proxmark3/client/cmddata.c
fnargwibble@gmail.com 7ddb990032 Add plot window keystroke help
Add grid display/lock commands to plot window
2012-01-21 13:32:54 +00:00

898 lines
23 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Data and Graph commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "proxusb.h"
#include "data.h"
#include "ui.h"
#include "graph.h"
#include "cmdparser.h"
#include "cmdmain.h"
#include "cmddata.h"
static int CmdHelp(const char *Cmd);
int CmdAmp(const char *Cmd)
{
int i, rising, falling;
int max = INT_MIN, min = INT_MAX;
for (i = 10; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] > max)
max = GraphBuffer[i];
if (GraphBuffer[i] < min)
min = GraphBuffer[i];
}
if (max != min) {
rising = falling= 0;
for (i = 0; i < GraphTraceLen; ++i) {
if (GraphBuffer[i + 1] < GraphBuffer[i]) {
if (rising) {
GraphBuffer[i] = max;
rising = 0;
}
falling = 1;
}
if (GraphBuffer[i + 1] > GraphBuffer[i]) {
if (falling) {
GraphBuffer[i] = min;
falling = 0;
}
rising= 1;
}
}
}
RepaintGraphWindow();
return 0;
}
/*
* Generic command to demodulate ASK.
*
* Argument is convention: positive or negative (High mod means zero
* or high mod means one)
*
* Updates the Graph trace with 0/1 values
*
* Arguments:
* c : 0 or 1
*/
int Cmdaskdemod(const char *Cmd)
{
int i;
int c, high = 0, low = 0;
// TODO: complain if we do not give 2 arguments here !
// (AL - this doesn't make sense! we're only using one argument!!!)
sscanf(Cmd, "%i", &c);
/* Detect high and lows and clock */
// (AL - clock???)
for (i = 0; i < GraphTraceLen; ++i)
{
if (GraphBuffer[i] > high)
high = GraphBuffer[i];
else if (GraphBuffer[i] < low)
low = GraphBuffer[i];
}
if (c != 0 && c != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
if (GraphBuffer[0] > 0) {
GraphBuffer[0] = 1-c;
} else {
GraphBuffer[0] = c;
}
for (i = 1; i < GraphTraceLen; ++i) {
/* Transitions are detected at each peak
* Transitions are either:
* - we're low: transition if we hit a high
* - we're high: transition if we hit a low
* (we need to do it this way because some tags keep high or
* low for long periods, others just reach the peak and go
* down)
*/
if ((GraphBuffer[i] == high) && (GraphBuffer[i - 1] == c)) {
GraphBuffer[i] = 1 - c;
} else if ((GraphBuffer[i] == low) && (GraphBuffer[i - 1] == (1 - c))){
GraphBuffer[i] = c;
} else {
/* No transition */
GraphBuffer[i] = GraphBuffer[i - 1];
}
}
RepaintGraphWindow();
return 0;
}
int CmdAutoCorr(const char *Cmd)
{
static int CorrelBuffer[MAX_GRAPH_TRACE_LEN];
int window = atoi(Cmd);
if (window == 0) {
PrintAndLog("needs a window");
return 0;
}
if (window >= GraphTraceLen) {
PrintAndLog("window must be smaller than trace (%d samples)",
GraphTraceLen);
return 0;
}
PrintAndLog("performing %d correlations", GraphTraceLen - window);
for (int i = 0; i < GraphTraceLen - window; ++i) {
int sum = 0;
for (int j = 0; j < window; ++j) {
sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256;
}
CorrelBuffer[i] = sum;
}
GraphTraceLen = GraphTraceLen - window;
memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int));
RepaintGraphWindow();
return 0;
}
