proxmark3/client/cmdlfindala.c
Philippe Teuwen d19754567d summer restructuring:
* .h include only the strict minimum for their own parsing
  * this forces all files to include explicitment their needs and not count on far streched dependencies
  * this helps Makefile to rebuild only the minimum
  * according to this rule, most standalone .h are now gone
  * big app.h is gone
  * remove seldom __cplusplus, if c++ happens, everything will have to be done properly anyway
* all unrequired include were removed
* split common/ into common/ (client+arm) and common_arm/ (os+bootloader)
  * bring zlib to common/
  * bring stuff not really/not yet used in common back to armsrc/ or client/
  * bring liblua into client/
  * bring uart into client/
  * move some portions of code around (dbprint, protocols,...)
* rename unused files into *_disabled.[ch] to make it explicit
* rename soft Uarts between 14a, 14b and iclass, so a standalone could use several without clash
* remove PrintAndLogDevice
* move deprecated-hid-flasher from client to tools
* Makefiles
  * treat deps in armsrc/ as in client/
  * client: stop on warning (-Werror), same as for armsrc/

Tested on:

* all standalone modes
* Linux
2019-08-11 21:42:01 +02:00

626 lines
20 KiB
C

//-----------------------------------------------------------------------------
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency Indala commands
// PSK1, rf/32, 64 or 224 bits (known)
//-----------------------------------------------------------------------------
#include "cmdlfindala.h"
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <inttypes.h>
#include "cmdparser.h" // command_t
#include "comms.h"
#include "graph.h"
#include "cliparser/cliparser.h"
#include "commonutil.h"
#include "ui.h" // PrintAndLog
#include "lfdemod.h" // parityTest, bitbytes_to_byte
#include "cmddata.h"
#include "cmdlf.h" // lf_read
static int CmdHelp(const char *Cmd);
//large 224 bit indala formats (different preamble too...)
static uint8_t preamble224[] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
// standard 64 bit indala formats including 26 bit 40134 format
static uint8_t preamble64[] = {1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
static int usage_lf_indala_demod(void) {
PrintAndLogEx(NORMAL, "Tries to psk demodulate the graphbuffer as Indala ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf indala demod [h] <clock> <0|1> <maxerror>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : This help");
PrintAndLogEx(NORMAL, " clock : Set clock (as integer) optional, if not set, autodetect.");
PrintAndLogEx(NORMAL, " invert : 1 for invert output");
PrintAndLogEx(NORMAL, " maxerror : Set maximum allowed errors, default = 100.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf indala demod");
PrintAndLogEx(NORMAL, " lf indala demod 32 = demod a Indala tag from GraphBuffer using a clock of RF/32");
PrintAndLogEx(NORMAL, " lf indala demod 32 1 = demod a Indala tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLogEx(NORMAL, " lf indala demod 64 1 0 = demod a Indala tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return PM3_SUCCESS;
}
static int usage_lf_indala_sim(void) {
PrintAndLogEx(NORMAL, "Enables simulation of Indala card with specified uid.");
PrintAndLogEx(NORMAL, "Simulation runs until the button is pressed or another USB command is issued.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf indala sim [h] <uid>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : This help");
