mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-12-27 19:07:30 +08:00
674 lines
20 KiB
C
674 lines
20 KiB
C
//-----------------------------------------------------------------------------
|
|
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// See LICENSE.txt for the text of the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Miscellaneous routines for low frequency sampling.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "lfsampling.h"
|
|
|
|
#include "proxmark3_arm.h"
|
|
#include "BigBuf.h"
|
|
#include "fpgaloader.h"
|
|
#include "ticks.h"
|
|
#include "dbprint.h"
|
|
#include "util.h"
|
|
#include "lfdemod.h"
|
|
#include "string.h" // memset
|
|
#include "appmain.h" // print stack
|
|
|
|
/*
|
|
Default LF config is set to:
|
|
decimation = 1 (we keep 1 out of 1 samples)
|
|
bits_per_sample = 8
|
|
averaging = YES
|
|
divisor = 95 (125kHz)
|
|
trigger_threshold = 0
|
|
samples_to_skip = 0
|
|
verbose = YES
|
|
*/
|
|
|
|
static sample_config def_config = {
|
|
.decimation = 1,
|
|
.bits_per_sample = 8,
|
|
.averaging = 1,
|
|
.divisor = LF_DIVISOR_125,
|
|
.trigger_threshold = 0,
|
|
.samples_to_skip = 0,
|
|
.verbose = false,
|
|
};
|
|
|
|
static sample_config config = { 1, 8, 1, LF_DIVISOR_125, 0, 0, true} ;
|
|
|
|
// Holds bit packed struct of samples.
|
|
static BitstreamOut_t data = {0, 0, 0};
|
|
|
|
// internal struct to keep track of samples gathered
|
|
static sampling_t samples = {0, 0, 0, 0};
|
|
|
|
void printLFConfig(void) {
|
|
uint32_t d = config.divisor;
|
|
DbpString(_CYAN_("LF Sampling config"));
|
|
Dbprintf(" [q] divisor............. %d ( "_GREEN_("%d.%02d kHz")" )", d, 12000 / (d + 1), ((1200000 + (d + 1) / 2) / (d + 1)) - ((12000 / (d + 1)) * 100));
|
|
Dbprintf(" [b] bits per sample..... %d", config.bits_per_sample);
|
|
Dbprintf(" [d] decimation.......... %d", config.decimation);
|
|
Dbprintf(" [a] averaging........... %s", (config.averaging) ? "yes" : "no");
|
|
Dbprintf(" [t] trigger threshold... %d", config.trigger_threshold);
|
|
Dbprintf(" [s] samples to skip..... %d ", config.samples_to_skip);
|
|
DbpString("");
|
|
}
|
|
|
|
void printSamples(void) {
|
|
DbpString(_CYAN_("LF Sampling memory usage"));
|
|
// Dbprintf(" decimation counter...%d", samples.dec_counter);
|
|
// Dbprintf(" sum..................%u", samples.sum);
|
|
Dbprintf(" counter.............. " _YELLOW_("%u"), samples.counter);
|
|
Dbprintf(" total saved.......... " _YELLOW_("%u"), samples.total_saved);
|
|
print_stack_usage();
|
|
}
|
|
|
|
|
|
void setDefaultSamplingConfig(void) {
|
|
setSamplingConfig(&def_config);
|
|
}
|
|
|
|
/**
|
|
* Called from the USB-handler to set the sampling configuration
|
|
* The sampling config is used for standard reading and sniffing.
|
|
*
|
|
* Other functions may read samples and ignore the sampling config,
|
|
* such as functions to read the UID from a prox tag or similar.
