proxmark3/client/cmddata.c
marshmellow42 411105e036 added nexwatch demod & iceman lua
added nexwatch demod (also added to lf search)
added iceman's lua script adjustments
2015-04-08 14:19:03 -04:00

2211 lines
76 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Data and Graph commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "proxmark3.h"
#include "data.h"
#include "ui.h"
#include "graph.h"
#include "cmdparser.h"
#include "util.h"
#include "cmdmain.h"
#include "cmddata.h"
#include "lfdemod.h"
#include "usb_cmd.h"
#include "crc.h"
uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN];
uint8_t g_debugMode;
int DemodBufferLen;
static int CmdHelp(const char *Cmd);
//set the demod buffer with given array of binary (one bit per byte)
//by marshmellow
void setDemodBuf(uint8_t *buff, size_t size, size_t startIdx)
{
if (buff == NULL)
return;
if ( size >= MAX_DEMOD_BUF_LEN)
size = MAX_DEMOD_BUF_LEN;
size_t i = 0;
for (; i < size; i++){
DemodBuffer[i]=buff[startIdx++];
}
DemodBufferLen=size;
return;
}
int CmdSetDebugMode(const char *Cmd)
{
int demod=0;
sscanf(Cmd, "%i", &demod);
g_debugMode=(uint8_t)demod;
return 1;
}
//by marshmellow
void printDemodBuff(void)
{
int bitLen = DemodBufferLen;
if (bitLen<1) {
PrintAndLog("no bits found in demod buffer");
return;
}
if (bitLen>512) bitLen=512; //max output to 512 bits if we have more - should be plenty
char *bin = sprint_bin_break(DemodBuffer,bitLen,16);
PrintAndLog("%s",bin);
return;
}
int CmdPrintDemodBuff(const char *Cmd)
{
char hex;
char printBuff[512]={0x00};
uint8_t numBits = DemodBufferLen & 0xFFFC;
sscanf(Cmd, "%c", &hex);
if (hex == 'h'){
PrintAndLog("Usage: data printdemodbuffer [x]");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" x output in hex (omit for binary output)");
return 0;
}
if (hex == 'x'){
numBits = binarraytohex(printBuff, (char *)DemodBuffer, numBits);
if (numBits==0) return 0;
PrintAndLog("DemodBuffer: %s",printBuff);
} else {
printDemodBuff();
}
return 1;
}
//by marshmellow
//this function strictly converts >1 to 1 and <1 to 0 for each sample in the graphbuffer
int CmdGetBitStream(const char *Cmd)
{
int i;
CmdHpf(Cmd);
for (i = 0; i < GraphTraceLen; i++) {
if (GraphBuffer[i] >= 1) {
GraphBuffer[i] = 1;
} else {
GraphBuffer[i] = 0;
}
}
RepaintGraphWindow();
return 0;
}
//by marshmellow
//print 64 bit EM410x ID in multiple formats
void printEM410x(uint32_t hi, uint64_t id)
{
if (id || hi){
uint64_t iii=1;
uint64_t id2lo=0;
uint32_t ii=0;
uint32_t i=0;
for (ii=5; ii>0;ii--){
for (i=0;i<8;i++){
id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
}
}
if (hi){
//output 88 bit em id
PrintAndLog("\nEM TAG ID : %06X%016llX", hi, id);
} else{
//output 40 bit em id
PrintAndLog("\nEM TAG ID : %010llX", id);
PrintAndLog("Unique TAG ID : %010llX", id2lo);
PrintAndLog("\nPossible de-scramble patterns");
PrintAndLog("HoneyWell IdentKey {");
PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF);
PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFFFF);
PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF));
PrintAndLog("DEZ 3.5A : %03lld.%05lld",(id>>32ll),(id & 0xFFFF));
PrintAndLog("DEZ 3.5B : %03lld.%05lld",(id & 0xFF000000) >> 24,(id & 0xFFFF));
PrintAndLog("DEZ 3.5C : %03lld.%05lld",(id & 0xFF0000) >> 16,(id & 0xFFFF));
PrintAndLog("DEZ 14/IK2 : %014lld",id);
PrintAndLog("DEZ 15/IK3 : %015lld",id2lo);
PrintAndLog("DEZ 20/ZK : %02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld",
(id2lo & 0xf000000000) >> 36,
(id2lo & 0x0f00000000) >> 32,
(id2lo & 0x00f0000000) >> 28,
(id2lo & 0x000f000000) >> 24,
(id2lo & 0x0000f00000) >> 20,
(id2lo & 0x00000f0000) >> 16,
(id2lo & 0x000000f000) >> 12,
(id2lo & 0x0000000f00) >> 8,
(id2lo & 0x00000000f0) >> 4,
(id2lo & 0x000000000f)
);
uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00;
PrintAndLog("}\nOther : %05lld_%03lld_%08lld",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
PrintAndLog("Pattern Paxton : %lld [0x%llX]", paxton, paxton);
uint32_t p1id = (id & 0xFFFFFF);
uint8_t arr[32] = {0x00};
int i =0;
int j = 23;
for (; i < 24; ++i, --j ){
arr[i] = (p1id >> i) & 1;
}
uint32_t p1 = 0;
p1 |= arr[23] << 21;
p1 |= arr[22] << 23;
p1 |= arr[21] << 20;
p1 |= arr[20] << 22;
p1 |= arr[19] << 18;
p1 |= arr[18] << 16;
p1 |= arr[17] << 19;
p1 |= arr[16] << 17;
p1 |= arr[15] << 13;
p1 |= arr[14] << 15;
p1 |= arr[13] << 12;
p1 |= arr[12] << 14;
p1 |= arr[11] << 6;
p1 |= arr[10] << 2;
p1 |= arr[9] << 7;
p1 |= arr[8] << 1;
p1 |= arr[7] << 0;
p1 |= arr[6] << 8;
p1 |= arr[5] << 11;
p1 |= arr[4] << 3;
p1 |= arr[3] << 10;
p1 |= arr[2] << 4;
p1 |= arr[1] << 5;
p1 |= arr[0] << 9;
PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1);
uint16_t sebury1 = id & 0xFFFF;
uint8_t sebury2 = (id >> 16) & 0x7F;
uint32_t sebury3 = id & 0x7FFFFF;
PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
}
}
return;
}
int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo )
{
size_t idx = 0;
size_t BitLen = DemodBufferLen;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
memcpy(BitStream, DemodBuffer, BitLen);
if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)){
//set GraphBuffer for clone or sim command
setDemodBuf(BitStream, BitLen, idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
if (verbose){
PrintAndLog("EM410x pattern found: ");
printEM410x(*hi, *lo);
}
return 1;
}
return 0;
}
int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose)
{
if (!ASKDemod(Cmd, FALSE, FALSE, 1)) return 0;
return AskEm410xDecode(verbose, hi, lo);
}
//by marshmellow
//takes 3 arguments - clock, invert and maxErr as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int CmdAskEM410xDemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data askem410xdemod [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data askem410xdemod = demod an EM410x Tag ID from GraphBuffer");
PrintAndLog(" : data askem410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data askem410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data askem410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
PrintAndLog(" : data askem410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
return 0;
}
uint64_t lo = 0;
uint32_t hi = 0;
return AskEm410xDemod(Cmd, &hi, &lo, true);
}
//by marshmellow
//Cmd Args: Clock, invert, maxErr, maxLen as integers and amplify as char == 'a'
// (amp may not be needed anymore)
//verbose will print results and demoding messages
//emSearch will auto search for EM410x format in bitstream
//askType switches decode: ask/raw = 0, ask/manchester = 1
int ASKDemod(const char *Cmd, bool verbose, bool emSearch, uint8_t askType)
{
int invert=0;
int clk=0;
int maxErr=100;
int maxLen=0;
uint8_t askAmp = 0;
char amp = param_getchar(Cmd, 0);
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
sscanf(Cmd, "%i %i %i %i %c", &clk, &invert, &maxErr, &maxLen, &amp);
if (!maxLen) maxLen = 512*64;
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
if (clk==1){
invert=1;
clk=0;
}
if (amp == 'a' || amp == 'A') askAmp=1;
size_t BitLen = getFromGraphBuf(BitStream);
if (g_debugMode) PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen);
if (BitLen<255) return 0;
if (maxLen<BitLen && maxLen != 0) BitLen = maxLen;
int errCnt = askdemod(BitStream, &BitLen, &clk, &invert, maxErr, askAmp, askType);
if (errCnt<0 || BitLen<16){ //if fatal error (or -1)
if (g_debugMode) PrintAndLog("DEBUG: no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
return 0;
}
if (errCnt>maxErr){
if (g_debugMode) PrintAndLog("DEBUG: Too many errors found, errors:%d, bits:%d, clock:%d",errCnt, BitLen, clk);
return 0;
}
if (verbose || g_debugMode) PrintAndLog("\nUsing Clock:%d, Invert:%d, Bits Found:%d",clk,invert,BitLen);
//output
setDemodBuf(BitStream,BitLen,0);
if (verbose || g_debugMode){
if (errCnt>0) PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt);
if (askType) PrintAndLog("ASK/Manchester decoded bitstream:");