PrintAndLogEx(NORMAL, " <uid> : 64/224 UID");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf indala sim deadc0de");
return PM3_SUCCESS;
}
// Indala 26 bit decode
// by marshmellow
// optional arguments - same as PSKDemod (clock & invert & maxerr)
static int CmdIndalaDemod(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_lf_indala_demod();
int ans;
if (strlen(Cmd) > 0)
ans = PSKDemod(Cmd, true);
else
ans = PSKDemod("32", true);
if (ans != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala can't demod signal: %d", ans);
return PM3_ESOFT;
}
uint8_t invert = 0;
size_t size = DemodBufferLen;
int idx = detectIndala(DemodBuffer, &size, &invert);
if (idx < 0) {
if (idx == -1)
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: not enough samples");
else if (idx == -2)
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: only noise found");
else if (idx == -4)
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: preamble not found");
else if (idx == -5)
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: size not correct: %d", size);
else
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala: error demoding psk idx: %d", idx);
return PM3_ESOFT;
}
setDemodBuff(DemodBuffer, size, idx);
setClockGrid(g_DemodClock, g_DemodStartIdx + (idx * g_DemodClock));
//convert UID to HEX
uint32_t uid1 = bytebits_to_byte(DemodBuffer, 32);
uint32_t uid2 = bytebits_to_byte(DemodBuffer + 32, 32);
uint64_t foo = (((uint64_t)uid1 << 32) & 0x1FFFFFFF) | (uid2 & 0x7FFFFFFF);
if (DemodBufferLen == 64) {
PrintAndLogEx(
SUCCESS
, "Indala Found - bitlength %d, Raw %x%08x"
, DemodBufferLen
, uid1
, uid2
);
uint16_t p1 = 0;
p1 |= DemodBuffer[32 + 3] << 8;
p1 |= DemodBuffer[32 + 6] << 5;
p1 |= DemodBuffer[32 + 8] << 4;
p1 |= DemodBuffer[32 + 9] << 3;
p1 |= DemodBuffer[32 + 11] << 1;
p1 |= DemodBuffer[32 + 16] << 6;
p1 |= DemodBuffer[32 + 19] << 7;
p1 |= DemodBuffer[32 + 20] << 10;
p1 |= DemodBuffer[32 + 21] << 2;
p1 |= DemodBuffer[32 + 22] << 0;
p1 |= DemodBuffer[32 + 24] << 9;
/*
uint16_t fc = 0;
fc |= DemodBuffer[32+ 1] << 0;
fc |= DemodBuffer[32+ 2] << 1;
fc |= DemodBuffer[32+ 4] << 2;
fc |= DemodBuffer[32+ 5] << 3;
fc |= DemodBuffer[32+ 7] << 4;
fc |= DemodBuffer[32+10] << 5;
fc |= DemodBuffer[32+14] << 6;
fc |= DemodBuffer[32+15] << 7;
fc |= DemodBuffer[32+17] << 8;
*/
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, "Possible de-scramble patterns");
PrintAndLogEx(SUCCESS, "\tPrinted | __%04d__ [0x%X]", p1, p1);
//PrintAndLogEx(SUCCESS, "\tPrinted | __%04d__ [0x%X]", fc, fc);
PrintAndLogEx(SUCCESS, "\tInternal ID | %" PRIu64, foo);
} else {
uint32_t uid3 = bytebits_to_byte(DemodBuffer + 64, 32);
uint32_t uid4 = bytebits_to_byte(DemodBuffer + 96, 32);
uint32_t uid5 = bytebits_to_byte(DemodBuffer + 128, 32);
uint32_t uid6 = bytebits_to_byte(DemodBuffer + 160, 32);
uint32_t uid7 = bytebits_to_byte(DemodBuffer + 192, 32);
PrintAndLogEx(
SUCCESS
, "Indala Found - bitlength %d, Raw 0x%x%08x%08x%08x%08x%08x%08x"
, DemodBufferLen
, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
);
}
if (g_debugMode) {
PrintAndLogEx(DEBUG, "DEBUG: Indala - printing demodbuffer");
printDemodBuff();
}
return PM3_SUCCESS;
}
// older alternative indala demodulate (has some positives and negatives)
// returns false positives more often - but runs against more sets of samples
// poor psk signal can be difficult to demod this approach might succeed when the other fails
// but the other appears to currently be more accurate than this approach most of the time.
