proxmark3/client/cmdlfem4x.c
2020-01-09 22:58:49 +01:00

1775 lines
64 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency EM4x commands
//-----------------------------------------------------------------------------
#include "cmdlfem4x.h"
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <ctype.h>
#include <stdlib.h>
#include "fileutils.h"
#include "cmdparser.h" // command_t
#include "comms.h"
#include "commonutil.h"
#include "common.h"
#include "util_posix.h"
#include "protocols.h"
#include "ui.h"
#include "graph.h"
#include "cmddata.h"
#include "cmdlf.h"
#include "lfdemod.h"
uint64_t g_em410xid = 0;
static int CmdHelp(const char *Cmd);
//////////////// 410x commands
static int usage_lf_em410x_demod(void) {
PrintAndLogEx(NORMAL, "Usage: lf em 410x_demod [h] [clock] <0|1> [maxError]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " clock - set clock as integer, optional, if not set, autodetect.");
PrintAndLogEx(NORMAL, " <0|1> - 0 normal output, 1 for invert output");
PrintAndLogEx(NORMAL, " maxerror - set maximum allowed errors, default = 100.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 410x_demod = demod an EM410x Tag ID from GraphBuffer");
PrintAndLogEx(NORMAL, " lf em 410x_demod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
PrintAndLogEx(NORMAL, " lf em 410x_demod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLogEx(NORMAL, " lf em 410x_demod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
PrintAndLogEx(NORMAL, " lf em 410x_demod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
return PM3_SUCCESS;
}
static int usage_lf_em410x_write(void) {
PrintAndLogEx(NORMAL, "Writes EM410x ID to a T55x7 / T5555 (Q5) tag");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 410x_write [h] <id> <card> [clock]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " <id> - ID number");
PrintAndLogEx(NORMAL, " <card> - 0|1 T5555 (Q5) / T55x7");
PrintAndLogEx(NORMAL, " <clock> - 16|32|40|64, optional, set R/F clock rate, defaults to 64");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 410x_write 0F0368568B 1 = write ID to t55x7 card");
return PM3_SUCCESS;
}
static int usage_lf_em410x_ws(void) {
PrintAndLogEx(NORMAL, "Watch 'nd Spoof, activates reader, waits until a EM410x tag gets presented then it starts simulating the found UID");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 410x_spoof [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 410x_spoof");
return PM3_SUCCESS;
}
static int usage_lf_em410x_sim(void) {
PrintAndLogEx(NORMAL, "Simulating EM410x tag");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 410x_sim [h] <uid> <clock>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " uid - uid (10 HEX symbols)");
PrintAndLogEx(NORMAL, " clock - clock (32|64) (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 410x_sim 0F0368568B");
PrintAndLogEx(NORMAL, " lf em 410x_sim 0F0368568B 32");
return PM3_SUCCESS;
}
static int usage_lf_em410x_brute(void) {
PrintAndLogEx(NORMAL, "Bruteforcing by emulating EM410x tag");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 410x_brute [h] ids.txt [d 2000] [c clock]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " ids.txt - file with UIDs in HEX format, one per line");
PrintAndLogEx(NORMAL, " d (2000) - pause delay in milliseconds between UIDs simulation, default 1000 ms (optional)");
PrintAndLogEx(NORMAL, " c (32) - clock (32|64), default 64 (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 410x_brute ids.txt");
PrintAndLogEx(NORMAL, " lf em 410x_brute ids.txt c 32");
PrintAndLogEx(NORMAL, " lf em 410x_brute ids.txt d 3000");
PrintAndLogEx(NORMAL, " lf em 410x_brute ids.txt d 3000 c 32");
return PM3_SUCCESS;
}
//////////////// 4050 / 4450 commands
static int usage_lf_em4x50_demod(void) {
PrintAndLogEx(NORMAL, "Usage: lf em 4x50_demod [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 4x50_demod");
return PM3_SUCCESS;
}
static int usage_lf_em4x50_dump(void) {
PrintAndLogEx(NORMAL, "Dump EM4x50/EM4x69. Tag must be on antenna. ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 4x50_dump [h] <pwd>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 4x50_dump");
PrintAndLogEx(NORMAL, " lf em 4x50_dump 11223344");
return PM3_SUCCESS;
}
static int usage_lf_em4x50_read(void) {
PrintAndLogEx(NORMAL, "Read EM 4x50/EM4x69. Tag must be on antenna. ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 4x50_read [h] <address> <pwd>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " address - memory address to read. (0-15)");
PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 4x50_read 1");
PrintAndLogEx(NORMAL, " lf em 4x50_read 1 11223344");
