
|
|
|
if ( isDamp > clock/2 ) {
|
|
firstST++;
|
|
}
|
|
|
|
if ( firstST == 4)
|
|
break;
|
|
if ( bitIndex >= dataoutlen-1 )
|
|
break;
|
|
}
|
|
return bitIndex;
|
|
}
|
|
|
|
int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
|
|
|
|
PrintAndLog(" Path B");
|
|
|
|
int i,j, bitindex, lc, tolerance, warnings;
|
|
warnings = 0;
|
|
int upperlimit = len*2/clock+8;
|
|
i = startIndex;
|
|
j = 0;
|
|
tolerance = clock/4;
|
|
uint8_t decodedArr[len];
|
|
|
|
/* Detect duration between 2 successive transitions */
|
|
for (bitindex = 1; i < len; i++) {
|
|
|
|
if (data[i-1] != data[i]) {
|
|
lc = i - startIndex;
|
|
startIndex = i;
|
|
|
|
// Error check: if bitindex becomes too large, we do not
|
|
// have a Manchester encoded bitstream or the clock is really wrong!
|
|
if (bitindex > upperlimit ) {
|
|
PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
|
|
return 0;
|
|
}
|
|
// Then switch depending on lc length:
|
|
// Tolerance is 1/4 of clock rate (arbitrary)
|
|
if (abs((lc-clock)/2) < tolerance) {
|
|
// Short pulse : either "1" or "0"
|
|
decodedArr[bitindex++] = data[i-1];
|
|
} else if (abs(lc-clock) < tolerance) {
|
|
// Long pulse: either "11" or "00"
|
|
decodedArr[bitindex++] = data[i-1];
|
|
decodedArr[bitindex++] = data[i-1];
|
|
} else {
|
|
++warnings;
|
|
PrintAndLog("Warning: Manchester decode error for pulse width detection.");
|
|
if (warnings > 10) {
|
|
PrintAndLog("Error: too many detection errors, aborting.");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We have a decodedArr of "01" ("1") or "10" ("0")
|
|
* parse it into final decoded dataout
|
|
*/
|
|
for (i = 0; i < bitindex; i += 2) {
|
|
|
|
if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
|
|
dataout[j++] = 1;
|
|
} else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
|
|
dataout[j++] = 0;
|
|
} else {
|
|
i++;
|
|
warnings++;
|
|
PrintAndLog("Unsynchronized, resync...");
|
|
PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
|
|
|
|
if (warnings > 10) {
|
|
PrintAndLog("Error: too many decode errors, aborting.");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
PrintAndLog("%s", sprint_hex(dataout, j));
|
|
return j;
|
|
}
|
|
|
|
void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
|
|
/*
|
|
* We have a bitstream of "01" ("1") or "10" ("0")
|
|
* parse it into final decoded bitstream
|
|
*/
|
|
int i, j, warnings;
|
|
uint8_t decodedArr[(len/2)+1];
|
|
|
|
j = warnings = 0;
|
|
|
|
uint8_t lastbit = 0;
|
|
|
|
for (i = 0; i < len; i += 2) {
|
|
|
|
uint8_t first = bitstream[i];
|
|
uint8_t second = bitstream[i+1];
|
|
|
|
if ( first == second ) {
|
|
++i;
|
|
++warnings;
|
|
if (warnings > 10) {
|
|
PrintAndLog("Error: too many decode errors, aborting.");
|
|
return;
|
|
}
|
|
}
|
|
else if ( lastbit != first ) {
|
|
decodedArr[j++] = 0 ^ invert;
|
|
}
|
|
else {
|
|
decodedArr[j++] = 1 ^ invert;
|
|
}
|
|
lastbit = second;
|
|
}
|
|
|
|
PrintAndLog("%s", sprint_hex(decodedArr, j));
|
|
}
|
|
|
|
void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
|
|
|
|
PrintAndLog(" Manchester decoded : %d bits", len);
|
|
|
|
uint8_t mod = len % blocksize;
|
|
uint8_t div = len / blocksize;
|
|
int i;
|
|
|
|
// Now output the bitstream to the scrollback by line of 16 bits
|
|
for (i = 0; i < div*blocksize; i+=blocksize) {
|
|
PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
|
|
}
|
|
|
|
if ( mod > 0 )
|
|
PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
|
|
}
|
|
|
|
/* Sliding DFT
|
|
Smooths out
|
|
*/
|
|