int CmdBitsamples(const char *Cmd)
{
int cnt = 0;
int n = 3072;
for (int i = 0; i < n; i += 12) {
UsbCommand c = {CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K, {i, 0, 0}};
SendCommand(&c);
WaitForResponse(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K);
for (int j = 0; j < 48; j++) {
for (int k = 0; k < 8; k++) {
if(sample_buf[j] & (1 << (7 - k))) {
GraphBuffer[cnt++] = 1;
} else {
GraphBuffer[cnt++] = 0;
}
}
}
}
GraphTraceLen = cnt;
RepaintGraphWindow();
return 0;
}
/*
* Convert to a bitstream
*/
int CmdBitstream(const char *Cmd)
{
int i, j;
int bit;
int gtl;
int clock;
int low = 0;
int high = 0;
int hithigh, hitlow, first;
/* Detect high and lows and clock */
for (i = 0; i < GraphTraceLen; ++i)
{
if (GraphBuffer[i] > high)
high = GraphBuffer[i];
else if (GraphBuffer[i] < low)
low = GraphBuffer[i];
}
/* Get our clock */
clock = GetClock(Cmd, high, 1);
gtl = ClearGraph(0);
bit = 0;
for (i = 0; i < (int)(gtl / clock); ++i)
{
hithigh = 0;
hitlow = 0;
first = 1;
/* Find out if we hit both high and low peaks */
for (j = 0; j < clock; ++j)
{
if (GraphBuffer[(i * clock) + j] == high)
hithigh = 1;
else if (GraphBuffer[(i * clock) + j] == low)
hitlow = 1;
/* it doesn't count if it's the first part of our read
because it's really just trailing from the last sequence */
if (first && (hithigh || hitlow))
hithigh = hitlow = 0;
else
first = 0;
if (hithigh && hitlow)
break;
}
/* If we didn't hit both high and low peaks, we had a bit transition */
if (!hithigh || !hitlow)
bit ^= 1;
AppendGraph(0, clock, bit);
// for (j = 0; j < (int)(clock/2); j++)
// GraphBuffer[(i * clock) + j] = bit ^ 1;
// for (j = (int)(clock/2); j < clock; j++)
// GraphBuffer[(i * clock) + j] = bit;
}
RepaintGraphWindow();
return 0;
}
int CmdBuffClear(const char *Cmd)
{
UsbCommand c = {CMD_BUFF_CLEAR};
SendCommand(&c);
ClearGraph(true);
return 0;
}
int CmdDec(const char *Cmd)
{
for (int i = 0; i < (GraphTraceLen / 2); ++i)
GraphBuffer[i] = GraphBuffer[i * 2];
GraphTraceLen /= 2;
PrintAndLog("decimated by 2");
RepaintGraphWindow();
return 0;
}
/* Print our clock rate */
int CmdDetectClockRate(const char *Cmd)
{
int clock = DetectClock(0);
PrintAndLog("Auto-detected clock rate: %d", clock);
return 0;
}
int CmdFSKdemod(const char *Cmd)
{
static const int LowTone[] = {
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, -1, -1, -1, -1, -1
};
static const int HighTone[] = {
1, 1, 1, 1, 1, -1, -1, -1, -1,
1, 1, 1, 1, -1, -1, -1, -1,
1, 1, 1, 1, -1, -1, -1, -1,
1, 1, 1, 1, -1, -1, -1, -1,
1, 1, 1, 1, -1, -1, -1, -1,
1, 1, 1, 1, -1, -1, -1, -1, -1,
};
int lowLen = sizeof (LowTone) / sizeof (int);
int highLen = sizeof (HighTone) / sizeof (int);
int convLen = (highLen > lowLen) ? highLen : lowLen;
uint32_t hi = 0, lo = 0;
int i, j;
int minMark = 0, maxMark = 0;
for (i = 0; i < GraphTraceLen - convLen; ++i) {
int lowSum = 0, highSum = 0;
for (j = 0; j < lowLen; ++j) {
lowSum += LowTone[j]*GraphBuffer[i+j];
}
for (j = 0; j < highLen; ++j) {
highSum += HighTone[j] * GraphBuffer[i + j];
}
lowSum = abs(100 * lowSum / lowLen);
highSum = abs(100 * highSum / highLen);