return PM3_SUCCESS;
}
static int usage_lf_em4x50_write(void) {
PrintAndLogEx(NORMAL, "Write EM 4x50/4x69. Tag must be on antenna. ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 4x50_write [h] <address> <data> <pwd>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " address - memory address to write to. (0-15)");
PrintAndLogEx(NORMAL, " data - data to write (hex)");
PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 4x50_write 1 deadc0de");
PrintAndLogEx(NORMAL, " lf em 4x50_write 1 deadc0de 11223344");
return PM3_SUCCESS;
}
//////////////// 4205 / 4305 commands
static int usage_lf_em4x05_dump(void) {
PrintAndLogEx(NORMAL, "Dump EM4x05/EM4x69. Tag must be on antenna. ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 4x05_dump [h] [f <filename prefix>] <pwd>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " f <filename prefix> - overide filename prefix (optional). Default is based on UID");
PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 4x05_dump");
PrintAndLogEx(NORMAL, " lf em 4x05_dump 11223344");
PrintAndLogEx(NORMAL, " lf em 4x50_dump f card1 11223344");
return PM3_SUCCESS;
}
static int usage_lf_em4x05_wipe(void) {
PrintAndLogEx(NORMAL, "Wipe EM4x05/EM4x69. Tag must be on antenna. ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 4x05_wipe [h] <pwd>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " c - chip type : 0 em4205");
PrintAndLogEx(NORMAL, " 1 em4305 (default)");
PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 4x05_wipe");
PrintAndLogEx(NORMAL, " lf em 4x05_wipe 11223344");
return PM3_SUCCESS;
}
static int usage_lf_em4x05_read(void) {
PrintAndLogEx(NORMAL, "Read EM4x05/EM4x69. Tag must be on antenna. ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 4x05_read [h] <address> <pwd>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " address - memory address to read. (0-15)");
PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 4x05_read 1");
PrintAndLogEx(NORMAL, " lf em 4x05_read 1 11223344");
return PM3_SUCCESS;
}
static int usage_lf_em4x05_write(void) {
PrintAndLogEx(NORMAL, "Write EM4x05/4x69. Tag must be on antenna. ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 4x05_write [h] <address> <data> <pwd>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " address - memory address to write to. (0-15)");
PrintAndLogEx(NORMAL, " data - data to write (hex)");
PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 4x05_write 1 deadc0de");
PrintAndLogEx(NORMAL, " lf em 4x05_write 1 deadc0de 11223344");
return PM3_SUCCESS;
}
static int usage_lf_em4x05_info(void) {
PrintAndLogEx(NORMAL, "Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf em 4x05_info [h] <pwd>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - this help");
PrintAndLogEx(NORMAL, " pwd - password (hex) (optional)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf em 4x05_info");
PrintAndLogEx(NORMAL, " lf em 4x05_info deadc0de");
return PM3_SUCCESS;
}
/* Read the ID of an EM410x tag.
* Format:
* 1111 1111 1 <-- standard non-repeatable header
* XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
* ....
* CCCC <-- each bit here is parity for the 10 bits above in corresponding column
* 0 <-- stop bit, end of tag
*/
// Construct the graph for emulating an EM410X tag
static void ConstructEM410xEmulGraph(const char *uid, const uint8_t clock) {
int i, j, binary[4], parity[4];
uint32_t n;
/* clear our graph */
ClearGraph(true);
/* write 16 zero bit sledge */
for (i = 0; i < 20; i++)
AppendGraph(false, clock, 0);
/* write 9 start bits */
for (i = 0; i < 9; i++)
AppendGraph(false, clock, 1);
/* for each hex char */
parity[0] = parity[1] = parity[2] = parity[3] = 0;
for (i = 0; i < 10; i++) {
/* read each hex char */
sscanf(&uid[i], "%1x", &n);
for (j = 3; j >= 0; j--, n /= 2)
binary[j] = n % 2;
/* append each bit */
AppendGraph(false, clock, binary[0]);
AppendGraph(false, clock, binary[1]);
AppendGraph(false, clock, binary[2]);
AppendGraph(false, clock, binary[3]);
/* append parity bit */
AppendGraph(false, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
/* keep track of column parity */
parity[0] ^= binary[0];
parity[1] ^= binary[1];
parity[2] ^= binary[2];
parity[3] ^= binary[3];
}
/* parity columns */
AppendGraph(false, clock, parity[0]);
AppendGraph(false, clock, parity[1]);
AppendGraph(false, clock, parity[2]);
AppendGraph(false, clock, parity[3]);
/* stop bit */
AppendGraph(true, clock, 0);
}
//by marshmellow
//print 64 bit EM410x ID in multiple formats
void printEM410x(uint32_t hi, uint64_t id) {
if (!id && !hi) return;
PrintAndLogEx(SUCCESS, "EM410x%s pattern found", (hi) ? " XL" : "");
uint64_t n = 1;