else PrintAndLog("ASK/Raw decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
}
uint64_t lo = 0;
uint32_t hi = 0;
if (emSearch){
AskEm410xDecode(true, &hi, &lo);
}
return 1;
}
//by marshmellow
//takes 5 arguments - clock, invert, maxErr, maxLen as integers and amplify as char == 'a'
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int Cmdaskmandemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod am [clock] <invert> [maxError] [maxLen] [amplify]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect");
PrintAndLog(" <invert>, 1 to invert output");
PrintAndLog(" [set maximum allowed errors], default = 100");
PrintAndLog(" [set maximum Samples to read], default = 32768 (512 bits at rf/64)");
PrintAndLog(" <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod am = demod an ask/manchester tag from GraphBuffer");
PrintAndLog(" : data rawdemod am 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod am 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod am 1 = demod an ask/manchester tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod am 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
return ASKDemod(Cmd, TRUE, TRUE, 1);
}
//by marshmellow
//manchester decode
//stricktly take 10 and 01 and convert to 0 and 1
int Cmdmandecoderaw(const char *Cmd)
{
int i =0;
int errCnt=0;
size_t size=0;
int invert=0;
size_t maxErr = 20;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 5 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data manrawdecode [invert] [maxErr]");
PrintAndLog(" Takes 10 and 01 and converts to 0 and 1 respectively");
PrintAndLog(" --must have binary sequence in demodbuffer (run data askrawdemod first)");
PrintAndLog(" [invert] invert output");
PrintAndLog(" [maxErr] set number of errors allowed (default = 20)");
PrintAndLog("");
PrintAndLog(" sample: data manrawdecode = decode manchester bitstream from the demodbuffer");
return 0;
}
if (DemodBufferLen==0) return 0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
int high=0,low=0;
for (;i<DemodBufferLen;++i){
if (DemodBuffer[i]>high) high=DemodBuffer[i];
else if(DemodBuffer[i]<low) low=DemodBuffer[i];
BitStream[i]=DemodBuffer[i];
}
if (high>7 || low <0 ){
PrintAndLog("Error: please raw demod the wave first then manchester raw decode");
return 0;
}
sscanf(Cmd, "%i %i", &invert, &maxErr);
size=i;
errCnt=manrawdecode(BitStream, &size, invert);
if (errCnt>=maxErr){
PrintAndLog("Too many errors: %d",errCnt);
return 0;
}
PrintAndLog("Manchester Decoded - # errors:%d - data:",errCnt);
PrintAndLog("%s", sprint_bin_break(BitStream, size, 16));
if (errCnt==0){
uint64_t id = 0;
uint32_t hi = 0;
size_t idx=0;
if (Em410xDecode(BitStream, &size, &idx, &hi, &id)){
//need to adjust to set bitstream back to manchester encoded data
//setDemodBuf(BitStream, size, idx);
printEM410x(hi, id);
}
}
return 1;
}
//by marshmellow
//biphase decode
//take 01 or 10 = 0 and 11 or 00 = 1
//takes 2 arguments "offset" default = 0 if 1 it will shift the decode by one bit
// and "invert" default = 0 if 1 it will invert output
// the argument offset allows us to manually shift if the output is incorrect - [EDIT: now auto detects]
int CmdBiphaseDecodeRaw(const char *Cmd)
{
size_t size=0;
int offset=0, invert=0, maxErr=20, errCnt=0;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data biphaserawdecode [offset] [invert] [maxErr]");
PrintAndLog(" Converts 10 or 01 to 1 and 11 or 00 to 0");
PrintAndLog(" --must have binary sequence in demodbuffer (run data askrawdemod first)");
PrintAndLog(" --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester");
PrintAndLog("");
PrintAndLog(" [offset <0|1>], set to 0 not to adjust start position or to 1 to adjust decode start position");
PrintAndLog(" [invert <0|1>], set to 1 to invert output");
PrintAndLog(" [maxErr int], set max errors tolerated - default=20");
PrintAndLog("");
PrintAndLog(" sample: data biphaserawdecode = decode biphase bitstream from the demodbuffer");
PrintAndLog(" sample: data biphaserawdecode 1 1 = decode biphase bitstream from the demodbuffer, set offset, and invert output");
return 0;
}
sscanf(Cmd, "%i %i %i", &offset, &invert, &maxErr);
if (DemodBufferLen==0){
PrintAndLog("DemodBuffer Empty - run 'data rawdemod ar' first");
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
memcpy(BitStream, DemodBuffer, DemodBufferLen);
size = DemodBufferLen;
errCnt=BiphaseRawDecode(BitStream, &size, offset, invert);
if (errCnt<0){
PrintAndLog("Error during decode:%d", errCnt);
return 0;
}
if (errCnt>maxErr){
PrintAndLog("Too many errors attempting to decode: %d",errCnt);
return 0;
}
if (errCnt>0){
PrintAndLog("# Errors found during Demod (shown as 7 in bit stream): %d",errCnt);
}
PrintAndLog("Biphase Decoded using offset: %d - # invert:%d - data:",offset,invert);
PrintAndLog("%s", sprint_bin_break(BitStream, size, 16));
if (offset) setDemodBuf(DemodBuffer,DemodBufferLen-offset, offset); //remove first bit from raw demod
return 1;
}
//by marshmellow
// - ASK Demod then Biphase decode GraphBuffer samples
int ASKbiphaseDemod(const char *Cmd, bool verbose)
{
//ask raw demod GraphBuffer first
int offset=0, clk=0, invert=0, maxErr=0, ans=0;
ans = sscanf(Cmd, "%i %i %i %i", &offset, &clk, &invert, &maxErr);
if (ans>0)
ans = ASKDemod(Cmd+1, FALSE, FALSE, 0);
else
ans = ASKDemod(Cmd, FALSE, FALSE, 0);
if (!ans) {
if (g_debugMode || verbose) PrintAndLog("Error AskDemod: %d", ans);
return 0;
}
//attempt to Biphase decode DemodBuffer
size_t size = DemodBufferLen;
uint8_t BitStream[MAX_DEMOD_BUF_LEN];
memcpy(BitStream, DemodBuffer, DemodBufferLen);
int errCnt = BiphaseRawDecode(BitStream, &size, offset, 0);
if (errCnt < 0){
if (g_debugMode || verbose) PrintAndLog("Error BiphaseRawDecode: %d", errCnt);
return 0;
}
if (errCnt > maxErr) {
if (g_debugMode || verbose) PrintAndLog("Error BiphaseRawDecode too many errors: %d", errCnt);
return 0;
}
//success set DemodBuffer and return
setDemodBuf(BitStream, size, 0);
if (g_debugMode || verbose){
PrintAndLog("Biphase Decoded using offset: %d - # errors:%d - data:",offset,errCnt);
printDemodBuff();
}
return 1;
}
//by marshmellow - see ASKbiphaseDemod
int Cmdaskbiphdemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod ab [offset] [clock] <invert> [maxError] [maxLen] <amplify>");
PrintAndLog(" [offset], offset to begin biphase, default=0");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect");
PrintAndLog(" <invert>, 1 to invert output");
PrintAndLog(" [set maximum allowed errors], default = 100");
PrintAndLog(" [set maximum Samples to read], default = 32768 (512 bits at rf/64)");
PrintAndLog(" <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLog(" NOTE: <invert> can be entered as second or third argument");
PrintAndLog(" NOTE: <amplify> can be entered as first, second or last argument");
PrintAndLog(" NOTE: any other arg must have previous args set to work");
PrintAndLog("");
PrintAndLog(" NOTE: --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod ab = demod an ask/biph tag from GraphBuffer");
PrintAndLog(" : data rawdemod ab 0 a = demod an ask/biph tag from GraphBuffer, amplified");
PrintAndLog(" : data rawdemod ab 1 32 = demod an ask/biph tag from GraphBuffer using an offset of 1 and a clock of RF/32");
PrintAndLog(" : data rawdemod ab 0 32 1 = demod an ask/biph tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod ab 0 1 = demod an ask/biph tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod ab 0 64 1 0 = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLog(" : data rawdemod ab 0 64 1 0 0 a = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
return 0;
}
return ASKbiphaseDemod(Cmd, TRUE);
}
//by marshmellow
//attempts to demodulate and identify a G_Prox_II verex/chubb card
//WARNING: if it fails during some points it will destroy the DemodBuffer data
// but will leave the GraphBuffer intact.
