proxmark3/client/ui.c
iceman1001 463ca973e7 FIX: hf mf eload - now supports specifying 0,1,2,4 in card memory for the file to be loaded.
FIX: hf mf esave - now supports specifying  0,1,2,4 in card memory for the file to be saved.
ADD: data.h -  added FILE_PATH_SIZE constant
ADD: hf legic load - a command help and checks for FILE_PATH_SIZE
ADD: hf legis save - now checks for FILE_PATH_SIZE
ADD: lf hitag - now checks for FILE_PATH_SIZE
ADD: util.c - AddLogLine now checks for FILE_PATH_SIZE
ADD: data load / save  - now checks for FILE_PATH_SIZE
FIX: ui.c - added a case of closing a filehandle
FIX: hf mf cload / csave now checks for FILE_PATH_SIZE
FIX: armsrc/mifarecmd.c - adjusted the buffersize in MifareEMemget from 48 to USB_CMD_DATA_SIZE
2014-11-16 11:22:06 +01:00

523 lines
12 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2009 Michael Gernoth <michael at gernoth.net>
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// UI utilities
//-----------------------------------------------------------------------------
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <time.h>
#include <readline/readline.h>
#include <pthread.h>
#include "loclass/cipherutils.h"
#include "ui.h"
#include "cmdmain.h"
#include "cmddata.h"
//#include <liquid/liquid.h>
#define M_PI 3.14159265358979323846264338327
double CursorScaleFactor;
int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
int offline;
int flushAfterWrite = 0; //buzzy
extern pthread_mutex_t print_lock;
static char *logfilename = "proxmark3.log";
void PrintAndLog(char *fmt, ...)
{
char *saved_line;
int saved_point;
va_list argptr, argptr2;
static FILE *logfile = NULL;
static int logging=1;
// lock this section to avoid interlacing prints from different threats
pthread_mutex_lock(&print_lock);
if (logging && !logfile) {
logfile=fopen(logfilename, "a");
if (!logfile) {
fprintf(stderr, "Can't open logfile, logging disabled!\n");
logging=0;
}
}
int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0;
if (need_hack) {
saved_point = rl_point;
saved_line = rl_copy_text(0, rl_end);
rl_save_prompt();
rl_replace_line("", 0);
rl_redisplay();
}
va_start(argptr, fmt);
va_copy(argptr2, argptr);
vprintf(fmt, argptr);
printf(" "); // cleaning prompt
va_end(argptr);
printf("\n");
if (need_hack) {
rl_restore_prompt();
rl_replace_line(saved_line, 0);
rl_point = saved_point;
rl_redisplay();
free(saved_line);
}
if (logging && logfile) {
vfprintf(logfile, fmt, argptr2);
fprintf(logfile,"\n");
fflush(logfile);
fclose(logfile); // ICEMAN, this logfile is never closed?!?
}
va_end(argptr2);
if (flushAfterWrite == 1) //buzzy
{
fflush(NULL);
}
//release lock
pthread_mutex_unlock(&print_lock);
}
void SetLogFilename(char *fn)
{
logfilename = fn;
}
int manchester_decode( int * data, const size_t len, uint8_t * dataout, size_t dataoutlen){
int bitlength = 0;
int i, clock, high, low, startindex;
low = startindex = 0;
high = 1;
uint8_t * bitStream = (uint8_t* ) malloc(sizeof(uint8_t) * dataoutlen);
memset(bitStream, 0x00, dataoutlen);
/* Detect high and lows */
for (i = 0; i < len; i++) {
if (data[i] > high)
high = data[i];
else if (data[i] < low)
low = data[i];
}
/* get clock */
clock = GetT55x7Clock( data, len, high );
startindex = DetectFirstTransition(data, len, high);
//PrintAndLog(" Clock : %d", clock);
if (high != 1)
bitlength = ManchesterConvertFrom255(data, len, bitStream, dataoutlen, high, low, clock, startindex);
else
bitlength= ManchesterConvertFrom1(data, len, bitStream, dataoutlen, clock, startindex);
memcpy(dataout, bitStream, bitlength);
free(bitStream);
return bitlength;
}
int GetT55x7Clock( const int * data, const size_t len, int peak ){
int i,lastpeak,clock;
clock = 0xFFFF;
lastpeak = 0;
/* Detect peak if we don't have one */
if (!peak) {
for (i = 0; i < len; ++i) {
if (data[i] > peak) {
peak = data[i];