uint64_t id2lo = 0;
uint8_t m, i;
for (m = 5; m > 0; m--) {
for (i = 0; i < 8; i++) {
id2lo = (id2lo << 1LL) | ((id & (n << (i + ((m - 1) * 8)))) >> (i + ((m - 1) * 8)));
}
}
if (hi) {
//output 88 bit em id
PrintAndLogEx(NORMAL, "\nEM TAG ID : "_YELLOW_("%06X%016" PRIX64), hi, id);
} else {
//output 40 bit em id
PrintAndLogEx(NORMAL, "\nEM TAG ID : "_YELLOW_("%010" PRIX64), id);
PrintAndLogEx(NORMAL, "\nPossible de-scramble patterns\n");
PrintAndLogEx(NORMAL, "Unique TAG ID : %010" PRIX64, id2lo);
PrintAndLogEx(NORMAL, "HoneyWell IdentKey {");
PrintAndLogEx(NORMAL, "DEZ 8 : %08" PRIu64, id & 0xFFFFFF);
PrintAndLogEx(NORMAL, "DEZ 10 : %010" PRIu64, id & 0xFFFFFFFF);
PrintAndLogEx(NORMAL, "DEZ 5.5 : %05" PRIu64 ".%05" PRIu64, (id >> 16LL) & 0xFFFF, (id & 0xFFFF));
PrintAndLogEx(NORMAL, "DEZ 3.5A : %03" PRIu64 ".%05" PRIu64, (id >> 32ll), (id & 0xFFFF));
PrintAndLogEx(NORMAL, "DEZ 3.5B : %03" PRIu64 ".%05" PRIu64, (id & 0xFF000000) >> 24, (id & 0xFFFF));
PrintAndLogEx(NORMAL, "DEZ 3.5C : %03" PRIu64 ".%05" PRIu64, (id & 0xFF0000) >> 16, (id & 0xFFFF));
PrintAndLogEx(NORMAL, "DEZ 14/IK2 : %014" PRIu64, id);
PrintAndLogEx(NORMAL, "DEZ 15/IK3 : %015" PRIu64, id2lo);
PrintAndLogEx(NORMAL, "DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64,
(id2lo & 0xf000000000) >> 36,
(id2lo & 0x0f00000000) >> 32,
(id2lo & 0x00f0000000) >> 28,
(id2lo & 0x000f000000) >> 24,
(id2lo & 0x0000f00000) >> 20,
(id2lo & 0x00000f0000) >> 16,
(id2lo & 0x000000f000) >> 12,
(id2lo & 0x0000000f00) >> 8,
(id2lo & 0x00000000f0) >> 4,
(id2lo & 0x000000000f)
);
uint64_t paxton = (((id >> 32) << 24) | (id & 0xffffff)) + 0x143e00;
PrintAndLogEx(NORMAL, "}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64, (id & 0xFFFF), ((id >> 16LL) & 0xFF), (id & 0xFFFFFF));
PrintAndLogEx(NORMAL, "Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton);
uint32_t p1id = (id & 0xFFFFFF);
uint8_t arr[32] = {0x00};
int j = 23;
for (int k = 0 ; k < 24; ++k, --j) {
arr[k] = (p1id >> k) & 1;
}
uint32_t p1 = 0;
p1 |= arr[23] << 21;
p1 |= arr[22] << 23;
p1 |= arr[21] << 20;
p1 |= arr[20] << 22;
p1 |= arr[19] << 18;
p1 |= arr[18] << 16;
p1 |= arr[17] << 19;
p1 |= arr[16] << 17;
p1 |= arr[15] << 13;
p1 |= arr[14] << 15;
p1 |= arr[13] << 12;
p1 |= arr[12] << 14;
p1 |= arr[11] << 6;
p1 |= arr[10] << 2;
p1 |= arr[9] << 7;
p1 |= arr[8] << 1;
p1 |= arr[7] << 0;
p1 |= arr[6] << 8;
p1 |= arr[5] << 11;
p1 |= arr[4] << 3;
p1 |= arr[3] << 10;
p1 |= arr[2] << 4;
p1 |= arr[1] << 5;
p1 |= arr[0] << 9;
PrintAndLogEx(NORMAL, "Pattern 1 : %d [0x%X]", p1, p1);
uint16_t sebury1 = id & 0xFFFF;
uint8_t sebury2 = (id >> 16) & 0x7F;
uint32_t sebury3 = id & 0x7FFFFF;
PrintAndLogEx(NORMAL, "Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
}
}
/* Read the ID of an EM410x tag.
* Format:
* 1111 1111 1 <-- standard non-repeatable header
* XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
* ....
* CCCC <-- each bit here is parity for the 10 bits above in corresponding column
* 0 <-- stop bit, end of tag
*/
int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo) {
size_t idx = 0;
uint8_t bits[512] = {0};
size_t size = sizeof(bits);
if (!getDemodBuff(bits, &size)) {
PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x problem during copy from ASK demod");
return PM3_ESOFT;
}
int ans = Em410xDecode(bits, &size, &idx, hi, lo);
if (ans < 0) {
if (ans == -2)
PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x not enough samples after demod");
else if (ans == -4)
PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x preamble not found");
else if (ans == -5)
PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x Size not correct: %zu", size);
else if (ans == -6)
PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x parity failed");
return PM3_ESOFT;
}
if (!lo && !hi) {
PrintAndLogEx(DEBUG, "DEBUG: Error - Em410x decoded to all zeros");
return PM3_ESOFT;
}
//set GraphBuffer for clone or sim command
setDemodBuff(DemodBuffer, (size == 40) ? 64 : 128, idx + 1);
setClockGrid(g_DemodClock, g_DemodStartIdx + ((idx + 1)*g_DemodClock));
PrintAndLogEx(DEBUG, "DEBUG: Em410x idx: %zu, Len: %zu, Printing Demod Buffer:", idx, size);
if (g_debugMode)
printDemodBuff();
if (verbose)
printEM410x(*hi, *lo);
return PM3_SUCCESS;
}
int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose) {
bool st = true;
// em410x simulation etc uses 0/1 as signal data. This must be converted in order to demod it back again
if (isGraphBitstream()) {
convertGraphFromBitstream();
}
if (ASKDemod_ext(Cmd, false, false, 1, &st) != PM3_SUCCESS)
return PM3_ESOFT;
return AskEm410xDecode(verbose, hi, lo);
}
/*
// this read loops on device side.