//if successful it will push askraw data back to demod buffer ready for emulation
int CmdG_Prox_II_Demod(const char *Cmd)
{
if (!ASKbiphaseDemod(Cmd, FALSE)){
if (g_debugMode) PrintAndLog("ASKbiphaseDemod failed 1st try");
return 0;
}
size_t size = DemodBufferLen;
//call lfdemod.c demod for gProxII
int ans = gProxII_Demod(DemodBuffer, &size);
if (ans < 0){
if (g_debugMode) PrintAndLog("Error gProxII_Demod");
return 0;
}
//got a good demod
uint32_t ByteStream[65] = {0x00};
uint8_t xorKey=0;
uint8_t keyCnt=0;
uint8_t bitCnt=0;
uint8_t ByteCnt=0;
size_t startIdx = ans + 6; //start after preamble
for (size_t idx = 0; idx<size-6; idx++){
if ((idx+1) % 5 == 0){
//spacer bit - should be 0
if (DemodBuffer[startIdx+idx] != 0) {
if (g_debugMode) PrintAndLog("Error spacer not 0: %d, pos: %d",DemodBuffer[startIdx+idx],startIdx+idx);
return 0;
}
continue;
}
if (keyCnt<8){ //lsb first
xorKey = xorKey | (DemodBuffer[startIdx+idx]<<keyCnt);
keyCnt++;
if (keyCnt==8 && g_debugMode) PrintAndLog("xorKey Found: %02x", xorKey);
continue;
}
//lsb first
ByteStream[ByteCnt] = ByteStream[ByteCnt] | (DemodBuffer[startIdx+idx]<<bitCnt);
bitCnt++;
if (bitCnt % 8 == 0){
if (g_debugMode) PrintAndLog("byte %d: %02x",ByteCnt,ByteStream[ByteCnt]);
bitCnt=0;
ByteCnt++;
}
}
for (uint8_t i = 0; i < ByteCnt; i++){
ByteStream[i] ^= xorKey; //xor
if (g_debugMode) PrintAndLog("byte %d after xor: %02x", i, ByteStream[i]);
}
//now ByteStream contains 64 bytes of decrypted raw tag data
//
uint8_t fmtLen = ByteStream[0]>>2;
uint32_t FC = 0;
uint32_t Card = 0;
uint32_t raw1 = bytebits_to_byte(DemodBuffer+ans,32);
uint32_t raw2 = bytebits_to_byte(DemodBuffer+ans+32, 32);
uint32_t raw3 = bytebits_to_byte(DemodBuffer+ans+64, 32);
if (fmtLen==36){
FC = ((ByteStream[3] & 0x7F)<<7) | (ByteStream[4]>>1);
Card = ((ByteStream[4]&1)<<19) | (ByteStream[5]<<11) | (ByteStream[6]<<3) | (ByteStream[7]>>5);
PrintAndLog("G-Prox-II Found: FmtLen %d, FC %d, Card %d",fmtLen,FC,Card);
} else if(fmtLen==26){
FC = ((ByteStream[3] & 0x7F)<<1) | (ByteStream[4]>>7);
Card = ((ByteStream[4]&0x7F)<<9) | (ByteStream[5]<<1) | (ByteStream[6]>>7);
PrintAndLog("G-Prox-II Found: FmtLen %d, FC %d, Card %d",fmtLen,FC,Card);
} else {
PrintAndLog("Unknown G-Prox-II Fmt Found: FmtLen %d",fmtLen);
}
PrintAndLog("Raw: %08x%08x%08x", raw1,raw2,raw3);
setDemodBuf(DemodBuffer+ans, 96, 0);
return 1;
}
//by marshmellow - see ASKDemod
int Cmdaskrawdemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod ar [clock] <invert> [maxError] [maxLen] [amplify]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect");
PrintAndLog(" <invert>, 1 to invert output");
PrintAndLog(" [set maximum allowed errors], default = 100");
PrintAndLog(" [set maximum Samples to read], default = 32768 (1024 bits at rf/64)");
PrintAndLog(" <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod ar = demod an ask tag from GraphBuffer");
PrintAndLog(" : data rawdemod ar a = demod an ask tag from GraphBuffer, amplified");
PrintAndLog(" : data rawdemod ar 32 = demod an ask tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod ar 32 1 = demod an ask tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod ar 1 = demod an ask tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod ar 64 1 0 = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLog(" : data rawdemod ar 64 1 0 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
return 0;
}
return ASKDemod(Cmd, TRUE, FALSE, 0);
}
int AutoCorrelate(int window, bool SaveGrph, bool verbose)
{
static int CorrelBuffer[MAX_GRAPH_TRACE_LEN];
size_t Correlation = 0;
int maxSum = 0;
int lastMax = 0;
if (verbose) PrintAndLog("performing %d correlations", GraphTraceLen - window);
for (int i = 0; i < GraphTraceLen - window; ++i) {
int sum = 0;
for (int j = 0; j < window; ++j) {
sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256;
}
CorrelBuffer[i] = sum;
if (sum >= maxSum-100 && sum <= maxSum+100){
//another max
Correlation = i-lastMax;
lastMax = i;
if (sum > maxSum) maxSum = sum;
} else if (sum > maxSum){
maxSum=sum;
lastMax = i;
}
}
if (Correlation==0){
//try again with wider margin
for (int i = 0; i < GraphTraceLen - window; i++){
if (CorrelBuffer[i] >= maxSum-(maxSum*0.05) && CorrelBuffer[i] <= maxSum+(maxSum*0.05)){
//another max
Correlation = i-lastMax;
lastMax = i;
//if (CorrelBuffer[i] > maxSum) maxSum = sum;
}
}
}
if (verbose && Correlation > 0) PrintAndLog("Possible Correlation: %d samples",Correlation);
if (SaveGrph){
GraphTraceLen = GraphTraceLen - window;
memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int));
RepaintGraphWindow();
}
return Correlation;
}
int usage_data_autocorr(void)
{
//print help
PrintAndLog("Usage: data autocorr [window] [g]");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" [window] window length for correlation - default = 4000");
PrintAndLog(" g save back to GraphBuffer (overwrite)");
return 0;
}
int CmdAutoCorr(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H')
return usage_data_autocorr();
int window = 4000; //set default
char grph=0;
bool updateGrph = FALSE;
sscanf(Cmd, "%i %c", &window, &grph);
if (window >= GraphTraceLen) {
PrintAndLog("window must be smaller than trace (%d samples)",
GraphTraceLen);
return 0;
}
if (grph == 'g') updateGrph=TRUE;
return AutoCorrelate(window, updateGrph, TRUE);
}
int CmdBitsamples(const char *Cmd)
{
int cnt = 0;
uint8_t got[12288];
GetFromBigBuf(got,sizeof(got),0);
WaitForResponse(CMD_ACK,NULL);
for (int j = 0; j < sizeof(got); j++) {
for (int k = 0; k < 8; k++) {
if(got[j] & (1 << (7 - k))) {
GraphBuffer[cnt++] = 1;
} else {
GraphBuffer[cnt++] = 0;
}
}
}
GraphTraceLen = cnt;
RepaintGraphWindow();
return 0;
}
int CmdBuffClear(const char *Cmd)
{
UsbCommand c = {CMD_BUFF_CLEAR};
SendCommand(&c);
ClearGraph(true);
return 0;
}
int CmdDec(const char *Cmd)
{
for (int i = 0; i < (GraphTraceLen / 2); ++i)
GraphBuffer[i] = GraphBuffer[i * 2];
GraphTraceLen /= 2;
PrintAndLog("decimated by 2");
RepaintGraphWindow();
return 0;
}
/**
* Undecimate - I'd call it 'interpolate', but we'll save that
* name until someone does an actual interpolation command, not just
* blindly repeating samples
* @param Cmd
* @return
*/
int CmdUndec(const char *Cmd)
{
if(param_getchar(Cmd, 0) == 'h')
{
PrintAndLog("Usage: data undec [factor]");
PrintAndLog("This function performs un-decimation, by repeating each sample N times");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" factor The number of times to repeat each sample.[default:2]");
PrintAndLog("Example: 'data undec 3'");
return 0;
}
uint8_t factor = param_get8ex(Cmd, 0,2, 10);
//We have memory, don't we?