GraphBuffer[i] = (highSum << 16) | lowSum;
}
for(i = 0; i < GraphTraceLen - convLen - 16; ++i) {
int lowTot = 0, highTot = 0;
// 10 and 8 are f_s divided by f_l and f_h, rounded
for (j = 0; j < 10; ++j) {
lowTot += (GraphBuffer[i+j] & 0xffff);
}
for (j = 0; j < 8; j++) {
highTot += (GraphBuffer[i + j] >> 16);
}
GraphBuffer[i] = lowTot - highTot;
if (GraphBuffer[i] > maxMark) maxMark = GraphBuffer[i];
if (GraphBuffer[i] < minMark) minMark = GraphBuffer[i];
}
GraphTraceLen -= (convLen + 16);
RepaintGraphWindow();
// Find bit-sync (3 lo followed by 3 high)
int max = 0, maxPos = 0;
for (i = 0; i < 6000; ++i) {
int dec = 0;
for (j = 0; j < 3 * lowLen; ++j) {
dec -= GraphBuffer[i + j];
}
for (; j < 3 * (lowLen + highLen ); ++j) {
dec += GraphBuffer[i + j];
}
if (dec > max) {
max = dec;
maxPos = i;
}
}
// place start of bit sync marker in graph
GraphBuffer[maxPos] = maxMark;
GraphBuffer[maxPos + 1] = minMark;
maxPos += j;
// place end of bit sync marker in graph
GraphBuffer[maxPos] = maxMark;
GraphBuffer[maxPos+1] = minMark;
PrintAndLog("actual data bits start at sample %d", maxPos);
PrintAndLog("length %d/%d", highLen, lowLen);
uint8_t bits[46];
bits[sizeof(bits)-1] = '\0';
// find bit pairs and manchester decode them
for (i = 0; i < arraylen(bits) - 1; ++i) {
int dec = 0;
for (j = 0; j < lowLen; ++j) {
dec -= GraphBuffer[maxPos + j];
}
for (; j < lowLen + highLen; ++j) {
dec += GraphBuffer[maxPos + j];
}
maxPos += j;
// place inter bit marker in graph
GraphBuffer[maxPos] = maxMark;
GraphBuffer[maxPos + 1] = minMark;
// hi and lo form a 64 bit pair
hi = (hi << 1) | (lo >> 31);
lo = (lo << 1);
// store decoded bit as binary (in hi/lo) and text (in bits[])
if(dec < 0) {
bits[i] = '1';
lo |= 1;
} else {
bits[i] = '0';
}
}
PrintAndLog("bits: '%s'", bits);
PrintAndLog("hex: %08x %08x", hi, lo);
return 0;
}
int CmdGrid(const char *Cmd)
{
sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY);
PlotGridXdefault= PlotGridX;
PlotGridYdefault= PlotGridY;
RepaintGraphWindow();
return 0;
}
int CmdHexsamples(const char *Cmd)
{
int n;
int requested = 0;
int offset = 0;
sscanf(Cmd, "%i %i", &requested, &offset);
if (offset % 4 != 0) {
PrintAndLog("Offset must be a multiple of 4");
return 0;
}
offset = offset/4;
int delivered = 0;
if (requested == 0) {
n = 12;
requested = 12;
} else {
n = requested/4;
}
for (int i = offset; i < n+offset; i += 12) {
UsbCommand c = {CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K, {i, 0, 0}};
SendCommand(&c);
WaitForResponse(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K);
for (int j = 0; j < 48; j += 8) {
PrintAndLog("%02x %02x %02x %02x %02x %02x %02x %02x",
sample_buf[j+0],
sample_buf[j+1],
sample_buf[j+2],
sample_buf[j+3],
sample_buf[j+4],
sample_buf[j+5],
sample_buf[j+6],
sample_buf[j+7],
sample_buf[j+8]
);
delivered += 8;
if (delivered >= requested)
break;
}
if (delivered >= requested)
break;
}
return 0;
}
int CmdHide(const char *Cmd)
{
HideGraphWindow();
return 0;
}
int CmdHpf(const char *Cmd)
{
int i;
int accum = 0;
for (i = 10; i < GraphTraceLen; ++i)
accum += GraphBuffer[i];
accum /= (GraphTraceLen - 10);