// uses the demod in lfops.c
static int CmdEM410xRead_device(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
uint8_t findone = (cmdp == '1') ? 1 : 0;
SendCommandMIX(CMD_LF_EM410X_DEMOD, findone, 0, 0, NULL, 0);
return PM3_SUCCESS;
}
*/
//by marshmellow
//takes 3 arguments - clock, invert and maxErr as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
static int CmdEM410xDemod(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 10 || cmdp == 'h') return usage_lf_em410x_demod();
uint32_t hi = 0;
uint64_t lo = 0;
if (AskEm410xDemod(Cmd, &hi, &lo, true) != PM3_SUCCESS)
return PM3_ESOFT;
g_em410xid = lo;
return PM3_SUCCESS;
}
// this read is the "normal" read, which download lf signal and tries to demod here.
static int CmdEM410xRead(const char *Cmd) {
lf_read(false, 12288);
return CmdEM410xDemod(Cmd);
}
// emulate an EM410X tag
static int CmdEM410xSim(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_lf_em410x_sim();
uint8_t uid[5] = {0x00};
/* clock is 64 in EM410x tags */
uint8_t clk = 64;
if (param_gethex(Cmd, 0, uid, 10)) {
PrintAndLogEx(FAILED, "UID must include 10 HEX symbols");
return PM3_EINVARG;
}
param_getdec(Cmd, 1, &clk);
PrintAndLogEx(SUCCESS, "Starting simulating UID "_YELLOW_("%02X%02X%02X%02X%02X")"clock: "_YELLOW_("%d"), uid[0], uid[1], uid[2], uid[3], uid[4], clk);
PrintAndLogEx(SUCCESS, "Press pm3-button to abort simulation");
ConstructEM410xEmulGraph(Cmd, clk);
CmdLFSim("0"); //240 start_gap.
return PM3_SUCCESS;
}
static int CmdEM410xBrute(const char *Cmd) {
char filename[FILE_PATH_SIZE] = {0};
FILE *f = NULL;
char buf[11];
uint32_t uidcnt = 0;
uint8_t stUidBlock = 20;
uint8_t *uidBlock = NULL, *p = NULL;
uint8_t uid[5] = {0x00};
/* clock is 64 in EM410x tags */
uint8_t clock1 = 64;
/* default pause time: 1 second */
uint32_t delay = 1000;
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_lf_em410x_brute();
cmdp = tolower(param_getchar(Cmd, 1));
if (cmdp == 'd') {
delay = param_get32ex(Cmd, 2, 1000, 10);
param_getdec(Cmd, 4, &clock1);
} else if (cmdp == 'c') {
param_getdec(Cmd, 2, &clock1);
delay = param_get32ex(Cmd, 4, 1000, 10);
}
int filelen = param_getstr(Cmd, 0, filename, FILE_PATH_SIZE);
if (filelen == 0) {
PrintAndLogEx(ERR, "Error: Please specify a filename");
return PM3_EINVARG;
}
if ((f = fopen(filename, "r")) == NULL) {
PrintAndLogEx(ERR, "Error: Could not open UIDs file ["_YELLOW_("%s")"]", filename);
return PM3_EFILE;
}
uidBlock = calloc(stUidBlock, 5);
if (uidBlock == NULL) {
fclose(f);
return PM3_ESOFT;
}
while (fgets(buf, sizeof(buf), f)) {
if (strlen(buf) < 10 || buf[9] == '\n') continue;
while (fgetc(f) != '\n' && !feof(f)); //goto next line
//The line start with # is comment, skip
if (buf[0] == '#') continue;
if (param_gethex(buf, 0, uid, 10)) {
PrintAndLogEx(FAILED, "UIDs must include 10 HEX symbols");
free(uidBlock);
fclose(f);
return PM3_ESOFT;
}
buf[10] = 0;
if (stUidBlock - uidcnt < 2) {
p = realloc(uidBlock, 5 * (stUidBlock += 10));
if (!p) {
PrintAndLogEx(WARNING, "Cannot allocate memory for UIDs");
free(uidBlock);
fclose(f);
return PM3_ESOFT;
}
uidBlock = p;
}
memset(uidBlock + 5 * uidcnt, 0, 5);
num_to_bytes(strtoll(buf, NULL, 16), 5, uidBlock + 5 * uidcnt);
uidcnt++;
memset(buf, 0, sizeof(buf));
}
fclose(f);
if (uidcnt == 0) {
PrintAndLogEx(FAILED, "No UIDs found in file");
free(uidBlock);
return PM3_ESOFT;
}
PrintAndLogEx(SUCCESS, "Loaded "_YELLOW_("%d")" UIDs from "_YELLOW_("%s")", pause delay:"_YELLOW_("%d")"ms", uidcnt, filename, delay);
// loop
for (uint32_t c = 0; c < uidcnt; ++c) {
char testuid[11];
testuid[10] = 0;
if (kbd_enter_pressed()) {
PrintAndLogEx(WARNING, "\nAborted via keyboard!\n");
free(uidBlock);
return PM3_EOPABORTED;
}
sprintf(testuid, "%010" PRIX64, bytes_to_num(uidBlock + 5 * c, 5));
PrintAndLogEx(NORMAL, "Bruteforce %d / %d: simulating UID %s, clock %d", c + 1, uidcnt, testuid, clock1);
ConstructEM410xEmulGraph(testuid, clock1);
CmdLFSim("0"); //240 start_gap.