int swap[MAX_GRAPH_TRACE_LEN] = { 0 };
uint32_t g_index = 0 ,s_index = 0;
while(g_index < GraphTraceLen && s_index < MAX_GRAPH_TRACE_LEN)
{
int count = 0;
for(count = 0; count < factor && s_index+count < MAX_GRAPH_TRACE_LEN; count ++)
swap[s_index+count] = GraphBuffer[g_index];
s_index+=count;
}
memcpy(GraphBuffer,swap, s_index * sizeof(int));
GraphTraceLen = s_index;
RepaintGraphWindow();
return 0;
}
//by marshmellow
//shift graph zero up or down based on input + or -
int CmdGraphShiftZero(const char *Cmd)
{
int shift=0;
//set options from parameters entered with the command
sscanf(Cmd, "%i", &shift);
int shiftedVal=0;
for(int i = 0; i<GraphTraceLen; i++){
shiftedVal=GraphBuffer[i]+shift;
if (shiftedVal>127)
shiftedVal=127;
else if (shiftedVal<-127)
shiftedVal=-127;
GraphBuffer[i]= shiftedVal;
}
CmdNorm("");
return 0;
}
//by marshmellow
//use large jumps in read samples to identify edges of waves and then amplify that wave to max
//similar to dirtheshold, threshold commands
//takes a threshold length which is the measured length between two samples then determines an edge
int CmdAskEdgeDetect(const char *Cmd)
{
int thresLen = 25;
sscanf(Cmd, "%i", &thresLen);
for(int i = 1; i<GraphTraceLen; i++){
if (GraphBuffer[i]-GraphBuffer[i-1]>=thresLen) //large jump up
GraphBuffer[i-1] = 127;
else if(GraphBuffer[i]-GraphBuffer[i-1]<=-1*thresLen) //large jump down
GraphBuffer[i-1] = -127;
}
RepaintGraphWindow();
return 0;
}
/* Print our clock rate */
// uses data from graphbuffer
// adjusted to take char parameter for type of modulation to find the clock - by marshmellow.
int CmdDetectClockRate(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 6 || strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data detectclock [modulation] <clock>");
PrintAndLog(" [modulation as char], specify the modulation type you want to detect the clock of");
PrintAndLog(" <clock> , specify the clock (optional - to get best start position only)");
PrintAndLog(" 'a' = ask, 'f' = fsk, 'n' = nrz/direct, 'p' = psk");
PrintAndLog("");
PrintAndLog(" sample: data detectclock a = detect the clock of an ask modulated wave in the GraphBuffer");
PrintAndLog(" data detectclock f = detect the clock of an fsk modulated wave in the GraphBuffer");
PrintAndLog(" data detectclock p = detect the clock of an psk modulated wave in the GraphBuffer");
PrintAndLog(" data detectclock n = detect the clock of an nrz/direct modulated wave in the GraphBuffer");
}
int ans=0;
if (cmdp == 'a'){
ans = GetAskClock(Cmd+1, true, false);
} else if (cmdp == 'f'){
ans = GetFskClock("", true, false);
} else if (cmdp == 'n'){
ans = GetNrzClock("", true, false);
} else if (cmdp == 'p'){
ans = GetPskClock("", true, false);
} else {
PrintAndLog ("Please specify a valid modulation to detect the clock of - see option h for help");
}
return ans;
}
char *GetFSKType(uint8_t fchigh, uint8_t fclow, uint8_t invert)
{
char *fskType;
if (fchigh==10 && fclow==8){
if (invert) //fsk2a
fskType = "FSK2a";
else //fsk2
fskType = "FSK2";
} else if (fchigh == 8 && fclow == 5) {
if (invert)
fskType = "FSK1";
else
fskType = "FSK1a";
} else {
fskType = "FSK??";
}
return fskType;
}
//by marshmellow
//fsk raw demod and print binary
//takes 4 arguments - Clock, invert, fchigh, fclow
//defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a))
int FSKrawDemod(const char *Cmd, bool verbose)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
int rfLen = 0;
int invert = 0;
int fchigh = 0;
int fclow = 0;
//set options from parameters entered with the command
sscanf(Cmd, "%i %i %i %i", &rfLen, &invert, &fchigh, &fclow);
if (strlen(Cmd)>0 && strlen(Cmd)<=2) {
if (rfLen==1){
invert = 1; //if invert option only is used
rfLen = 0;
}
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
//get field clock lengths
uint16_t fcs=0;
if (fchigh==0 || fclow == 0){
fcs = countFC(BitStream, BitLen, 1);
if (fcs==0){
fchigh=10;
fclow=8;
}else{
fchigh = (fcs >> 8) & 0xFF;
fclow = fcs & 0xFF;
}
}
//get bit clock length
if (rfLen==0){
rfLen = detectFSKClk(BitStream, BitLen, fchigh, fclow);
if (rfLen == 0) rfLen = 50;
}
int size = fskdemod(BitStream,BitLen,(uint8_t)rfLen,(uint8_t)invert,(uint8_t)fchigh,(uint8_t)fclow);
if (size>0){
setDemodBuf(BitStream,size,0);
// Now output the bitstream to the scrollback by line of 16 bits
if (verbose || g_debugMode) {
PrintAndLog("\nUsing Clock:%d, invert:%d, fchigh:%d, fclow:%d", rfLen, invert, fchigh, fclow);
PrintAndLog("%s decoded bitstream:",GetFSKType(fchigh,fclow,invert));
printDemodBuff();
}
return 1;
} else{
if (g_debugMode) PrintAndLog("no FSK data found");
}
return 0;
}
//by marshmellow
//fsk raw demod and print binary
//takes 4 arguments - Clock, invert, fchigh, fclow
//defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a))
int CmdFSKrawdemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod fs [clock] <invert> [fchigh] [fclow]");
PrintAndLog(" [set clock as integer] optional, omit for autodetect.");
PrintAndLog(" <invert>, 1 for invert output, can be used even if the clock is omitted");
PrintAndLog(" [fchigh], larger field clock length, omit for autodetect");
PrintAndLog(" [fclow], small field clock length, omit for autodetect");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod fs = demod an fsk tag from GraphBuffer using autodetect");
PrintAndLog(" : data rawdemod fs 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc");
PrintAndLog(" : data rawdemod fs 1 = demod an fsk tag from GraphBuffer using autodetect, invert output");
PrintAndLog(" : data rawdemod fs 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc");
PrintAndLog(" : data rawdemod fs 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer");
return 0;
}
return FSKrawDemod(Cmd, TRUE);
}
//by marshmellow (based on existing demod + holiman's refactor)
//HID Prox demod - FSK RF/50 with preamble of 00011101 (then manchester encoded)
//print full HID Prox ID and some bit format details if found
int CmdFSKdemodHID(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint32_t hi2=0, hi=0, lo=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
//get binary from fsk wave
int idx = HIDdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo);
if (idx<0){
if (g_debugMode){
if (idx==-1){
PrintAndLog("DEBUG: Just Noise Detected");
} else if (idx == -2) {
PrintAndLog("DEBUG: Error demoding fsk");
} else if (idx == -3) {
PrintAndLog("DEBUG: Preamble not found");
} else if (idx == -4) {
PrintAndLog("DEBUG: Error in Manchester data, SIZE: %d", BitLen);
} else {
PrintAndLog("DEBUG: Error demoding fsk %d", idx);
}
}
return 0;
}
if (hi2==0 && hi==0 && lo==0) {
if (g_debugMode) PrintAndLog("DEBUG: Error - no values found");
return 0;
}
if (hi2 != 0){ //extra large HID tags
PrintAndLog("HID Prox TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else { //standard HID tags <38 bits
uint8_t fmtLen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2>1){ //find last bit set to 1 (format len bit)
lo2=lo2>>1;
idx3++;
}
fmtLen =idx3+19;
fc =0;
cardnum=0;
if(fmtLen==26){
cardnum = (lo>>1)&0xFFFF;
fc = (lo>>17)&0xFF;
}
if(fmtLen==34){
cardnum = (lo>>1)&0xFFFF;
fc= ((hi&1)<<15)|(lo>>17);
}
if(fmtLen==35){
cardnum = (lo>>1)&0xFFFFF;
fc = ((hi&1)<<11)|(lo>>21);
}
}
else { //if bit 38 is not set then 37 bit format is used
fmtLen = 37;
fc = 0;
cardnum = 0;
if(fmtLen == 37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
PrintAndLog("HID Prox TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) fmtLen, (unsigned int) fc, (unsigned int) cardnum);
}
setDemodBuf(BitStream,BitLen,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
return 1;
}
//by marshmellow
//Paradox Prox demod - FSK RF/50 with preamble of 00001111 (then manchester encoded)
//print full Paradox Prox ID and some bit format details if found
int CmdFSKdemodParadox(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint32_t hi2=0, hi=0, lo=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
//get binary from fsk wave
int idx = ParadoxdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo);
if (idx<0){
if (g_debugMode){
if (idx==-1){
PrintAndLog("DEBUG: Just Noise Detected");
} else if (idx == -2) {
PrintAndLog("DEBUG: Error demoding fsk");
} else if (idx == -3) {
PrintAndLog("DEBUG: Preamble not found");
} else if (idx == -4) {
PrintAndLog("DEBUG: Error in Manchester data");
} else {
PrintAndLog("DEBUG: Error demoding fsk %d", idx);
}
}
return 0;
}
if (hi2==0 && hi==0 && lo==0){
if (g_debugMode) PrintAndLog("DEBUG: Error - no value found");
return 0;
}
uint32_t fc = ((hi & 0x3)<<6) | (lo>>26);
uint32_t cardnum = (lo>>10)&0xFFFF;
uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32);
PrintAndLog("Paradox TAG ID: %x%08x - FC: %d - Card: %d - Checksum: %02x - RAW: %08x%08x%08x",
hi>>10, (hi & 0x3)<<26 | (lo>>10), fc, cardnum, (lo>>2) & 0xFF, rawHi2, rawHi, rawLo);
setDemodBuf(BitStream,BitLen,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
return 1;
}
//by marshmellow
//IO-Prox demod - FSK RF/64 with preamble of 000000001
//print ioprox ID and some format details
int CmdFSKdemodIO(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
int idx=0;
//something in graphbuffer?