for (i = 0; i < GraphTraceLen; ++i)
GraphBuffer[i] -= accum;
RepaintGraphWindow();
return 0;
}
int CmdSamples(const char *Cmd)
{
int cnt = 0;
int n;
n = strtol(Cmd, NULL, 0);
if (n == 0) n = 128;
if (n > 16000) n = 16000;
PrintAndLog("Reading %d samples\n", n);
for (int i = 0; i < n; i += 12) {
UsbCommand c = {CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K, {i, 0, 0}};
SendCommand(&c);
WaitForResponse(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K);
for (int j = 0; j < 48; j++) {
GraphBuffer[cnt++] = ((int)sample_buf[j]) - 128;
}
}
PrintAndLog("Done!\n");
GraphTraceLen = n*4;
RepaintGraphWindow();
return 0;
}
int CmdLoad(const char *Cmd)
{
FILE *f = fopen(Cmd, "r");
if (!f) {
PrintAndLog("couldn't open '%s'", Cmd);
return 0;
}
GraphTraceLen = 0;
char line[80];
while (fgets(line, sizeof (line), f)) {
GraphBuffer[GraphTraceLen] = atoi(line);
GraphTraceLen++;
}
fclose(f);
PrintAndLog("loaded %d samples", GraphTraceLen);
RepaintGraphWindow();
return 0;
}
int CmdLtrim(const char *Cmd)
{
int ds = atoi(Cmd);
for (int i = ds; i < GraphTraceLen; ++i)
GraphBuffer[i-ds] = GraphBuffer[i];
GraphTraceLen -= ds;
RepaintGraphWindow();
return 0;
}
/*
* Manchester demodulate a bitstream. The bitstream needs to be already in
* the GraphBuffer as 0 and 1 values
*
* Give the clock rate as argument in order to help the sync - the algorithm
* resyncs at each pulse anyway.
*
* Not optimized by any means, this is the 1st time I'm writing this type of
* routine, feel free to improve...
*
* 1st argument: clock rate (as number of samples per clock rate)
* Typical values can be 64, 32, 128...
*/
int CmdManchesterDemod(const char *Cmd)
{
int i, j, invert= 0;
int bit;
int clock;
int lastval = 0;
int low = 0;
int high = 0;
int hithigh, hitlow, first;
int lc = 0;
int bitidx = 0;
int bit2idx = 0;
int warnings = 0;
/* check if we're inverting output */
if (*Cmd == 'i')
{
PrintAndLog("Inverting output");
invert = 1;
++Cmd;
do
++Cmd;
while(*Cmd == ' '); // in case a 2nd argument was given
}
/* Holds the decoded bitstream: each clock period contains 2 bits */
/* later simplified to 1 bit after manchester decoding. */
/* Add 10 bits to allow for noisy / uncertain traces without aborting */
/* int BitStream[GraphTraceLen*2/clock+10]; */
/* But it does not work if compiling on WIndows: therefore we just allocate a */
/* large array */
uint8_t BitStream[MAX_GRAPH_TRACE_LEN];
/* Detect high and lows */
for (i = 0; i < GraphTraceLen; i++)
{
if (GraphBuffer[i] > high)
high = GraphBuffer[i];
else if (GraphBuffer[i] < low)
low = GraphBuffer[i];
}
/* Get our clock */
clock = GetClock(Cmd, high, 1);
int tolerance = clock/4;
/* Detect first transition */
/* Lo-Hi (arbitrary) */
/* skip to the first high */
for (i= 0; i < GraphTraceLen; i++)
if (GraphBuffer[i] == high)
break;
/* now look for the first low */
for (; i < GraphTraceLen; i++)
{
if (GraphBuffer[i] == low)
{
lastval = i;
break;
}
}
/* If we're not working with 1/0s, demod based off clock */
if (high != 1)
{
bit = 0; /* We assume the 1st bit is zero, it may not be
* the case: this routine (I think) has an init problem.