}
}
}
for (i = 1; i < len; ++i) {
/* if this is the beginning of a peak */
if ( data[i-1] != data[i] && data[i] == peak) {
/* find lowest difference between peaks */
if (lastpeak && i - lastpeak < clock)
clock = i - lastpeak;
lastpeak = i;
}
}
// When detected clock is 31 or 33 then then return
int clockmod = clock%8;
if ( clockmod == 0) return clock;
if ( clockmod == 7 ) clock += 1;
else if ( clockmod == 1 ) clock -= 1;
return clock;
}
int DetectFirstTransition(const int * data, const size_t len, int threshold){
int i =0;
/* now look for the first threshold */
for (; i < len; ++i) {
if (data[i] == threshold) {
break;
}
}
return i;
}
int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int dataoutlen, int high, int low, int clock, int startIndex){
int i, j, z, hithigh, hitlow, bitIndex, startType;
i = 0;
bitIndex = 0;
int isDamp = 0;
int damplimit = (int)((high / 2) * 0.3);
int dampHi = (high/2)+damplimit;
int dampLow = (high/2)-damplimit;
int firstST = 0;
// i = clock frame of data
for (; i < (int)(len/clock); i++)
{
hithigh = 0;
hitlow = 0;
startType = -1;
z = startIndex + (i*clock);
isDamp = 0;
/* Find out if we hit both high and low peaks */
for (j = 0; j < clock; j++)
{
if (data[z+j] == high){
hithigh = 1;
if ( startType == -1)
startType = 1;
}
if (data[z+j] == low ){
hitlow = 1;
if ( startType == -1)
startType = 0;
}
if (hithigh && hitlow)
break;
}
// No high value found, are we in a dampening field?
if ( !hithigh ) {
//PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
for (j = 0; j < clock; j++) {
if (
(data[z+j] <= dampHi && data[z+j] >= dampLow)
){
isDamp++;
}
}
}
/* Manchester Switching..
0: High -> Low
1: Low -> High
*/
if (startType == 0)
dataout[bitIndex++] = 1;
else if (startType == 1)
dataout[bitIndex++] = 0;
else
dataout[bitIndex++] = 2;
if ( isDamp > clock/2 ) {
firstST++;
}
if ( firstST == 4)
break;
if ( bitIndex >= dataoutlen-1 )
break;
}
return bitIndex;
}
int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout,int dataoutlen, int clock, int startIndex){
PrintAndLog(" Path B");
int i,j, bitindex, lc, tolerance, warnings;
warnings = 0;
int upperlimit = len*2/clock+8;
i = startIndex;
j = 0;
tolerance = clock/4;
uint8_t decodedArr[len];
/* Detect duration between 2 successive transitions */
for (bitindex = 1; i < len; i++) {
if (data[i-1] != data[i]) {
lc = i - startIndex;
startIndex = i;
// Error check: if bitindex becomes too large, we do not
// have a Manchester encoded bitstream or the clock is really wrong!
if (bitindex > upperlimit ) {
PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
return 0;
}
// Then switch depending on lc length:
// Tolerance is 1/4 of clock rate (arbitrary)
if (abs((lc-clock)/2) < tolerance) {
// Short pulse : either "1" or "0"
decodedArr[bitindex++] = data[i-1];
} else if (abs(lc-clock) < tolerance) {
// Long pulse: either "11" or "00"
decodedArr[bitindex++] = data[i-1];
decodedArr[bitindex++] = data[i-1];
} else {
++warnings;
PrintAndLog("Warning: Manchester decode error for pulse width detection.");
if (warnings > 10) {
PrintAndLog("Error: too many detection errors, aborting.");
return 0;
}
}
}
}
/*
* We have a decodedArr of "01" ("1") or "10" ("0")
* parse it into final decoded dataout
*/
for (i = 0; i < bitindex; i += 2) {
if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
dataout[j++] = 1;
} else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
dataout[j++] = 0;
} else {
i++;
warnings++;
PrintAndLog("Unsynchronized, resync...");
PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
if (warnings > 10) {
PrintAndLog("Error: too many decode errors, aborting.");
return 0;
}
}
}
PrintAndLog("%s", sprint_hex(dataout, j));
return j;
}
void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
/*
* We have a bitstream of "01" ("1") or "10" ("0")