if (GraphTraceLen < 65) {
if (g_debugMode)PrintAndLog("DEBUG: not enough samples in GraphBuffer");
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
//get binary from fsk wave
idx = IOdemodFSK(BitStream,BitLen);
if (idx<0){
if (g_debugMode){
if (idx==-1){
PrintAndLog("DEBUG: Just Noise Detected");
} else if (idx == -2) {
PrintAndLog("DEBUG: not enough samples");
} else if (idx == -3) {
PrintAndLog("DEBUG: error during fskdemod");
} else if (idx == -4) {
PrintAndLog("DEBUG: Preamble not found");
} else if (idx == -5) {
PrintAndLog("DEBUG: Separator bits not found");
} else {
PrintAndLog("DEBUG: Error demoding fsk %d", idx);
}
}
return 0;
}
if (idx==0){
if (g_debugMode){
PrintAndLog("DEBUG: IO Prox Data not found - FSK Bits: %d",BitLen);
if (BitLen > 92) PrintAndLog("%s", sprint_bin_break(BitStream,92,16));
}
return 0;
}
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo (raw)
//Handle the data
if (idx+64>BitLen) {
if (g_debugMode) PrintAndLog("not enough bits found - bitlen: %d",BitLen);
return 0;
}
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx], BitStream[idx+1], BitStream[idx+2], BitStream[idx+3], BitStream[idx+4], BitStream[idx+5], BitStream[idx+6], BitStream[idx+7], BitStream[idx+8]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]);
PrintAndLog("%d%d%d%d%d%d%d%d %d facility",BitStream[idx+18], BitStream[idx+19], BitStream[idx+20],BitStream[idx+21],BitStream[idx+22],BitStream[idx+23],BitStream[idx+24],BitStream[idx+25],BitStream[idx+26]);
PrintAndLog("%d%d%d%d%d%d%d%d %d version",BitStream[idx+27], BitStream[idx+28], BitStream[idx+29],BitStream[idx+30],BitStream[idx+31],BitStream[idx+32],BitStream[idx+33],BitStream[idx+34],BitStream[idx+35]);
PrintAndLog("%d%d%d%d%d%d%d%d %d code1",BitStream[idx+36], BitStream[idx+37], BitStream[idx+38],BitStream[idx+39],BitStream[idx+40],BitStream[idx+41],BitStream[idx+42],BitStream[idx+43],BitStream[idx+44]);
PrintAndLog("%d%d%d%d%d%d%d%d %d code2",BitStream[idx+45], BitStream[idx+46], BitStream[idx+47],BitStream[idx+48],BitStream[idx+49],BitStream[idx+50],BitStream[idx+51],BitStream[idx+52],BitStream[idx+53]);
PrintAndLog("%d%d%d%d%d%d%d%d %d%d checksum",BitStream[idx+54],BitStream[idx+55],BitStream[idx+56],BitStream[idx+57],BitStream[idx+58],BitStream[idx+59],BitStream[idx+60],BitStream[idx+61],BitStream[idx+62],BitStream[idx+63]);
uint32_t code = bytebits_to_byte(BitStream+idx,32);
uint32_t code2 = bytebits_to_byte(BitStream+idx+32,32);
uint8_t version = bytebits_to_byte(BitStream+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(BitStream+idx+18,8) ;
uint16_t number = (bytebits_to_byte(BitStream+idx+36,8)<<8)|(bytebits_to_byte(BitStream+idx+45,8)); //36,9
uint8_t crc = bytebits_to_byte(BitStream+idx+54,8);
uint16_t calccrc = 0;
for (uint8_t i=1; i<6; ++i){
calccrc += bytebits_to_byte(BitStream+idx+9*i,8);
}
calccrc &= 0xff;
calccrc = 0xff - calccrc;
char *crcStr = (crc == calccrc) ? "crc ok": "!crc";
PrintAndLog("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
setDemodBuf(BitStream,64,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing demod buffer:",idx,64);
printDemodBuff();
}
return 1;
}
//by marshmellow
//AWID Prox demod - FSK RF/50 with preamble of 00000001 (always a 96 bit data stream)
//print full AWID Prox ID and some bit format details if found
int CmdFSKdemodAWID(const char *Cmd)
{
//int verbose=1;
//sscanf(Cmd, "%i", &verbose);
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
if (size==0) return 0;
//get binary from fsk wave
int idx = AWIDdemodFSK(BitStream, &size);
if (idx<=0){
if (g_debugMode==1){
if (idx == -1)
PrintAndLog("DEBUG: Error - not enough samples");
else if (idx == -2)
PrintAndLog("DEBUG: Error - only noise found");
else if (idx == -3)
PrintAndLog("DEBUG: Error - problem during FSK demod");
else if (idx == -4)
PrintAndLog("DEBUG: Error - AWID preamble not found");
else if (idx == -5)
PrintAndLog("DEBUG: Error - Size not correct: %d", size);
else
PrintAndLog("DEBUG: Error %d",idx);
}
return 0;
}
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
// -----------------------------------------------------------------------------
// 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
// premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
// |---26 bit---| |-----117----||-------------142-------------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
//get raw ID before removing parities
uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32);
setDemodBuf(BitStream,96,idx);
size = removeParity(BitStream, idx+8, 4, 1, 88);
if (size != 66){
if (g_debugMode==1) PrintAndLog("DEBUG: Error - at parity check-tag size does not match AWID format");
return 0;
}
// ok valid card found!
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
// -----------------------------------------------------------------------------
// 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
// bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// |26 bit| |-117--| |-----142------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
uint32_t fc = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
uint32_t code2 = 0;
uint8_t fmtLen = bytebits_to_byte(BitStream,8);
if (fmtLen==26){
fc = bytebits_to_byte(BitStream+9, 8);
cardnum = bytebits_to_byte(BitStream+17, 16);
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+8+(fmtLen-17), 16);
if (fmtLen>32){
code1 = bytebits_to_byte(BitStream+8,fmtLen-32);
code2 = bytebits_to_byte(BitStream+8+(fmtLen-32),32);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
} else{
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
}
}
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d Printing Demod Buffer:", idx, 96);
printDemodBuff();
}
//todo - convert hi2, hi, lo to demodbuffer for future sim/clone commands
return 1;
}
//by marshmellow
//Pyramid Prox demod - FSK RF/50 with preamble of 0000000000000001 (always a 128 bit data stream)
//print full Farpointe Data/Pyramid Prox ID and some bit format details if found
int CmdFSKdemodPyramid(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
if (size==0) return 0;
//get binary from fsk wave
int idx = PyramiddemodFSK(BitStream, &size);
if (idx < 0){
if (g_debugMode==1){
if (idx == -5)
PrintAndLog("DEBUG: Error - not enough samples");
else if (idx == -1)
PrintAndLog("DEBUG: Error - only noise found");
else if (idx == -2)
PrintAndLog("DEBUG: Error - problem during FSK demod");
else if (idx == -3)
PrintAndLog("DEBUG: Error - Size not correct: %d", size);
else if (idx == -4)
PrintAndLog("DEBUG: Error - Pyramid preamble not found");
else
PrintAndLog("DEBUG: Error - idx: %d",idx);
}
return 0;
}
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3
// -----------------------------------------------------------------------------
// 0000000 0 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1
// premable xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o
// 64 70 80 90 100 110 120
// | | | | | | |
// 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7
// -----------------------------------------------------------------------------
// 0000000 1 0000000 1 0000000 1 0110111 0 0011000 1 0000001 0 0001100 1 1001010 0
// xxxxxxx o xxxxxxx o xxxxxxx o xswffff o ffffccc o ccccccc o ccccccw o ppppppp o
// |---115---||---------71---------|
// s = format start bit, o = odd parity of last 7 bits
// f = facility code, c = card number
// w = wiegand parity, x = extra space for other formats
// p = unknown checksum
// (26 bit format shown)
//get bytes for checksum calc
uint8_t checksum = bytebits_to_byte(BitStream + idx + 120, 8);
uint8_t csBuff[14] = {0x00};
for (uint8_t i = 0; i < 13; i++){
csBuff[i] = bytebits_to_byte(BitStream + idx + 16 + (i*8), 8);
}
//check checksum calc
//checksum calc thanks to ICEMAN!!
uint32_t checkCS = CRC8Maxim(csBuff,13);
//get raw ID before removing parities
uint32_t rawLo = bytebits_to_byte(BitStream+idx+96,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi3 = bytebits_to_byte(BitStream+idx,32);
setDemodBuf(BitStream,128,idx);
size = removeParity(BitStream, idx+8, 8, 1, 120);
if (size != 105){
if (g_debugMode==1)
PrintAndLog("DEBUG: Error at parity check - tag size does not match Pyramid format, SIZE: %d, IDX: %d, hi3: %x",size, idx, rawHi3);
return 0;
}
// ok valid card found!