msleep(delay);
}
free(uidBlock);
return PM3_SUCCESS;
}
/* Function is equivalent of lf read + data samples + em410xread
* looped until an EM410x tag is detected
*
* Why is CmdSamples("16000")?
* TBD: Auto-grow sample size based on detected sample rate. IE: If the
* rate gets lower, then grow the number of samples
* Changed by martin, 4000 x 4 = 16000,
* see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
*
* EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow
*/
static int CmdEM410xWatch(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
do {
if (kbd_enter_pressed()) {
PrintAndLogEx(WARNING, "\naborted via keyboard!\n");
break;
}
lf_read(false, 12288);
} while (CmdEM410xRead("") != PM3_SUCCESS);
return PM3_SUCCESS;
}
//currently only supports manchester modulations
static int CmdEM410xWatchnSpoof(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_lf_em410x_ws();
// loops if the captured ID was in XL-format.
CmdEM410xWatch(Cmd);
PrintAndLogEx(SUCCESS, "# Replaying captured ID: "_YELLOW_("%010" PRIx64), g_em410xid);
CmdLFaskSim("");
return PM3_SUCCESS;
}
static int CmdEM410xWrite(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 0x00 || cmdp == 'h') return usage_lf_em410x_write();
uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
int card = 0xFF; // invalid card value
uint32_t clock1 = 0; // invalid clock value
sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock1);
// Check ID
if (id == 0xFFFFFFFFFFFFFFFF) {
PrintAndLogEx(ERR, "Error! ID is required.\n");
return PM3_EINVARG;
}
if (id >= 0x10000000000) {
PrintAndLogEx(ERR, "Error! Given EM410x ID is longer than 40 bits.\n");
return PM3_EINVARG;
}
// Check Card
if (card == 0xFF) {
PrintAndLogEx(ERR, "Error! Card type required.\n");
return PM3_EINVARG;
}
if (card < 0) {
PrintAndLogEx(ERR, "Error! Bad card type selected.\n");
return PM3_EINVARG;
}
// Check Clock
if (clock1 == 0)
clock1 = 64;
// Allowed clock rates: 16, 32, 40 and 64
if ((clock1 != 16) && (clock1 != 32) && (clock1 != 64) && (clock1 != 40)) {
PrintAndLogEx(ERR, "Error! Clock rate" _YELLOW_("%d")" not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock1);
return PM3_EINVARG;
}
if (card == 1) {
PrintAndLogEx(SUCCESS, "Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock1);
// NOTE: We really should pass the clock in as a separate argument, but to
// provide for backwards-compatibility for older firmware, and to avoid
// having to add another argument to CMD_LF_EM410X_WRITE, we just store
// the clock rate in bits 8-15 of the card value
card = (card & 0xFF) | ((clock1 << 8) & 0xFF00);
} else if (card == 0) {
PrintAndLogEx(SUCCESS, "Writing %s tag with UID 0x%010" PRIx64 "(clock rate: %d)", "T5555", id, clock1);
card = (card & 0xFF) | ((clock1 << 8) & 0xFF00);
} else {
PrintAndLogEx(FAILED, "Error! Bad card type selected.\n");
return PM3_ESOFT;
}
SendCommandMIX(CMD_LF_EM410X_WRITE, card, (uint32_t)(id >> 32), (uint32_t)id, NULL, 0);
return PM3_SUCCESS;
}
//**************** Start of EM4x50 Code ************************
// even parity COLUMN
static bool EM_ColParityTest(uint8_t *bs, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) {
if (rows * cols > size) return false;
uint8_t colP = 0;
for (uint8_t c = 0; c < cols - 1; c++) {
for (uint8_t r = 0; r < rows; r++) {
colP ^= bs[(r * cols) + c];
}
if (colP != pType) return false;
colP = 0;
}
return true;
}
// even parity ROW
static bool EM_RowParityTest(uint8_t *bs, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) {
if (rows * cols > size) return false;
uint8_t rowP = 0;
for (uint8_t r = 0; r < rows - 1; r++) {
for (uint8_t c = 0; c < cols; c++) {
rowP ^= bs[(r * cols) + c];
}
if (rowP != pType) return false;
rowP = 0;
}
return true;
}
// EM word parity test.