* parse it into final decoded bitstream
*/
int i, j, warnings;
uint8_t decodedArr[(len/2)+1];
j = warnings = 0;
uint8_t lastbit = 0;
for (i = 0; i < len; i += 2) {
uint8_t first = bitstream[i];
uint8_t second = bitstream[i+1];
if ( first == second ) {
++i;
++warnings;
if (warnings > 10) {
PrintAndLog("Error: too many decode errors, aborting.");
return;
}
}
else if ( lastbit != first ) {
decodedArr[j++] = 0 ^ invert;
}
else {
decodedArr[j++] = 1 ^ invert;
}
lastbit = second;
}
PrintAndLog("%s", sprint_hex(decodedArr, j));
}
void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
PrintAndLog(" Manchester decoded : %d bits", len);
uint8_t mod = len % blocksize;
uint8_t div = len / blocksize;
int i;
// Now output the bitstream to the scrollback by line of 16 bits
for (i = 0; i < div*blocksize; i+=blocksize) {
PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
}
if ( mod > 0 )
PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
}
/* Sliding DFT
Smooths out
*/
void iceFsk2(int * data, const size_t len){
int i, j;
int * output = (int* ) malloc(sizeof(int) * len);
memset(output, 0x00, len);
// for (i=0; i<len-5; ++i){
// for ( j=1; j <=5; ++j) {
// output[i] += data[i*j];
// }
// output[i] /= 5;
// }
int rest = 127;
int tmp =0;
for (i=0; i<len; ++i){
if ( data[i] < 127)
output[i] = 0;
else {
tmp = (100 * (data[i]-rest)) / rest;
output[i] = (tmp > 60)? 100:0;
}
}
for (j=0; j<len; ++j)
data[j] = output[j];
free(output);
}
void iceFsk3(int * data, const size_t len){
int i,j;
int * output = (int* ) malloc(sizeof(int) * len);
memset(output, 0x00, len);
float fc = 0.1125f; // center frequency
size_t adjustedLen = len;
// create very simple low-pass filter to remove images (2nd-order Butterworth)
float complex iir_buf[3] = {0,0,0};
float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
float sample = 0; // input sample read from file
float complex x_prime = 1.0f; // save sample for estimating frequency
float complex x;
for (i=0; i<adjustedLen; ++i) {
sample = data[i]+128;
// remove DC offset and mix to complex baseband
x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
// apply low-pass filter, removing spectral image (IIR using direct-form II)
iir_buf[2] = iir_buf[1];
iir_buf[1] = iir_buf[0];
iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
x = b[0]*iir_buf[0] +
b[1]*iir_buf[1] +
b[2]*iir_buf[2];
// compute instantaneous frequency by looking at phase difference
// between adjacent samples
float freq = cargf(x*conjf(x_prime));
x_prime = x; // retain this sample for next iteration
output[i] =(freq > 0)? 10 : -10;
}
// show data
for (j=0; j<adjustedLen; ++j)
data[j] = output[j];
CmdLtrim("30");
adjustedLen -= 30;
// zero crossings.
for (j=0; j<adjustedLen; ++j){
if ( data[j] == 10) break;
}
int startOne =j;
for (;j<adjustedLen; ++j){
if ( data[j] == -10 ) break;
}
int stopOne = j-1;
int fieldlen = stopOne-startOne;
fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
if ( fieldlen != 40 && fieldlen != 50){
printf("Detected field Length: %d \n", fieldlen);
printf("Can only handle 40 or 50. Aborting...\n");
return;
}
// FSK sequence start == 000111
int startPos = 0;
for (i =0; i<adjustedLen; ++i){
int dec = 0;
for ( j = 0; j < 6*fieldlen; ++j){
dec += data[i + j];
}
if (dec == 0) {
startPos = i;
break;
}
}
printf("000111 position: %d \n", startPos);
startPos += 6*fieldlen+5;
int bit =0;
printf("BINARY\n");
printf("R/40 : ");
for (i =startPos ; i < adjustedLen; i += 40){
bit = data[i]>0 ? 1:0;
printf("%d", bit );
}
printf("\n");
printf("R/50 : ");
for (i =startPos ; i < adjustedLen; i += 50){
bit = data[i]>0 ? 1:0;
printf("%d", bit ); }
printf("\n");
free(output);
}
float complex cexpf (float complex Z)
{
float complex Res;
double rho = exp (__real__ Z);
__real__ Res = rho * cosf(__imag__ Z);
__imag__ Res = rho * sinf(__imag__ Z);
return Res;
}