// Index map
// 0 10 20 30 40 50 60 70
// | | | | | | | |
// 01234567890123456789012345678901234567890123456789012345678901234567890
// -----------------------------------------------------------------------
// 00000000000000000000000000000000000000000000000000000000000000000000000
// xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// 71 80 90 100
// | | | |
// 1 2 34567890 1234567890123456 7 8901234
// ---------------------------------------
// 1 1 01110011 0000000001000110 0 1001010
// s w ffffffff cccccccccccccccc w ppppppp
// |--115-| |------71------|
// s = format start bit, o = odd parity of last 7 bits
// f = facility code, c = card number
// w = wiegand parity, x = extra space for other formats
// p = unknown checksum
// (26 bit format shown)
//find start bit to get fmtLen
int j;
for (j=0; j<size; j++){
if(BitStream[j]) break;
}
uint8_t fmtLen = size-j-8;
uint32_t fc = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
//uint32_t code2 = 0;
if (fmtLen==26){
fc = bytebits_to_byte(BitStream+73, 8);
cardnum = bytebits_to_byte(BitStream+81, 16);
code1 = bytebits_to_byte(BitStream+72,fmtLen);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi3, rawHi2, rawHi, rawLo);
} else if (fmtLen==45){
fmtLen=42; //end = 10 bits not 7 like 26 bit fmt
fc = bytebits_to_byte(BitStream+53, 10);
cardnum = bytebits_to_byte(BitStream+63, 32);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Raw: %08x%08x%08x%08x", fmtLen, fc, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+81, 16);
if (fmtLen>32){
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen-32);
//code2 = bytebits_to_byte(BitStream+(size-32),32);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %08x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else{
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %08x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
}
}
if (checksum == checkCS)
PrintAndLog("Checksum %02x passed", checksum);
else
PrintAndLog("Checksum %02x failed - should have been %02x", checksum, checkCS);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, 128);
printDemodBuff();
}
return 1;
}
//by marshmellow
//attempt to psk1 demod graph buffer
int PSKDemod(const char *Cmd, bool verbose)
{
int invert=0;
int clk=0;
int maxErr=100;
sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (clk==1){
invert=1;
clk=0;
}
if (invert != 0 && invert != 1) {
if (verbose) PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return -1;
uint8_t carrier=countFC(BitStream, BitLen, 0);
if (carrier!=2 && carrier!=4 && carrier!=8){
//invalid carrier
return 0;
}
int errCnt=0;
errCnt = pskRawDemod(BitStream, &BitLen, &clk, &invert);
if (errCnt > maxErr){
if (g_debugMode || verbose) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
if (g_debugMode || verbose) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
if (verbose || g_debugMode){
PrintAndLog("\nUsing Clock:%d, invert:%d, Bits Found:%d",clk,invert,BitLen);
if (errCnt>0){
PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt);
}
}
//prime demod buffer for output
setDemodBuf(BitStream,BitLen,0);
return 1;
}
// Indala 26 bit decode
// by marshmellow
// optional arguments - same as CmdpskNRZrawDemod (clock & invert)
int CmdIndalaDecode(const char *Cmd)
{
int ans;
if (strlen(Cmd)>0){
ans = PSKDemod(Cmd, 0);
} else{ //default to RF/32
ans = PSKDemod("32", 0);
}
if (!ans){
if (g_debugMode==1)
PrintAndLog("Error1: %d",ans);
return 0;
}
uint8_t invert=0;
ans = indala26decode(DemodBuffer,(size_t *) &DemodBufferLen, &invert);
if (ans < 1) {
if (g_debugMode==1)
PrintAndLog("Error2: %d",ans);
return -1;
}
char showbits[251]={0x00};
if (invert)
if (g_debugMode==1)
PrintAndLog("Had to invert bits");
//convert UID to HEX
uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
int idx;
uid1=0;
uid2=0;
PrintAndLog("BitLen: %d",DemodBufferLen);
if (DemodBufferLen==64){
for( idx=0; idx<64; idx++) {
uid1=(uid1<<1)|(uid2>>31);
if (DemodBuffer[idx] == 0) {
uid2=(uid2<<1)|0;
showbits[idx]='0';
} else {
uid2=(uid2<<1)|1;
showbits[idx]='1';
}
}
showbits[idx]='\0';
PrintAndLog("Indala UID=%s (%x%08x)", showbits, uid1, uid2);
}
else {
uid3=0;
uid4=0;
uid5=0;
uid6=0;
uid7=0;
for( idx=0; idx<DemodBufferLen; idx++) {
uid1=(uid1<<1)|(uid2>>31);
uid2=(uid2<<1)|(uid3>>31);
uid3=(uid3<<1)|(uid4>>31);
uid4=(uid4<<1)|(uid5>>31);
uid5=(uid5<<1)|(uid6>>31);
uid6=(uid6<<1)|(uid7>>31);
if (DemodBuffer[idx] == 0) {
uid7=(uid7<<1)|0;
showbits[idx]='0';
}
else {
uid7=(uid7<<1)|1;
showbits[idx]='1';
}
}
showbits[idx]='\0';
PrintAndLog("Indala UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
}
if (g_debugMode){
PrintAndLog("DEBUG: printing demodbuffer:");
printDemodBuff();
}
return 1;
}
int CmdPSKNexWatch(const char *Cmd)
{
if (!PSKDemod("", false)) return 0;
uint8_t preamble[28] = {0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
size_t startIdx = 0, size = DemodBufferLen;
bool invert = false;
if (!preambleSearch(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx)){
// if didn't find preamble try again inverting
if (!PSKDemod("1", false)) return 0;
size = DemodBufferLen;
if (!preambleSearch(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx)) return 0;
invert = true;
}
if (size != 128) return 0;
setDemodBuf(DemodBuffer, size, startIdx+4);
startIdx = 8+32; //4 = extra i added, 8 = preamble, 32 = reserved bits (always 0)
//get ID
uint32_t ID = 0;
for (uint8_t wordIdx=0; wordIdx<4; wordIdx++){
for (uint8_t idx=0; idx<8; idx++){
ID = (ID << 1) | DemodBuffer[startIdx+wordIdx+(idx*4)];
}
}
//parity check (TBD)
//checksum check (TBD)
//output
PrintAndLog("NexWatch ID: %d", ID);
if (invert){
PrintAndLog("Had to Invert - probably NexKey");
for (uint8_t idx=0; idx<size; idx++)
DemodBuffer[idx] ^= 1;
}
CmdPrintDemodBuff("x");
return 1;
}
// by marshmellow
// takes 3 arguments - clock, invert, maxErr as integers
// attempts to demodulate nrz only
// prints binary found and saves in demodbuffer for further commands
int NRZrawDemod(const char *Cmd, bool verbose)
{
int invert=0;
int clk=0;
int maxErr=100;
sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (clk==1){
invert=1;
clk=0;
}
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
int errCnt=0;
errCnt = nrzRawDemod(BitStream, &BitLen, &clk, &invert, maxErr);
if (errCnt > maxErr){
if (g_debugMode) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
if (errCnt<0 || BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
if (g_debugMode) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
if (verbose || g_debugMode) PrintAndLog("Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
//prime demod buffer for output
setDemodBuf(BitStream,BitLen,0);
if (errCnt>0 && (verbose || g_debugMode)) PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt);
if (verbose || g_debugMode) {
PrintAndLog("NRZ demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
}
return 1;
}
int CmdNRZrawDemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod nr [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod nr = demod a nrz/direct tag from GraphBuffer");
PrintAndLog(" : data rawdemod nr 32 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod nr 32 1 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod nr 1 = demod a nrz/direct tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod nr 64 1 0 = demod a nrz/direct tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
return NRZrawDemod(Cmd, TRUE);
}
// by marshmellow
// takes 3 arguments - clock, invert, maxErr as integers
// attempts to demodulate psk only
// prints binary found and saves in demodbuffer for further commands
int CmdPSK1rawDemod(const char *Cmd)
{
int ans;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod p1 [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod p1 = demod a psk1 tag from GraphBuffer");