// 9*5 = 45 bits in total
// 012345678|r0
// 012345678|r1
// 012345678|r2
// 012345678|r3
// ------------
//c012345678| 0
// |- must be zero
/*
static int EMwordparitytest(uint8_t *bits) {
// last row/col parity must be 0
if (bits[44] != 0) return PM3_ESOFT;
// col parity check
uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits + 9, 8) ^ bytebits_to_byte(bits + 18, 8) ^ bytebits_to_byte(bits + 27, 8);
uint8_t c2 = bytebits_to_byte(bits + 36, 8);
if (c1 != c2) return PM3_ESOFT;
// row parity check
uint8_t rowP = 0;
for (uint8_t i = 0; i < 36; ++i) {
rowP ^= bits[i];
if (i > 0 && (i % 9) == 0) {
if (rowP != EVEN)
return PM3_ESOFT;
rowP = 0;
}
}
// all checks ok.
return PM3_SUCCESS;
}
*/
//////////////// 4050 / 4450 commands
static uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) {
if (size < 45) return 0;
uint32_t code = bytebits_to_byte(BitStream, 8);
code = code << 8 | bytebits_to_byte(BitStream + 9, 8);
code = code << 8 | bytebits_to_byte(BitStream + 18, 8);
code = code << 8 | bytebits_to_byte(BitStream + 27, 8);
if (verbose || g_debugMode) {
for (uint8_t i = 0; i < 5; i++) {
if (i == 4) PrintAndLogEx(NORMAL, ""); //parity byte spacer
PrintAndLogEx(NORMAL, "%d%d%d%d%d%d%d%d %d -> 0x%02x",
BitStream[i * 9],
BitStream[i * 9 + 1],
BitStream[i * 9 + 2],
BitStream[i * 9 + 3],
BitStream[i * 9 + 4],
BitStream[i * 9 + 5],
BitStream[i * 9 + 6],
BitStream[i * 9 + 7],
BitStream[i * 9 + 8],
bytebits_to_byte(BitStream + i * 9, 8)
);
}
PrintAndLogEx(SUCCESS, "Parity checks | %s", (pTest) ? _GREEN_("Passed") : _RED_("Fail"));
}
return code;
}
/* Read the transmitted data of an EM4x50 tag from the graphbuffer
* Format:
*
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* CCCCCCC0 <- column parity bits
* 0 <- stop bit
* LW <- Listen Window
*
* This pattern repeats for every block of data being transmitted.
* Transmission starts with two Listen Windows (LW - a modulated
* pattern of 320 cycles each (32/32/128/64/64)).
*
* Note that this data may or may not be the UID. It is whatever data
* is stored in the blocks defined in the control word First and Last
* Word Read values. UID is stored in block 32.
*/
//completed by Marshmellow
int EM4x50Read(const char *Cmd, bool verbose) {
int clk = 0, invert = 0, tol = 0, phaseoff;
int i = 0, j = 0, startblock, skip, block, start, end, low = 0, high = 0;
uint32_t Code[6];
char tmp[6];
char tmp2[20];
bool complete = false;
int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
memset(tmpbuff, 0, sizeof(tmpbuff));
// get user entry if any
sscanf(Cmd, "%i %i", &clk, &invert);
uint8_t bits[MAX_GRAPH_TRACE_LEN] = {0};
size_t size = getFromGraphBuf(bits);
if (size < 4000) {
if (verbose || g_debugMode) PrintAndLogEx(ERR, "Error: EM4x50 - Too little data in Graphbuffer");
return PM3_ESOFT;
}
computeSignalProperties(bits, size);
// get fuzzed HI / LOW limits in signal
getHiLo(&high, &low, 75, 75);
// get to first full low to prime loop and skip incomplete first pulse
size_t offset = 0;
getNextHigh(bits, size, high, &offset);
getNextLow(bits, size, low, &offset);
i = (int)offset;
skip = offset;
// set clock
if (clk == 0) {
DetectASKClock(bits, size, &clk, 0);
if (clk == 0) {
if (verbose || g_debugMode) PrintAndLogEx(ERR, "Error: EM4x50 - didn't find a clock");
return PM3_ESOFT;
}
}
// tolerance
tol = clk / 8;
// populate tmpbuff buffer with pulse lengths
while (i < size) {
// measure from low to low
while ((i < size) && (bits[i] > low))
++i;
start = i;
while ((i < size) && (bits[i] < high))
++i;
while ((i < size) && (bits[i] > low))
++i;
if (j >= (MAX_GRAPH_TRACE_LEN / 64)) {
break;
}
tmpbuff[j++] = i - start;
}
// look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
start = -1;
for (i = 0; i < j - 4 ; ++i) {
skip += tmpbuff[i];
if (tmpbuff[i] >= clk * 3 - tol && tmpbuff[i] <= clk * 3 + tol) //3 clocks
if (tmpbuff[i + 1] >= clk * 2 - tol && tmpbuff[i + 1] <= clk * 2 + tol) //2 clocks
if (tmpbuff[i + 2] >= clk * 3 - tol && tmpbuff[i + 2] <= clk * 3 + tol) //3 clocks
if (tmpbuff[i + 3] >= clk - tol) { //1.5 to 2 clocks - depends on bit following
start = i + 4;
break;
}
}
startblock = i + 4;
// skip over the remainder of LW
skip += (tmpbuff[i + 1] + tmpbuff[i + 2] + clk);
if (tmpbuff[i + 3] > clk)
phaseoff = tmpbuff[i + 3] - clk;
else
phaseoff = 0;
// now do it again to find the end
for (i += 3; i < j - 4 ; ++i) {