|
|
*
|
|
* Values set to '-1' implies no change
|
|
* @brief setSamplingConfig
|
|
* @param sc
|
|
*/
|
|
void setSamplingConfig(sample_config *sc) {
|
|
|
|
// decimation (1-8) how many bits of adc sample value to save
|
|
if (sc->decimation > 0 && sc->decimation < 9)
|
|
config.decimation = sc->decimation;
|
|
|
|
// bits per sample (1-8)
|
|
if (sc->bits_per_sample > 0 && sc->bits_per_sample < 9)
|
|
config.bits_per_sample = sc->bits_per_sample;
|
|
|
|
//
|
|
if (sc->averaging > -1)
|
|
config.averaging = (sc->averaging > 0) ? 1 : 0;
|
|
|
|
// Frequency divisor (19 - 255)
|
|
if (sc->divisor > 18 && sc->divisor < 256)
|
|
config.divisor = sc->divisor;
|
|
|
|
// Start saving samples when adc value larger than trigger_threshold
|
|
if (sc->trigger_threshold > -1)
|
|
config.trigger_threshold = sc->trigger_threshold;
|
|
|
|
// Skip n adc samples before saving
|
|
if (sc->samples_to_skip > -1)
|
|
config.samples_to_skip = sc->samples_to_skip;
|
|
|
|
if (sc->verbose)
|
|
printLFConfig();
|
|
}
|
|
|
|
sample_config *getSamplingConfig(void) {
|
|
return &config;
|
|
}
|
|
|
|
/**
|
|
* @brief Pushes bit onto the stream
|
|
* @param stream
|
|
* @param bit
|
|
*/
|
|
static void pushBit(BitstreamOut_t *stream, uint8_t bit) {
|
|
int bytepos = stream->position >> 3; // divide by 8
|
|
int bitpos = stream->position & 7;
|
|
*(stream->buffer + bytepos) &= ~(1 << (7 - bitpos));
|
|
*(stream->buffer + bytepos) |= (bit > 0) << (7 - bitpos);
|
|
stream->position++;
|
|
stream->numbits++;
|
|
}
|
|
|
|
void initSampleBuffer(uint32_t *sample_size) {
|
|
initSampleBufferEx(sample_size, false);
|
|
}
|
|
|
|
void initSampleBufferEx(uint32_t *sample_size, bool use_malloc) {
|
|
if (sample_size == NULL) {
|
|
Dbprintf("initSampleBufferEx, param NULL");
|
|
return;
|
|
}
|
|
BigBuf_free_keep_EM();
|
|
|
|
// We can't erase the buffer now, it would drastically delay the acquisition
|
|
if (use_malloc) {
|
|
|
|
if (*sample_size == 0) {
|
|
*sample_size = BigBuf_max_traceLen();
|
|
data.buffer = BigBuf_get_addr();
|
|
} else {
|
|
*sample_size = MIN(*sample_size, BigBuf_max_traceLen());
|
|
data.buffer = BigBuf_malloc(*sample_size);
|
|
}
|
|
|
|
} else {
|
|
if (*sample_size == 0) {
|
|
*sample_size = BigBuf_max_traceLen();
|
|
} else {
|
|
*sample_size = MIN(*sample_size, BigBuf_max_traceLen());
|
|
}
|
|
data.buffer = BigBuf_get_addr();
|
|
}
|
|
|
|
// reset data stream
|
|
data.numbits = 0;
|
|
data.position = 0;
|
|
|
|
// reset samples
|
|
samples.dec_counter = 0;
|
|
samples.sum = 0;
|
|
samples.counter = *sample_size;
|
|
samples.total_saved = 0;
|
|
}
|
|
|
|
uint32_t getSampleCounter(void) {
|
|
return samples.total_saved;
|
|
}
|
|
|
|
void logSampleSimple(uint8_t sample) {
|
|
logSample(sample, config.decimation, config.bits_per_sample, config.averaging);
|
|
}
|
|
|
|
void logSample(uint8_t sample, uint8_t decimation, uint8_t bits_per_sample, bool avg) {
|
|
|
|
if (!data.buffer) return;
|
|
|
|
// keep track of total gather samples regardless how many was discarded.