static int CmdIndalaDemodAlt(const char *Cmd) {
// Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
int state = -1;
int count = 0;
int i, j;
// worst case with GraphTraceLen=40000 is < 4096
// under normal conditions it's < 2048
uint8_t data[MAX_GRAPH_TRACE_LEN] = {0};
size_t datasize = getFromGraphBuf(data);
uint8_t rawbits[4096];
int rawbit = 0;
int worst = 0, worstPos = 0;
//clear clock grid and demod plot
setClockGrid(0, 0);
DemodBufferLen = 0;
// PrintAndLogEx(NORMAL, "Expecting a bit less than %d raw bits", GraphTraceLen / 32);
// loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2)
for (i = 0; i < datasize - 1; i += 2) {
count += 1;
if ((data[i] > data[i + 1]) && (state != 1)) {
// appears redundant - marshmellow
if (state == 0) {
for (j = 0; j < count - 8; j += 16) {
rawbits[rawbit++] = 0;
}
if ((abs(count - j)) > worst) {
worst = abs(count - j);
worstPos = i;
}
}
state = 1;
count = 0;
} else if ((data[i] < data[i + 1]) && (state != 0)) {
//appears redundant
if (state == 1) {
for (j = 0; j < count - 8; j += 16) {
rawbits[rawbit++] = 1;
}
if ((abs(count - j)) > worst) {
worst = abs(count - j);
worstPos = i;
}
}
state = 0;
count = 0;
}
}
if (rawbit > 0) {
PrintAndLogEx(INFO, "Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen / 32);
PrintAndLogEx(INFO, "worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
} else {
return PM3_ESOFT;
}
// Finding the start of a UID
int uidlen, long_wait;
if (strcmp(Cmd, "224") == 0) {
uidlen = 224;
long_wait = 30;
} else {
uidlen = 64;
long_wait = 29;
}
int start;
int first = 0;
for (start = 0; start <= rawbit - uidlen; start++) {
first = rawbits[start];
for (i = start; i < start + long_wait; i++) {
if (rawbits[i] != first) {
break;
}
}
if (i == (start + long_wait)) {
break;
}
}
if (start == rawbit - uidlen + 1) {
PrintAndLogEx(FAILED, "nothing to wait for");
return PM3_ESOFT;
}
// Inverting signal if needed
if (first == 1) {
for (i = start; i < rawbit; i++) {
rawbits[i] = !rawbits[i];
}
}
// Dumping UID
uint8_t bits[224] = {0x00};
char showbits[225] = {0x00};
int bit;
i = start;
int times = 0;
if (uidlen > rawbit) {
PrintAndLogEx(WARNING, "Warning: not enough raw bits to get a full UID");
for (bit = 0; bit < rawbit; bit++) {
bits[bit] = rawbits[i++];
// As we cannot know the parity, let's use "." and "/"
showbits[bit] = '.' + bits[bit];
}
showbits[bit + 1] = '\0';
PrintAndLogEx(SUCCESS, "Partial UID | %s", showbits);
return PM3_SUCCESS;
} else {
for (bit = 0; bit < uidlen; bit++) {
bits[bit] = rawbits[i++];
showbits[bit] = '0' + bits[bit];
}
times = 1;
}
//convert UID to HEX
int idx;
uint32_t uid1 = 0;
uint32_t uid2 = 0;
if (uidlen == 64) {
for (idx = 0; idx < 64; idx++) {
if (showbits[idx] == '0') {
uid1 = (uid1 << 1) | (uid2 >> 31);
uid2 = (uid2 << 1) | 0;
} else {
uid1 = (uid1 << 1) | (uid2 >> 31);
uid2 = (uid2 << 1) | 1;
}
}
PrintAndLogEx(SUCCESS, "UID | %s (%x%08x)", showbits, uid1, uid2);
} else {
uint32_t uid3 = 0;
uint32_t uid4 = 0;
uint32_t uid5 = 0;
uint32_t uid6 = 0;
uint32_t uid7 = 0;
for (idx = 0; idx < 224; idx++) {
uid1 = (uid1 << 1) | (uid2 >> 31);
uid2 = (uid2 << 1) | (uid3 >> 31);
uid3 = (uid3 << 1) | (uid4 >> 31);
uid4 = (uid4 << 1) | (uid5 >> 31);
uid5 = (uid5 << 1) | (uid6 >> 31);
uid6 = (uid6 << 1) | (uid7 >> 31);
if (showbits[idx] == '0')
uid7 = (uid7 << 1) | 0;
else
uid7 = (uid7 << 1) | 1;
}
PrintAndLogEx(SUCCESS, "UID | %s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
}
// Checking UID against next occurrences
for (; i + uidlen <= rawbit;) {
int failed = 0;
for (bit = 0; bit < uidlen; bit++) {
if (bits[bit] != rawbits[i++]) {
failed = 1;
break;
}
}
if (failed == 1) {
break;
}
times += 1;
}
PrintAndLogEx(DEBUG, "Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen);
// Remodulating for tag cloning
// HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod)
// since this changes graphbuffer data.