if (tmpbuff[i] >= clk * 3 - tol && tmpbuff[i] <= clk * 3 + tol) //3 clocks
if (tmpbuff[i + 1] >= clk * 2 - tol && tmpbuff[i + 1] <= clk * 2 + tol) //2 clocks
if (tmpbuff[i + 2] >= clk * 3 - tol && tmpbuff[i + 2] <= clk * 3 + tol) //3 clocks
if (tmpbuff[i + 3] >= clk - tol) { //1.5 to 2 clocks - depends on bit following
complete = true;
break;
}
}
end = i;
// report back
if (verbose || g_debugMode) {
if (start >= 0) {
PrintAndLogEx(NORMAL, "\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
} else {
PrintAndLogEx(NORMAL, "No data found!, clock tried: " _YELLOW_("%d"), clk);
PrintAndLogEx(NORMAL, "Try again with more samples.");
PrintAndLogEx(NORMAL, " or after a " _YELLOW_("'data askedge'") " command to clean up the read");
return PM3_ESOFT;
}
} else if (start < 0) {
return PM3_ESOFT;
}
start = skip;
snprintf(tmp2, sizeof(tmp2), "%d %d 1000 %d", clk, invert, clk * 47);
// save GraphBuffer - to restore it later
save_restoreGB(GRAPH_SAVE);
// get rid of leading crap
snprintf(tmp, sizeof(tmp), "%i", skip);
CmdLtrim(tmp);
bool AllPTest = true;
// now work through remaining buffer printing out data blocks
block = 0;
i = startblock;
while (block < 6) {
if (verbose || g_debugMode) PrintAndLogEx(NORMAL, "\nBlock %i:", block);
skip = phaseoff;
// look for LW before start of next block
for (; i < j - 4 ; ++i) {
skip += tmpbuff[i];
if (tmpbuff[i] >= clk * 3 - tol && tmpbuff[i] <= clk * 3 + tol)
if (tmpbuff[i + 1] >= clk - tol)
break;
}
if (i >= j - 4) break; //next LW not found
skip += clk;
if (tmpbuff[i + 1] > clk)
phaseoff = tmpbuff[i + 1] - clk;
else
phaseoff = 0;
i += 2;
if (ASKDemod(tmp2, false, false, 1) != PM3_SUCCESS) {
save_restoreGB(GRAPH_RESTORE);
return PM3_ESOFT;
}
//set DemodBufferLen to just one block
DemodBufferLen = skip / clk;
//test parities
bool pTest = EM_RowParityTest(DemodBuffer, DemodBufferLen, 5, 9, 0);
pTest &= EM_ColParityTest(DemodBuffer, DemodBufferLen, 5, 9, 0);
AllPTest &= pTest;
//get output
Code[block] = OutputEM4x50_Block(DemodBuffer, DemodBufferLen, verbose, pTest);
PrintAndLogEx(DEBUG, "\nskipping %d samples, bits:%d", skip, skip / clk);
//skip to start of next block
snprintf(tmp, sizeof(tmp), "%i", skip);
CmdLtrim(tmp);
block++;
if (i >= end) break; //in case chip doesn't output 6 blocks
}
//print full code:
if (verbose || g_debugMode || AllPTest) {
if (!complete) {
PrintAndLogEx(NORMAL, _RED_("* **Warning!"));
PrintAndLogEx(NORMAL, "Partial data - no end found!");
PrintAndLogEx(NORMAL, "Try again with more samples.");
}
PrintAndLogEx(NORMAL, "Found data at sample: %i - using clock: %i", start, clk);
end = block;
for (block = 0; block < end; block++) {
PrintAndLogEx(NORMAL, "Block %d: %08x", block, Code[block]);
}
PrintAndLogEx(NORMAL, "Parities checks | %s", (AllPTest) ? _GREEN_("Passed") : _RED_("Fail"));
if (AllPTest == false) {
PrintAndLogEx(NORMAL, "Try cleaning the read samples with " _YELLOW_("'data askedge'"));
}
}
//restore GraphBuffer
save_restoreGB(GRAPH_RESTORE);
return AllPTest ? PM3_SUCCESS : PM3_ESOFT;
}
static int CmdEM4x50Demod(const char *Cmd) {
uint8_t ctmp = tolower(param_getchar(Cmd, 0));
if (ctmp == 'h') return usage_lf_em4x50_demod();
return EM4x50Read(Cmd, true);
}
static int CmdEM4x50Read(const char *Cmd) {
uint8_t ctmp = tolower(param_getchar(Cmd, 0));
if (ctmp == 'h') return usage_lf_em4x50_read();
return EM4x50Read(Cmd, true);
}
static int CmdEM4x50Write(const char *Cmd) {
uint8_t ctmp = tolower(param_getchar(Cmd, 0));
if (ctmp == 'h') return usage_lf_em4x50_write();
PrintAndLogEx(NORMAL, "no implemented yet");
return PM3_SUCCESS;
}
static int CmdEM4x50Dump(const char *Cmd) {
uint8_t ctmp = tolower(param_getchar(Cmd, 0));
if (ctmp == 'h') return usage_lf_em4x50_dump();
PrintAndLogEx(NORMAL, "no implemented yet");
return PM3_SUCCESS;
}
#define EM_PREAMBLE_LEN 6
// download samples from device and copy to Graphbuffer
static bool downloadSamplesEM() {
// 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
uint8_t got[6000];
if (!GetFromDevice(BIG_BUF, got, sizeof(got), 0, NULL, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "command execution time out");
return false;
}
setGraphBuf(got, sizeof(got));
// set signal properties low/high/mean/amplitude and is_noise detection
computeSignalProperties(got, sizeof(got));
RepaintGraphWindow();
if (getSignalProperties()->isnoise) {
PrintAndLogEx(DEBUG, "No tag found - signal looks like noise");
return false;
}