* Ed.
*/
for (; i < (int)(GraphTraceLen / clock); i++)
{
hithigh = 0;
hitlow = 0;
first = 1;
/* Find out if we hit both high and low peaks */
for (j = 0; j < clock; j++)
{
if (GraphBuffer[(i * clock) + j] == high)
hithigh = 1;
else if (GraphBuffer[(i * clock) + j] == low)
hitlow = 1;
/* it doesn't count if it's the first part of our read
because it's really just trailing from the last sequence */
if (first && (hithigh || hitlow))
hithigh = hitlow = 0;
else
first = 0;
if (hithigh && hitlow)
break;
}
/* If we didn't hit both high and low peaks, we had a bit transition */
if (!hithigh || !hitlow)
bit ^= 1;
BitStream[bit2idx++] = bit ^ invert;
}
}
/* standard 1/0 bitstream */
else
{
/* Then detect duration between 2 successive transitions */
for (bitidx = 1; i < GraphTraceLen; i++)
{
if (GraphBuffer[i-1] != GraphBuffer[i])
{
lc = i-lastval;
lastval = i;
// Error check: if bitidx becomes too large, we do not
// have a Manchester encoded bitstream or the clock is really
// wrong!
if (bitidx > (GraphTraceLen*2/clock+8) ) {
PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
return 0;
}
// Then switch depending on lc length:
// Tolerance is 1/4 of clock rate (arbitrary)
if (abs(lc-clock/2) < tolerance) {
// Short pulse : either "1" or "0"
BitStream[bitidx++]=GraphBuffer[i-1];
} else if (abs(lc-clock) < tolerance) {
// Long pulse: either "11" or "00"
BitStream[bitidx++]=GraphBuffer[i-1];
BitStream[bitidx++]=GraphBuffer[i-1];
} else {
// Error
warnings++;
PrintAndLog("Warning: Manchester decode error for pulse width detection.");
PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)");
if (warnings > 10)
{
PrintAndLog("Error: too many detection errors, aborting.");
return 0;
}
}
}
}
// At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream
// Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful
// to stop output at the final bitidx2 value, not bitidx
for (i = 0; i < bitidx; i += 2) {
if ((BitStream[i] == 0) && (BitStream[i+1] == 1)) {
BitStream[bit2idx++] = 1 ^ invert;
} else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) {
BitStream[bit2idx++] = 0 ^ invert;
} else {
// We cannot end up in this state, this means we are unsynchronized,
// move up 1 bit:
i++;
warnings++;
PrintAndLog("Unsynchronized, resync...");
PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
if (warnings > 10)
{
PrintAndLog("Error: too many decode errors, aborting.");
return 0;
}
}
}
}
PrintAndLog("Manchester decoded bitstream");
// Now output the bitstream to the scrollback by line of 16 bits
for (i = 0; i < (bit2idx-16); i+=16) {
PrintAndLog("%i %i %i %i %i %i %i %i %i %i %i %i %i %i %i %i",
BitStream[i],
BitStream[i+1],
BitStream[i+2],
BitStream[i+3],
BitStream[i+4],
BitStream[i+5],
BitStream[i+6],
BitStream[i+7],
BitStream[i+8],
BitStream[i+9],
BitStream[i+10],
BitStream[i+11],
BitStream[i+12],
BitStream[i+13],
BitStream[i+14],
BitStream[i+15]);
}
return 0;
}
/* Modulate our data into manchester */
int CmdManchesterMod(const char *Cmd)
{
int i, j;
int clock;
int bit, lastbit, wave;
/* Get our clock */
clock = GetClock(Cmd, 0, 1);
wave = 0;
lastbit = 1;
for (i = 0; i < (int)(GraphTraceLen / clock); i++)
{
bit = GraphBuffer[i * clock] ^ 1;
for (j = 0; j < (int)(clock/2); j++)
GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave;