GraphTraceLen = 32 * uidlen;
i = 0;
int phase;
for (bit = 0; bit < uidlen; bit++) {
if (bits[bit] == 0) {
phase = 0;
} else {
phase = 1;
}
for (j = 0; j < 32; j++) {
GraphBuffer[i++] = phase;
phase = !phase;
}
}
RepaintGraphWindow();
return PM3_SUCCESS;
}
// this read is the "normal" read, which download lf signal and tries to demod here.
static int CmdIndalaRead(const char *Cmd) {
lf_read(true, 30000);
return CmdIndalaDemod(Cmd);
}
static int CmdIndalaSim(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || cmdp == 'h') return usage_lf_indala_sim();
uint8_t bs[224];
memset(bs, 0x00, sizeof(bs));
// uid
uint8_t hexuid[100];
int len = 0;
param_gethex_ex(Cmd, 0, hexuid, &len);
if (len > 28)
return usage_lf_indala_sim();
// convert to binarray
uint8_t counter = 223;
for (uint8_t i = 0; i < len; i++) {
for (uint8_t j = 0; j < 8; j++) {
bs[counter--] = hexuid[i] & 1;
hexuid[i] >>= 1;
}
}
// indala PSK
// It has to send either 64bits (8bytes) or 224bits (28bytes). Zero padding needed if not.
// lf simpsk 1 c 32 r 2 d 0102030405060708
PrintAndLogEx(SUCCESS, "Simulating Indala UID: %s", sprint_hex(hexuid, len));
PrintAndLogEx(SUCCESS, "Press pm3-button to abort simulation or run another command");
// indala PSK, clock 32, carrier 0
lf_psksim_t *payload = calloc(1, sizeof(lf_psksim_t) + sizeof(bs));
payload->carrier = 2;
payload->invert = 0;
payload->clock = 32;
memcpy(payload->data, bs, sizeof(bs));
PrintAndLogEx(INFO, "Simulating");
clearCommandBuffer();
SendCommandNG(CMD_LF_PSK_SIMULATE, (uint8_t *)payload, sizeof(lf_psksim_t) + sizeof(bs));
free(payload);
PacketResponseNG resp;
WaitForResponse(CMD_LF_PSK_SIMULATE, &resp);
PrintAndLogEx(INFO, "Done");
if (resp.status != PM3_EOPABORTED)
return resp.status;
return PM3_SUCCESS;
}
// iceman - needs refactoring
static int CmdIndalaClone(const char *Cmd) {
bool isLongUid = false;
uint8_t data[7 * 4];
int datalen = 0;
CLIParserInit("lf indala clone",
"Enables cloning of Indala card with specified uid onto T55x7\n"
"defaults to 64.\n",
"\n"
"Samples:\n"
"\tlf indala clone a0000000a0002021\n"
"\tlf indala clone -l 80000001b23523a6c2e31eba3cbee4afb3c6ad1fcf649393928c14e5");
void *argtable[] = {
arg_param_begin,
arg_lit0("lL", "long", "long UID 224 bits"),
arg_strx1(NULL, NULL, "<uid (hex)>", NULL),
arg_param_end
};
CLIExecWithReturn(Cmd, argtable, false);
isLongUid = arg_get_lit(1);
CLIGetHexWithReturn(2, data, &datalen);
CLIParserFree();
if (isLongUid) {
PrintAndLogEx(INFO, "Preparing to clone Indala 224bit tag with RawID %s", sprint_hex(data, datalen));
uint32_t datawords[7] = {0};
datawords[0] = bytes_to_num(data, 4);
datawords[1] = bytes_to_num(data + 4, 4);
datawords[2] = bytes_to_num(data + 8, 4);
datawords[3] = bytes_to_num(data + 12, 4);
datawords[4] = bytes_to_num(data + 16, 4);
datawords[5] = bytes_to_num(data + 20, 4);
datawords[6] = bytes_to_num(data + 24, 4);
clearCommandBuffer();
SendCommandOLD(CMD_LF_INDALA224_CLONE, 0, 0, 0, datawords, sizeof(datawords));
} else {
PrintAndLogEx(INFO, "Preparing to clone Indala 64bit tag with RawID %s", sprint_hex(data, datalen));
uint32_t datawords[2] = {0};
datawords[0] = bytes_to_num(data, 4);
datawords[1] = bytes_to_num(data + 4, 4);
clearCommandBuffer();
SendCommandOLD(CMD_LF_INDALA_CLONE, 0, 0, 0, datawords, sizeof(datawords));
}
return PM3_SUCCESS;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "this help"},