|
|
if (samples.counter-- == 0) return;
|
|
|
|
if (bits_per_sample == 0) bits_per_sample = 1;
|
|
if (bits_per_sample > 8) bits_per_sample = 8;
|
|
if (decimation == 0) decimation = 1;
|
|
|
|
if (avg) {
|
|
samples.sum += sample;
|
|
}
|
|
|
|
// check decimation
|
|
if (decimation > 1) {
|
|
samples.dec_counter++;
|
|
|
|
if (samples.dec_counter < decimation) return;
|
|
|
|
samples.dec_counter = 0;
|
|
}
|
|
|
|
// averaging
|
|
if (avg && decimation > 1) {
|
|
sample = samples.sum / decimation;
|
|
samples.sum = 0;
|
|
}
|
|
|
|
// store the sample
|
|
samples.total_saved++;
|
|
|
|
if (bits_per_sample == 8) {
|
|
|
|
data.buffer[samples.total_saved - 1] = sample;
|
|
|
|
// add number of bits.
|
|
data.numbits = samples.total_saved << 3;
|
|
|
|
} else {
|
|
pushBit(&data, sample & 0x80);
|
|
if (bits_per_sample > 1) pushBit(&data, sample & 0x40);
|
|
if (bits_per_sample > 2) pushBit(&data, sample & 0x20);
|
|
if (bits_per_sample > 3) pushBit(&data, sample & 0x10);
|
|
if (bits_per_sample > 4) pushBit(&data, sample & 0x08);
|
|
if (bits_per_sample > 5) pushBit(&data, sample & 0x04);
|
|
if (bits_per_sample > 6) pushBit(&data, sample & 0x02);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
|
|
* if not already loaded, sets divisor and starts up the antenna.
|
|
* @param divisor : 1, 88> 255 or negative ==> 134.8 kHz
|
|
* 0 or 95 ==> 125 kHz
|
|
*
|
|
**/
|
|
void LFSetupFPGAForADC(int divisor, bool reader_field) {
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
if ((divisor == 1) || (divisor < 0) || (divisor > 255))
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_134); //~134kHz
|
|
else if (divisor == 0)
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125); //125kHz
|
|
else
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | (reader_field ? FPGA_LF_ADC_READER_FIELD : 0));
|
|
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_LF_READER);
|
|
|
|
// start a 1.5ticks is 1us
|
|
StartTicks();
|
|
|
|
// 50ms for the resonant antenna to settle.
|
|
if (reader_field) {
|
|
WaitMS(50);
|
|
} else {
|
|
WaitMS(1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Does the sample acquisition. If threshold is specified, the actual sampling
|
|
* is not commenced until the threshold has been reached.
|
|
* This method implements decimation and quantization in order to
|
|
* be able to provide longer sample traces.
|
|
* Uses the following global settings:
|
|
* @param decimation - how much should the signal be decimated. A decimation of N means we keep 1 in N samples, etc.
|
|
* @param bits_per_sample - bits per sample. Max 8, min 1 bit per sample.
|
|
* @param averaging If set to true, decimation will use averaging, so that if e.g. decimation is 3, the sample
|
|
* value that will be used is the average value of the three samples.
|
|
* @param trigger_threshold - a threshold. The sampling won't commence until this threshold has been reached. Set
|
|
* to -1 to ignore threshold.
|
|
* @param verbose - is true, dbprints the status, else no outputs
|
|
* @return the number of bits occupied by the samples.
|
|
*/
|
|
uint32_t DoAcquisition(uint8_t decimation, uint8_t bits_per_sample, bool avg, int16_t trigger_threshold,
|
|
bool verbose, uint32_t sample_size, uint32_t cancel_after, int32_t samples_to_skip, bool ledcontrol) {
|
|
|
|
initSampleBuffer(&sample_size); // sample size in bytes
|
|
sample_size <<= 3; // sample size in bits
|
|
sample_size /= bits_per_sample; // sample count
|
|
|
|
if (g_dbglevel >= DBG_DEBUG) {
|
|
printSamples();
|
|
}
|
|
|
|
bool trigger_hit = false;
|
|
uint32_t cancel_counter = 0;
|
|
int16_t checked = 0;
|
|
|
|
while (BUTTON_PRESS() == false) {
|
|
|
|
// only every 4000th times, in order to save time when collecting samples.
