proxmark3/fpga/lo_read.v
edouard@lafargue.name 6658905f18 Initial commit for the firmware. Used the 20090306_ela version as baseline.
It is identical to the popular 20081211, with the doob addition (20090301), a
linux client, and two additional commands for LF analysis. Let me know if
you find issues here!
2009-04-09 06:43:20 +00:00

103 lines
2.9 KiB
Verilog

//-----------------------------------------------------------------------------
// The way that we connect things in low-frequency read mode. In this case
// we are generating the 134 kHz or 125 kHz carrier, and running the
// unmodulated carrier at that frequency. The A/D samples at that same rate,
// and the result is serialized.
//
// Jonathan Westhues, April 2006
//-----------------------------------------------------------------------------
module lo_read(
pck0, ck_1356meg, ck_1356megb,
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
adc_d, adc_clk,
ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg,
lo_is_125khz
);
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
input [7:0] adc_d;
output adc_clk;
input ssp_dout;
output ssp_frame, ssp_din, ssp_clk;
input cross_hi, cross_lo;
output dbg;
input lo_is_125khz;
// The low-frequency RFID stuff. This is relatively simple, because most
// of the work happens on the ARM, and we just pass samples through. The
// PCK0 must be divided down to generate the A/D clock, and from there by
// a factor of 8 to generate the carrier (that we apply to the coil drivers).
//
// This is also where we decode the received synchronous serial port words,
// to determine how to drive the output enables.
// PCK0 will run at (PLL clock) / 4, or 24 MHz. That means that we can do
// 125 kHz by dividing by a further factor of (8*12*2), or ~134 kHz by
// dividing by a factor of (8*11*2) (for 136 kHz, ~2% error, tolerable).
reg [3:0] pck_divider;
reg clk_lo;
always @(posedge pck0)
begin
if(lo_is_125khz)
begin
if(pck_divider == 4'd11)
begin
pck_divider <= 4'd0;
clk_lo = !clk_lo;
end
else
pck_divider <= pck_divider + 1;
end
else
begin
if(pck_divider == 4'd10)
begin
pck_divider <= 4'd0;
clk_lo = !clk_lo;
end
else
pck_divider <= pck_divider + 1;
end
end
reg [2:0] carrier_divider_lo;
always @(posedge clk_lo)
begin
carrier_divider_lo <= carrier_divider_lo + 1;
end
assign pwr_lo = carrier_divider_lo[2];
// This serializes the values returned from the A/D, and sends them out
// over the SSP.
reg [7:0] to_arm_shiftreg;
always @(posedge clk_lo)
begin
if(carrier_divider_lo == 3'b000)
to_arm_shiftreg <= adc_d;
else
to_arm_shiftreg[7:1] <= to_arm_shiftreg[6:0];
end
assign ssp_clk = clk_lo;
assign ssp_frame = (carrier_divider_lo == 3'b001);
assign ssp_din = to_arm_shiftreg[7];
// The ADC converts on the falling edge, and our serializer loads when
// carrier_divider_lo == 3'b000.
assign adc_clk = ~carrier_divider_lo[2];
assign pwr_hi = 1'b0;
assign dbg = adc_clk;
endmodule