{"demod", CmdIndalaDemod, AlwaysAvailable, "demodulate an indala tag (PSK1) from GraphBuffer"},
{"altdemod", CmdIndalaDemodAlt, AlwaysAvailable, "alternative method to Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
{"read", CmdIndalaRead, IfPm3Lf, "read an Indala Prox tag from the antenna"},
{"clone", CmdIndalaClone, IfPm3Lf, "clone Indala to T55x7"},
{"sim", CmdIndalaSim, IfPm3Lf, "simulate Indala tag"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}
int CmdLFINDALA(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}
// redesigned by marshmellow adjusted from existing decode functions
// indala id decoding
int detectIndala(uint8_t *dest, size_t *size, uint8_t *invert) {
uint8_t preamble64_i[] = {0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0};
uint8_t preamble224_i[] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0};
size_t idx = 0;
size_t found_size = *size;
// PSK1
bool res = preambleSearch(dest, preamble64, sizeof(preamble64), &found_size, &idx);
if (res) {
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 64");
goto out;
}
idx = 0;
found_size = *size;
res = preambleSearch(dest, preamble64_i, sizeof(preamble64_i), &found_size, &idx);
if (res) {
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 64 inverted preamble");
goto inv;
}
/*
idx = 0;
found_size = *size;
res = preambleSearch(dest, preamble224, sizeof(preamble224), &found_size, &idx);
if ( res ) {
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 224");
goto out;
}
idx = 0;
found_size = *size;
res = preambleSearch(dest, preamble224_i, sizeof(preamble224_i), &found_size, &idx);
if ( res ) {
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK1 found 224 inverted preamble");
goto inv;
}
*/
// PSK2
psk1TOpsk2(dest, *size);
PrintAndLogEx(DEBUG, "DEBUG: detectindala Converting PSK1 -> PSK2");
idx = 0;
found_size = *size;
res = preambleSearch(dest, preamble64, sizeof(preamble64), &found_size, &idx);
if (res) {
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 64 preamble");
goto out;
}
idx = 0;
found_size = *size;
res = preambleSearch(dest, preamble224, sizeof(preamble224), &found_size, &idx);
if (res) {
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 224 preamble");
goto out;
}
idx = 0;
found_size = *size;
res = preambleSearch(dest, preamble64_i, sizeof(preamble64_i), &found_size, &idx);
if (res) {
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 64 inverted preamble");
goto inv;
}
idx = 0;
found_size = *size;
res = preambleSearch(dest, preamble224_i, sizeof(preamble224_i), &found_size, &idx);
if (res) {
PrintAndLogEx(DEBUG, "DEBUG: detectindala PSK2 found 224 inverted preamble");
goto inv;
}
inv:
if (res == 0) {
return -4;
}
*invert ^= 1;
if (*invert && idx > 0) {
for (size_t i = idx - 1; i < found_size + idx + 2; i++) {
dest[i] ^= 1;
}
}
PrintAndLogEx(DEBUG, "DEBUG: Warning - Indala had to invert bits");
out:
*size = found_size;
//PrintAndLogEx(INFO, "DEBUG: detectindala RES = %d | %d | %d", res, found_size, idx);
if (found_size != 224 && found_size != 64) {
PrintAndLogEx(INFO, "DEBUG: detectindala | %d", found_size);
return -5;
}
// 224 formats are typically PSK2 (afaik 2017 Marshmellow)
// note loses 1 bit at beginning of transformation...
return (int) idx;
}
int demodIndala(void) {
return CmdIndalaDemod("");
}