|
|
// interruptible only when logging not yet triggered
|
|
if ((checked >= 4000) && trigger_hit == false) {
|
|
if (data_available()) {
|
|
checked = -1;
|
|
break;
|
|
} else {
|
|
checked = 0;
|
|
}
|
|
}
|
|
++checked;
|
|
|
|
WDT_HIT();
|
|
|
|
if (ledcontrol && (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY)) {
|
|
LED_D_ON();
|
|
}
|
|
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
// Test point 8 (TP8) can be used to trigger oscilloscope
|
|
if (ledcontrol) LED_D_OFF();
|
|
|
|
// threshold either high or low values 128 = center 0. if trigger = 178
|
|
if (trigger_hit == false) {
|
|
if ((trigger_threshold > 0) && (sample < (trigger_threshold + 128)) && (sample > (128 - trigger_threshold))) {
|
|
if (cancel_after > 0) {
|
|
cancel_counter++;
|
|
if (cancel_after == cancel_counter)
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
trigger_hit = true;
|
|
|
|
if (samples_to_skip > 0) {
|
|
samples_to_skip--;
|
|
continue;
|
|
}
|
|
|
|
logSample(sample, decimation, bits_per_sample, avg);
|
|
|
|
if (samples.total_saved >= sample_size) break;
|
|
}
|
|
}
|
|
|
|
if (verbose) {
|
|
if (checked == -1) {
|
|
Dbprintf("lf sampling aborted");
|
|
} else if ((cancel_counter == cancel_after) && (cancel_after > 0)) {
|
|
Dbprintf("lf sampling cancelled after %u", cancel_counter);
|
|
}
|
|
|
|
Dbprintf("Done, saved " _YELLOW_("%d")" out of " _YELLOW_("%d")" seen samples at " _YELLOW_("%d")" bits/sample", samples.total_saved, samples.counter, bits_per_sample);
|
|
}
|
|
|
|
// Ensure that DC offset removal and noise check is performed for any device-side processing
|
|
if (bits_per_sample == 8) {
|
|
// these functions only consider bps==8
|
|
removeSignalOffset(data.buffer, samples.total_saved);
|
|
computeSignalProperties(data.buffer, samples.total_saved);
|
|
}
|
|
return data.numbits;
|
|
}
|
|
/**
|
|
* @brief Does sample acquisition, ignoring the config values set in the sample_config.
|
|
* This method is typically used by tag-specific readers who just wants to read the samples
|
|
* the normal way
|
|
* @param trigger_threshold
|
|
* @param verbose
|
|
* @return number of bits sampled
|
|
*/
|
|
uint32_t DoAcquisition_default(int trigger_threshold, bool verbose, bool ledcontrol) {
|
|
return DoAcquisition(1, 8, 0, trigger_threshold, verbose, 0, 0, 0, ledcontrol);
|
|
}
|
|
uint32_t DoAcquisition_config(bool verbose, uint32_t sample_size, bool ledcontrol) {
|
|
return DoAcquisition(config.decimation
|
|
, config.bits_per_sample
|
|
, config.averaging
|
|
, config.trigger_threshold
|
|
, verbose
|
|
, sample_size
|
|
, 0 // cancel_after
|
|
, config.samples_to_skip
|
|
, ledcontrol);
|
|
}
|
|
|
|
uint32_t DoPartialAcquisition(int trigger_threshold, bool verbose, uint32_t sample_size, uint32_t cancel_after, bool ledcontrol) {
|
|
return DoAcquisition(config.decimation
|
|
, config.bits_per_sample
|
|
, config.averaging
|
|
, trigger_threshold
|
|
, verbose
|
|
, sample_size
|
|
, cancel_after
|
|
, 0
|
|
, ledcontrol); // samples to skip
|
|
}
|
|
|
|
static uint32_t ReadLF(bool reader_field, bool verbose, uint32_t sample_size, bool ledcontrol) {
|
|
if (verbose)
|
|
printLFConfig();
|
|
|
|
LFSetupFPGAForADC(config.divisor, reader_field);
|
|
uint32_t ret = DoAcquisition_config(verbose, sample_size, ledcontrol);
|
|
StopTicks();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Initializes the FPGA for reader-mode (field on), and acquires the samples.