PrintAndLog(" : data rawdemod p1 32 = demod a psk1 tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod p1 32 1 = demod a psk1 tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod p1 1 = demod a psk1 tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod p1 64 1 0 = demod a psk1 tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
ans = PSKDemod(Cmd, TRUE);
//output
if (!ans){
if (g_debugMode) PrintAndLog("Error demoding: %d",ans);
return 0;
}
PrintAndLog("PSK1 demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
return 1;
}
// by marshmellow
// takes same args as cmdpsk1rawdemod
int CmdPSK2rawDemod(const char *Cmd)
{
int ans=0;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod p2 [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod p2 = demod a psk2 tag from GraphBuffer, autodetect clock");
PrintAndLog(" : data rawdemod p2 32 = demod a psk2 tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod p2 32 1 = demod a psk2 tag from GraphBuffer using a clock of RF/32 and inverting output");
PrintAndLog(" : data rawdemod p2 1 = demod a psk2 tag from GraphBuffer, autodetect clock and invert output");
PrintAndLog(" : data rawdemod p2 64 1 0 = demod a psk2 tag from GraphBuffer using a clock of RF/64, inverting output and allowing 0 demod errors");
return 0;
}
ans=PSKDemod(Cmd, TRUE);
if (!ans){
if (g_debugMode) PrintAndLog("Error demoding: %d",ans);
return 0;
}
psk1TOpsk2(DemodBuffer, DemodBufferLen);
PrintAndLog("PSK2 demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
return 1;
}
// by marshmellow - combines all raw demod functions into one menu command
int CmdRawDemod(const char *Cmd)
{
char cmdp = Cmd[0]; //param_getchar(Cmd, 0);
if (strlen(Cmd) > 20 || cmdp == 'h' || cmdp == 'H' || strlen(Cmd)<2) {
PrintAndLog("Usage: data rawdemod [modulation] <help>|<options>");
PrintAndLog(" [modulation] as 2 char, 'ab' for ask/biphase, 'am' for ask/manchester, 'ar' for ask/raw, 'fs' for fsk, ...");
PrintAndLog(" 'nr' for nrz/direct, 'p1' for psk1, 'p2' for psk2");
PrintAndLog(" <help> as 'h', prints the help for the specific modulation");
PrintAndLog(" <options> see specific modulation help for optional parameters");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod fs h = print help specific to fsk demod");
PrintAndLog(" : data rawdemod fs = demod GraphBuffer using: fsk - autodetect");
PrintAndLog(" : data rawdemod ab = demod GraphBuffer using: ask/biphase - autodetect");
PrintAndLog(" : data rawdemod am = demod GraphBuffer using: ask/manchester - autodetect");
PrintAndLog(" : data rawdemod ar = demod GraphBuffer using: ask/raw - autodetect");
PrintAndLog(" : data rawdemod nr = demod GraphBuffer using: nrz/direct - autodetect");
PrintAndLog(" : data rawdemod p1 = demod GraphBuffer using: psk1 - autodetect");
PrintAndLog(" : data rawdemod p2 = demod GraphBuffer using: psk2 - autodetect");
return 0;
}
char cmdp2 = Cmd[1];
int ans = 0;
if (cmdp == 'f' && cmdp2 == 's'){
ans = CmdFSKrawdemod(Cmd+2);
} else if(cmdp == 'a' && cmdp2 == 'b'){
ans = Cmdaskbiphdemod(Cmd+2);
} else if(cmdp == 'a' && cmdp2 == 'm'){
ans = Cmdaskmandemod(Cmd+2);
} else if(cmdp == 'a' && cmdp2 == 'r'){
ans = Cmdaskrawdemod(Cmd+2);
} else if(cmdp == 'n' && cmdp2 == 'r'){
ans = CmdNRZrawDemod(Cmd+2);
} else if(cmdp == 'p' && cmdp2 == '1'){
ans = CmdPSK1rawDemod(Cmd+2);
} else if(cmdp == 'p' && cmdp2 == '2'){
ans = CmdPSK2rawDemod(Cmd+2);
} else {
PrintAndLog("unknown modulation entered - see help ('h') for parameter structure");
}
return ans;
}
int CmdGrid(const char *Cmd)
{
sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY);
PlotGridXdefault= PlotGridX;
PlotGridYdefault= PlotGridY;
RepaintGraphWindow();
return 0;
}
int CmdHexsamples(const char *Cmd)
{
int i, j;
int requested = 0;
int offset = 0;
char string_buf[25];
char* string_ptr = string_buf;
uint8_t got[BIGBUF_SIZE];
sscanf(Cmd, "%i %i", &requested, &offset);
/* if no args send something */
if (requested == 0) {
requested = 8;
}
if (offset + requested > sizeof(got)) {
PrintAndLog("Tried to read past end of buffer, <bytes> + <offset> > %d", BIGBUF_SIZE);
return 0;
}
GetFromBigBuf(got,requested,offset);
WaitForResponse(CMD_ACK,NULL);
i = 0;
for (j = 0; j < requested; j++) {
i++;
string_ptr += sprintf(string_ptr, "%02x ", got[j]);
if (i == 8) {
*(string_ptr - 1) = '\0'; // remove the trailing space
PrintAndLog("%s", string_buf);
string_buf[0] = '\0';
string_ptr = string_buf;
i = 0;
}
if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes
*(string_ptr - 1) = '\0';
PrintAndLog("%s", string_buf);
string_buf[0] = '\0';
}
}
return 0;
}
int CmdHide(const char *Cmd)
{
HideGraphWindow();
return 0;
}
//zero mean GraphBuffer
int CmdHpf(const char *Cmd)
{
int i;
int accum = 0;
for (i = 10; i < GraphTraceLen; ++i)
accum += GraphBuffer[i];
accum /= (GraphTraceLen - 10);
for (i = 0; i < GraphTraceLen; ++i)
GraphBuffer[i] -= accum;
RepaintGraphWindow();
return 0;
}
typedef struct {
uint8_t * buffer;
uint32_t numbits;
uint32_t position;
}BitstreamOut;
bool _headBit( BitstreamOut *stream)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = (stream->position++) & 7; // mask out 00000111
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
uint8_t getByte(uint8_t bits_per_sample, BitstreamOut* b)
{
int i;
uint8_t val = 0;
for(i =0 ; i < bits_per_sample; i++)
{
val |= (_headBit(b) << (7-i));
}
return val;
}
int getSamples(const char *Cmd, bool silent)
{
//If we get all but the last byte in bigbuf,
// we don't have to worry about remaining trash
// in the last byte in case the bits-per-sample
// does not line up on byte boundaries
uint8_t got[BIGBUF_SIZE-1] = { 0 };
int n = strtol(Cmd, NULL, 0);
if (n == 0)
n = sizeof(got);
if (n > sizeof(got))
n = sizeof(got);
PrintAndLog("Reading %d bytes from device memory\n", n);
GetFromBigBuf(got,n,0);
PrintAndLog("Data fetched");
UsbCommand response;
WaitForResponse(CMD_ACK, &response);
uint8_t bits_per_sample = 8;
//Old devices without this feature would send 0 at arg[0]
if(response.arg[0] > 0)
{
sample_config *sc = (sample_config *) response.d.asBytes;
PrintAndLog("Samples @ %d bits/smpl, decimation 1:%d ", sc->bits_per_sample
, sc->decimation);
bits_per_sample = sc->bits_per_sample;
}
if(bits_per_sample < 8)
{
PrintAndLog("Unpacking...");
BitstreamOut bout = { got, bits_per_sample * n, 0};
int j =0;
for (j = 0; j * bits_per_sample < n * 8 && j < sizeof(GraphBuffer); j++) {
uint8_t sample = getByte(bits_per_sample, &bout);
GraphBuffer[j] = ((int) sample )- 128;
}
GraphTraceLen = j;
PrintAndLog("Unpacked %d samples" , j );
}else
{
for (int j = 0; j < n; j++) {
GraphBuffer[j] = ((int)got[j]) - 128;
}
GraphTraceLen = n;
}
RepaintGraphWindow();
return 0;
}
int CmdSamples(const char *Cmd)
{
return getSamples(Cmd, false);
}
int CmdTuneSamples(const char *Cmd)
{
int timeout = 0;
printf("\nMeasuring antenna characteristics, please wait...");
UsbCommand c = {CMD_MEASURE_ANTENNA_TUNING};
SendCommand(&c);
UsbCommand resp;
while(!WaitForResponseTimeout(CMD_MEASURED_ANTENNA_TUNING,&resp,1000)) {
timeout++;
printf(".");
if (timeout > 7) {
PrintAndLog("\nNo response from Proxmark. Aborting...");
return 1;
}
}
int peakv, peakf;
int vLf125, vLf134, vHf;
vLf125 = resp.arg[0] & 0xffff;
vLf134 = resp.arg[0] >> 16;
vHf = resp.arg[1] & 0xffff;;
peakf = resp.arg[2] & 0xffff;
peakv = resp.arg[2] >> 16;
PrintAndLog("");
PrintAndLog("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/1000.0);
PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0);
PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1));
PrintAndLog("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0);
#define LF_UNUSABLE_V 2948 // was 2000. Changed due to bugfix in voltage measurements. LF results are now 47% higher.