void iceFsk2(int * data, const size_t len){
|
|
|
|
int i, j;
|
|
int * output = (int* ) malloc(sizeof(int) * len);
|
|
memset(output, 0x00, len);
|
|
|
|
// for (i=0; i<len-5; ++i){
|
|
// for ( j=1; j <=5; ++j) {
|
|
// output[i] += data[i*j];
|
|
// }
|
|
// output[i] /= 5;
|
|
// }
|
|
int rest = 127;
|
|
int tmp =0;
|
|
for (i=0; i<len; ++i){
|
|
if ( data[i] < 127)
|
|
output[i] = 0;
|
|
else {
|
|
tmp = (100 * (data[i]-rest)) / rest;
|
|
output[i] = (tmp > 60)? 100:0;
|
|
}
|
|
}
|
|
|
|
for (j=0; j<len; ++j)
|
|
data[j] = output[j];
|
|
|
|
free(output);
|
|
}
|
|
|
|
void iceFsk3(int * data, const size_t len){
|
|
|
|
int i,j;
|
|
|
|
int * output = (int* ) malloc(sizeof(int) * len);
|
|
memset(output, 0x00, len);
|
|
float fc = 0.1125f; // center frequency
|
|
size_t adjustedLen = len;
|
|
|
|
// create very simple low-pass filter to remove images (2nd-order Butterworth)
|
|
float complex iir_buf[3] = {0,0,0};
|
|
float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
|
|
float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
|
|
|
|
float sample = 0; // input sample read from file
|
|
float complex x_prime = 1.0f; // save sample for estimating frequency
|
|
float complex x;
|
|
|
|
for (i=0; i<adjustedLen; ++i) {
|
|
|
|
sample = data[i]+128;
|
|
|
|
// remove DC offset and mix to complex baseband
|
|
x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
|
|
|
|
// apply low-pass filter, removing spectral image (IIR using direct-form II)
|
|
iir_buf[2] = iir_buf[1];
|
|
iir_buf[1] = iir_buf[0];
|
|
iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
|
|
x = b[0]*iir_buf[0] +
|
|
b[1]*iir_buf[1] +
|
|
b[2]*iir_buf[2];
|
|
|
|
// compute instantaneous frequency by looking at phase difference
|
|
// between adjacent samples
|
|
float freq = cargf(x*conjf(x_prime));
|
|
x_prime = x; // retain this sample for next iteration
|
|
|
|
output[i] =(freq > 0)? 10 : -10;
|
|
}
|
|
|
|
// show data
|
|
for (j=0; j<adjustedLen; ++j)
|
|
data[j] = output[j];
|
|
|
|
CmdLtrim("30");
|
|
adjustedLen -= 30;
|
|
|
|
// zero crossings.
|
|
for (j=0; j<adjustedLen; ++j){
|
|
if ( data[j] == 10) break;
|
|
}
|
|
int startOne =j;
|
|
|
|
for (;j<adjustedLen; ++j){
|
|
if ( data[j] == -10 ) break;
|
|
}
|
|
int stopOne = j-1;
|
|
|
|
int fieldlen = stopOne-startOne;
|
|
|
|
fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
|
|
fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
|
|
if ( fieldlen != 40 && fieldlen != 50){
|
|
printf("Detected field Length: %d \n", fieldlen);
|
|
printf("Can only handle 40 or 50. Aborting...\n");
|
|
return;
|
|
}
|
|
|
|
// FSK sequence start == 000111
|
|
int startPos = 0;
|
|
for (i =0; i<adjustedLen; ++i){
|
|
int dec = 0;
|
|
for ( j = 0; j < 6*fieldlen; ++j){
|
|
dec += data[i + j];
|
|
}
|
|
if (dec == 0) {
|
|
startPos = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("000111 position: %d \n", startPos);
|
|
|
|
startPos += 6*fieldlen+5;
|
|
|
|
int bit =0;
|
|
printf("BINARY\n");
|
|
printf("R/40 : ");
|
|
for (i =startPos ; i < adjustedLen; i += 40){
|
|
bit = data[i]>0 ? 1:0;
|
|
printf("%d", bit );
|
|
}
|
|
printf("\n");
|
|
|
|
printf("R/50 : ");
|
|
for (i =startPos ; i < adjustedLen; i += 50){
|
|
bit = data[i]>0 ? 1:0;
|
|
printf("%d", bit ); }
|
|
printf("\n");
|
|
|
|
free(output);
|
|
}
|
|
|
|
float complex cexpf (float complex Z)
|
|
{
|
|
float complex Res;
|
|
double rho = exp (__real__ Z);
|
|
__real__ Res = rho * cosf(__imag__ Z);
|
|
__imag__ Res = rho * sinf(__imag__ Z);
|
|
return Res;
|
|
}
|