|
|
* @return number of bits sampled
|
|
**/
|
|
uint32_t SampleLF(bool verbose, uint32_t sample_size, bool ledcontrol) {
|
|
BigBuf_Clear_ext(false);
|
|
return ReadLF(true, verbose, sample_size, ledcontrol);
|
|
}
|
|
/**
|
|
* Initializes the FPGA for sniffer-mode (field off), and acquires the samples.
|
|
* @return number of bits sampled
|
|
**/
|
|
uint32_t SniffLF(bool verbose, uint32_t sample_size, bool ledcontrol) {
|
|
BigBuf_Clear_ext(false);
|
|
return ReadLF(false, verbose, sample_size, ledcontrol);
|
|
}
|
|
|
|
/**
|
|
* acquisition of T55x7 LF signal. Similar to other LF, but adjusted with @marshmellows thresholds
|
|
* the data is collected in BigBuf.
|
|
**/
|
|
void doT55x7Acquisition(size_t sample_size, bool ledcontrol) {
|
|
|
|
#define T55xx_READ_UPPER_THRESHOLD 128+60 // 60 grph
|
|
#define T55xx_READ_LOWER_THRESHOLD 128-60 // -60 grph
|
|
#define T55xx_READ_TOL 5
|
|
|
|
uint8_t *dest = BigBuf_get_addr();
|
|
uint16_t bufsize = BigBuf_max_traceLen();
|
|
|
|
if (bufsize > sample_size)
|
|
bufsize = sample_size;
|
|
|
|
uint8_t lastSample = 0;
|
|
uint16_t i = 0, skipCnt = 0;
|
|
bool startFound = false;
|
|
bool highFound = false;
|
|
bool lowFound = false;
|
|
|
|
uint16_t checker = 0;
|
|
|
|
if (g_dbglevel >= DBG_DEBUG) {
|
|
Dbprintf("doT55x7Acquisition - after init");
|
|
print_stack_usage();
|
|
}
|
|
|
|
while (skipCnt < 1000 && (i < bufsize)) {
|
|
|
|
if (BUTTON_PRESS())
|
|
break;
|
|
|
|
if (checker == 4000) {
|
|
if (data_available())
|
|
break;
|
|
else
|
|
checker = 0;
|
|
} else {
|
|
++checker;
|
|
}
|
|
|
|
WDT_HIT();
|
|
|
|
if (ledcontrol && (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY)) {
|
|
LED_D_ON();
|
|
}
|
|
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
if (ledcontrol) LED_D_OFF();
|
|
|
|
// skip until the first high sample above threshold
|
|
if (!startFound && sample > T55xx_READ_UPPER_THRESHOLD) {
|
|
highFound = true;
|
|
} else if (!highFound) {
|
|
skipCnt++;
|
|
continue;
|
|
}
|
|
// skip until the first low sample below threshold
|
|
if (!startFound && sample < T55xx_READ_LOWER_THRESHOLD) {
|
|
lastSample = sample;
|
|
lowFound = true;
|
|
} else if (!lowFound) {
|
|
skipCnt++;
|
|
continue;
|
|
}
|
|
|
|
// skip until first high samples begin to change
|
|
if (startFound || sample > T55xx_READ_LOWER_THRESHOLD + T55xx_READ_TOL) {
|
|
// if just found start - recover last sample
|
|
if (!startFound) {
|
|
dest[i++] = lastSample;
|
|
startFound = true;
|
|
}
|
|
// collect samples
|
|
dest[i++] = sample;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/**
|
|
* acquisition of Cotag LF signal. Similart to other LF, since the Cotag has such long datarate RF/384
|
|
* and is Manchester?, we directly gather the manchester data into bigbuff
|
|
**/
|
|
|
|
#define COTAG_T1 384
|
|
#define COTAG_T2 (COTAG_T1 >> 1)