#define LF_MARGINAL_V 14739 // was 10000. Changed due to bugfix bug in voltage measurements. LF results are now 47% higher.
#define HF_UNUSABLE_V 3167 // was 2000. Changed due to bugfix in voltage measurements. HF results are now 58% higher.
#define HF_MARGINAL_V 7917 // was 5000. Changed due to bugfix in voltage measurements. HF results are now 58% higher.
if (peakv < LF_UNUSABLE_V)
PrintAndLog("# Your LF antenna is unusable.");
else if (peakv < LF_MARGINAL_V)
PrintAndLog("# Your LF antenna is marginal.");
if (vHf < HF_UNUSABLE_V)
PrintAndLog("# Your HF antenna is unusable.");
else if (vHf < HF_MARGINAL_V)
PrintAndLog("# Your HF antenna is marginal.");
if (peakv >= LF_UNUSABLE_V) {
for (int i = 0; i < 256; i++) {
GraphBuffer[i] = resp.d.asBytes[i] - 128;
}
PrintAndLog("Displaying LF tuning graph. Divisor 89 is 134khz, 95 is 125khz.\n");
PrintAndLog("\n");
GraphTraceLen = 256;
ShowGraphWindow();
RepaintGraphWindow();
}
return 0;
}
int CmdLoad(const char *Cmd)
{
char filename[FILE_PATH_SIZE] = {0x00};
int len = 0;
len = strlen(Cmd);
if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE;
memcpy(filename, Cmd, len);
FILE *f = fopen(filename, "r");
if (!f) {
PrintAndLog("couldn't open '%s'", filename);
return 0;
}
GraphTraceLen = 0;
char line[80];
while (fgets(line, sizeof (line), f)) {
GraphBuffer[GraphTraceLen] = atoi(line);
GraphTraceLen++;
}
fclose(f);
PrintAndLog("loaded %d samples", GraphTraceLen);
RepaintGraphWindow();
return 0;
}
int CmdLtrim(const char *Cmd)
{
int ds = atoi(Cmd);
if (GraphTraceLen<=0) return 0;
for (int i = ds; i < GraphTraceLen; ++i)
GraphBuffer[i-ds] = GraphBuffer[i];
GraphTraceLen -= ds;
RepaintGraphWindow();
return 0;
}
// trim graph to input argument length
int CmdRtrim(const char *Cmd)
{
int ds = atoi(Cmd);
GraphTraceLen = ds;
RepaintGraphWindow();
return 0;
}
int CmdNorm(const char *Cmd)
{
int i;
int max = INT_MIN, min = INT_MAX;
for (i = 10; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] > max)
max = GraphBuffer[i];
if (GraphBuffer[i] < min)
min = GraphBuffer[i];
}
if (max != min) {
for (i = 0; i < GraphTraceLen; ++i) {
GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 256 /
(max - min);
//marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work
}
}
RepaintGraphWindow();
return 0;
}
int CmdPlot(const char *Cmd)
{
ShowGraphWindow();
return 0;
}
int CmdSave(const char *Cmd)
{
char filename[FILE_PATH_SIZE] = {0x00};
int len = 0;
len = strlen(Cmd);
if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE;
memcpy(filename, Cmd, len);
FILE *f = fopen(filename, "w");
if(!f) {
PrintAndLog("couldn't open '%s'", filename);
return 0;
}
int i;
for (i = 0; i < GraphTraceLen; i++) {
fprintf(f, "%d\n", GraphBuffer[i]);
}
fclose(f);
PrintAndLog("saved to '%s'", Cmd);
return 0;
}
int CmdScale(const char *Cmd)
{
CursorScaleFactor = atoi(Cmd);
if (CursorScaleFactor == 0) {
PrintAndLog("bad, can't have zero scale");
CursorScaleFactor = 1;
}
RepaintGraphWindow();
return 0;
}
int CmdDirectionalThreshold(const char *Cmd)
{
int8_t upThres = param_get8(Cmd, 0);
int8_t downThres = param_get8(Cmd, 1);
printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres);
int lastValue = GraphBuffer[0];
GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in.
for (int i = 1; i < GraphTraceLen; ++i) {
// Apply first threshold to samples heading up
if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue)
{
lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
GraphBuffer[i] = 1;
}
// Apply second threshold to samples heading down
else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue)
{
lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
GraphBuffer[i] = -1;
}
else
{
lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
GraphBuffer[i] = GraphBuffer[i-1];
}
}
GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample.
RepaintGraphWindow();
return 0;
}
int CmdZerocrossings(const char *Cmd)
{
// Zero-crossings aren't meaningful unless the signal is zero-mean.
CmdHpf("");
int sign = 1;
int zc = 0;
int lastZc = 0;
for (int i = 0; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] * sign >= 0) {
// No change in sign, reproduce the previous sample count.
zc++;
GraphBuffer[i] = lastZc;
} else {
// Change in sign, reset the sample count.
sign = -sign;
GraphBuffer[i] = lastZc;
if (sign > 0) {
lastZc = zc;
zc = 0;
}
}
}
RepaintGraphWindow();
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"askedgedetect", CmdAskEdgeDetect, 1, "[threshold] Adjust Graph for manual ask demod using the length of sample differences to detect the edge of a wave (use 20-45, def:25)"},
{"askem410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
{"askgproxiidemod", CmdG_Prox_II_Demod, 1, "Demodulate a G Prox II tag from GraphBuffer"},
{"autocorr", CmdAutoCorr, 1, "[window length] [g] -- Autocorrelation over window - g to save back to GraphBuffer (overwrite)"},
{"biphaserawdecode",CmdBiphaseDecodeRaw,1, "[offset] [invert<0|1>] [maxErr] -- Biphase decode bin stream in DemodBuffer (offset = 0|1 bits to shift the decode start)"},
{"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "[modulation] Detect clock rate of wave in GraphBuffer (options: 'a','f','n','p' for ask, fsk, nrz, psk respectively)"},
{"fskawiddemod", CmdFSKdemodAWID, 1, "Demodulate an AWID FSK tag from GraphBuffer"},
//{"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"},
{"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate a HID FSK tag from GraphBuffer"},
{"fskiodemod", CmdFSKdemodIO, 1, "Demodulate an IO Prox FSK tag from GraphBuffer"},
{"fskpyramiddemod", CmdFSKdemodPyramid, 1, "Demodulate a Pyramid FSK tag from GraphBuffer"},
{"fskparadoxdemod", CmdFSKdemodParadox, 1, "Demodulate a Paradox FSK tag from GraphBuffer"},
{"getbitstream", CmdGetBitStream, 1, "Convert GraphBuffer's >=1 values to 1 and <1 to 0"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
{"hide", CmdHide, 1, "Hide graph window"},
{"hpf", CmdHpf, 1, "Remove DC offset from trace"},
{"load", CmdLoad, 1, "<filename> -- Load trace (to graph window"},
{"ltrim", CmdLtrim, 1, "<samples> -- Trim samples from left of trace"},
{"rtrim", CmdRtrim, 1, "<location to end trace> -- Trim samples from right of trace"},
{"manrawdecode", Cmdmandecoderaw, 1, "[invert] [maxErr] -- Manchester decode binary stream in DemodBuffer"},
{"norm", CmdNorm, 1, "Normalize max/min to +/-128"},
{"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
{"printdemodbuffer",CmdPrintDemodBuff, 1, "[x] -- print the data in the DemodBuffer - 'x' for hex output"},
{"pskindalademod", CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Demodulate an indala tag (PSK1) from GraphBuffer (args optional)"},
{"psknexwatchdemod",CmdPSKNexWatch, 1, "Demodulate a NexWatch tag (nexkey, quadrakey) (PSK1) from GraphBuffer"},
{"rawdemod", CmdRawDemod, 1, "[modulation] ... <options> -see help (h option) -- Demodulate the data in the GraphBuffer and output binary"},
{"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window (GraphBuffer)"},
{"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
{"setdebugmode", CmdSetDebugMode, 1, "<0|1> -- Turn on or off Debugging Mode for demods"},
{"shiftgraphzero", CmdGraphShiftZero, 1, "<shift> -- Shift 0 for Graphed wave + or - shift value"},
{"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
{"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"},
{"undec", CmdUndec, 1, "Un-decimate samples by 2"},
{"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
{NULL, NULL, 0, NULL}
};
int CmdData(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}