for (j = (int)(clock/2); j < clock; j++)
GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave ^ 1;
/* Keep track of how we start our wave and if we changed or not this time */
wave ^= bit ^ lastbit;
lastbit = bit;
}
RepaintGraphWindow();
return 0;
}
int CmdNorm(const char *Cmd)
{
int i;
int max = INT_MIN, min = INT_MAX;
for (i = 10; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] > max)
max = GraphBuffer[i];
if (GraphBuffer[i] < min)
min = GraphBuffer[i];
}
if (max != min) {
for (i = 0; i < GraphTraceLen; ++i) {
GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 1000 /
(max - min);
}
}
RepaintGraphWindow();
return 0;
}
int CmdPlot(const char *Cmd)
{
ShowGraphWindow();
return 0;
}
int CmdSave(const char *Cmd)
{
FILE *f = fopen(Cmd, "w");
if(!f) {
PrintAndLog("couldn't open '%s'", Cmd);
return 0;
}
int i;
for (i = 0; i < GraphTraceLen; i++) {
fprintf(f, "%d\n", GraphBuffer[i]);
}
fclose(f);
PrintAndLog("saved to '%s'", Cmd);
return 0;
}
int CmdScale(const char *Cmd)
{
CursorScaleFactor = atoi(Cmd);
if (CursorScaleFactor == 0) {
PrintAndLog("bad, can't have zero scale");
CursorScaleFactor = 1;
}
RepaintGraphWindow();
return 0;
}
int CmdThreshold(const char *Cmd)
{
int threshold = atoi(Cmd);
for (int i = 0; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] >= threshold)
GraphBuffer[i] = 1;
else
GraphBuffer[i] =- 1;
}
RepaintGraphWindow();
return 0;
}
int CmdZerocrossings(const char *Cmd)
{
// Zero-crossings aren't meaningful unless the signal is zero-mean.
CmdHpf("");
int sign = 1;
int zc = 0;
int lastZc = 0;
for (int i = 0; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] * sign >= 0) {
// No change in sign, reproduce the previous sample count.
zc++;
GraphBuffer[i] = lastZc;
} else {
// Change in sign, reset the sample count.
sign = -sign;
GraphBuffer[i] = lastZc;
if (sign > 0) {
lastZc = zc;
zc = 0;
}
}
}
RepaintGraphWindow();
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"amp", CmdAmp, 1, "Amplify peaks"},
{"askdemod", Cmdaskdemod, 1, "<0|1> -- Attempt to demodulate simple ASK tags"},
{"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
{"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
{"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "Detect clock rate"},
{"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<blocks> [<offset>] -- Dump big buffer as hex bytes"},
{"hide", CmdHide, 1, "Hide graph window"},
{"hpf", CmdHpf, 1, "Remove DC offset from trace"},
{"load", CmdLoad, 1, "<filename> -- Load trace (to graph window"},
{"ltrim", CmdLtrim, 1, "<samples> -- Trim samples from left of trace"},
{"mandemod", CmdManchesterDemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"},
{"manmod", CmdManchesterMod, 1, "[clock rate] -- Manchester modulate a binary stream"},
{"norm", CmdNorm, 1, "Normalize max/min to +/-500"},
{"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
{"samples", CmdSamples, 0, "[128 - 16000] -- Get raw samples for graph window"},
{"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
{"threshold", CmdThreshold, 1, "<threshold> -- Maximize/minimize every value in the graph window depending on threshold"},
{"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
{NULL, NULL, 0, NULL}
};
int CmdData(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}