|
|
#define COTAG_ONE_THRESHOLD 127+5
|
|
#define COTAG_ZERO_THRESHOLD 127-5
|
|
#ifndef COTAG_BITS
|
|
#define COTAG_BITS 264
|
|
#endif
|
|
void doCotagAcquisition(void) {
|
|
|
|
uint16_t bufsize = BigBuf_max_traceLen();
|
|
uint8_t *dest = BigBuf_malloc(bufsize);
|
|
|
|
dest[0] = 0;
|
|
|
|
bool firsthigh = false, firstlow = false;
|
|
uint16_t i = 0, noise_counter = 0;
|
|
|
|
uint16_t checker = 0;
|
|
|
|
while ((i < bufsize - 1) && (noise_counter < COTAG_T1 << 1)) {
|
|
|
|
if (BUTTON_PRESS())
|
|
break;
|
|
|
|
if (checker == 4000) {
|
|
if (data_available())
|
|
break;
|
|
else
|
|
checker = 0;
|
|
} else {
|
|
++checker;
|
|
}
|
|
|
|
WDT_HIT();
|
|
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
|
|
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
// find first peak
|
|
if (firsthigh == false) {
|
|
if (sample < COTAG_ONE_THRESHOLD) {
|
|
noise_counter++;
|
|
continue;
|
|
}
|
|
|
|
noise_counter = 0;
|
|
firsthigh = true;
|
|
}
|
|
|
|
if (firstlow == false) {
|
|
if (sample > COTAG_ZERO_THRESHOLD) {
|
|
noise_counter++;
|
|
continue;
|
|
}
|
|
|
|
noise_counter = 0;
|
|
firstlow = true;
|
|
}
|
|
|
|
++i;
|
|
if (sample > COTAG_ONE_THRESHOLD) {
|
|
dest[i] = 255;
|
|
} else if (sample < COTAG_ZERO_THRESHOLD) {
|
|
dest[i] = 0;
|
|
} else {
|
|
dest[i] = dest[i - 1];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ensure that DC offset removal and noise check is performed for any device-side processing
|
|
removeSignalOffset(dest, i);
|
|
computeSignalProperties(dest, i);
|
|
}
|
|
|
|
uint16_t doCotagAcquisitionManchester(uint8_t *dest, uint16_t destlen) {
|
|
|
|
if (dest == NULL)
|
|
return 0;
|
|
|
|
dest[0] = 0;
|
|
|
|
bool firsthigh = false, firstlow = false;
|
|
uint8_t curr = 0, prev = 0;
|
|
uint16_t i = 0;
|
|
uint16_t period = 0, checker = 0;
|
|
|
|
while ((i < destlen) && BUTTON_PRESS() == false) {
|
|
|
|
WDT_HIT();
|
|
|
|
if (checker == 4000) {
|
|
if (data_available())
|
|
break;
|
|
else
|
|
checker = 0;
|
|
} else {
|
|
++checker;
|
|
}
|
|
|
|
|
|
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
|
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
// find first peak
|
|
if (firsthigh == false) {
|
|
if (sample < COTAG_ONE_THRESHOLD) {
|
|
continue;
|
|
}
|
|
firsthigh = true;
|
|
}
|
|
|
|
if (firstlow == false) {
|
|
if (sample > COTAG_ZERO_THRESHOLD) {
|
|
continue;
|
|
}
|
|
firstlow = true;
|
|
}
|
|
|
|
// set sample 255, 0, or previous
|
|
if (sample > COTAG_ONE_THRESHOLD) {
|
|
prev = curr;
|
|
curr = 1;
|
|
} else if (sample < COTAG_ZERO_THRESHOLD) {
|
|
prev = curr;
|
|
curr = 0;
|
|
} else {
|
|
curr = prev;
|
|
}
|
|
|
|
// full T1 periods,
|
|
if (period > 0) {
|
|
--period;
|
|
continue;
|
|
}
|
|
|
|
dest[i] = curr;
|
|
++i;
|
|
period = COTAG_T1;
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|