return true;
}
// em_demod
static bool doPreambleSearch(size_t *startIdx) {
// sanity check
if (DemodBufferLen < EM_PREAMBLE_LEN) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM4305 demodbuffer too small");
return false;
}
// set size to 20 to only test first 14 positions for the preamble
size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20;
*startIdx = 0;
// skip first two 0 bits as they might have been missed in the demod
uint8_t preamble[EM_PREAMBLE_LEN] = {0, 0, 1, 0, 1, 0};
if (!preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, true)) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM4305 preamble not found :: %zu", *startIdx);
return false;
}
return true;
}
static bool detectFSK() {
// detect fsk clock
if (GetFskClock("", false) == 0) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: FSK clock failed");
return false;
}
// demod
int ans = FSKrawDemod("0 0", false);
if (ans != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: FSK Demod failed");
return false;
}
return true;
}
// PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
static bool detectPSK() {
int ans = GetPskClock("", false);
if (ans <= 0) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: PSK clock failed");
return false;
}
//demod
//try psk1 -- 0 0 6 (six errors?!?)
ans = PSKDemod("0 0 6", false);
if (ans != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: PSK1 Demod failed");
//try psk1 inverted
ans = PSKDemod("0 1 6", false);
if (ans != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: PSK1 inverted Demod failed");
return false;
}
}
// either PSK1 or PSK1 inverted is ok from here.
// lets check PSK2 later.
return true;
}
// try manchester - NOTE: ST only applies to T55x7 tags.
static bool detectASK_MAN() {
bool stcheck = false;
if (ASKDemod_ext("0 0 0", false, false, 1, &stcheck) != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: ASK/Manchester Demod failed");
return false;
}
return true;
}
static bool detectASK_BI() {
int ans = ASKbiphaseDemod("0 0 1", false);
if (ans != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: ASK/biphase normal demod failed");
ans = ASKbiphaseDemod("0 1 1", false);
if (ans != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: ASK/biphase inverted demod failed");
return false;
}
}
return true;
}
static bool detectNRZ() {
int ans = NRZrawDemod("0 0 1", false);
if (ans != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: NRZ normal demod failed");
ans = NRZrawDemod("0 1 1", false);
if (ans != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM: NRZ inverted demod failed");
return false;
}
}
return true;
}
// param: idx - start index in demoded data.
static int setDemodBufferEM(uint32_t *word, size_t idx) {
//test for even parity bits.
uint8_t parity[45] = {0};
memcpy(parity, DemodBuffer, 45);
if (!EM_ColParityTest(DemodBuffer + idx + EM_PREAMBLE_LEN, 45, 5, 9, 0)) {
PrintAndLogEx(DEBUG, "DEBUG: Error - End Parity check failed");
return PM3_ESOFT;
}
// test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) {
PrintAndLogEx(DEBUG, "DEBUG: Error - EM, failed removing parity");
return PM3_ESOFT;
}
setDemodBuff(DemodBuffer, 32, 0);
*word = bytebits_to_byteLSBF(DemodBuffer, 32);
return PM3_SUCCESS;
}
// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE, NRZ
// should cover 90% of known used configs
// the rest will need to be manually demoded for now...
static int demodEM4x05resp(uint32_t *word) {
size_t idx = 0;
*word = 0;
if (detectASK_MAN() && doPreambleSearch(&idx))
return setDemodBufferEM(word, idx);
if (detectASK_BI() && doPreambleSearch(&idx))
return setDemodBufferEM(word, idx);
if (detectNRZ() && doPreambleSearch(&idx))
return setDemodBufferEM(word, idx);
if (detectFSK() && doPreambleSearch(&idx))
return setDemodBufferEM(word, idx);
if (detectPSK()) {
if (doPreambleSearch(&idx))
return setDemodBufferEM(word, idx);
psk1TOpsk2(DemodBuffer, DemodBufferLen);
if (doPreambleSearch(&idx))
return setDemodBufferEM(word, idx);
}
return PM3_ESOFT;
}
//////////////// 4205 / 4305 commands
static int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *word) {
struct {
uint32_t password;
uint8_t address;
uint8_t usepwd;
} PACKED payload;
payload.password = pwd;
payload.address = addr;
payload.usepwd = usePwd;
clearCommandBuffer();
SendCommandNG(CMD_LF_EM4X_READWORD, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_LF_EM4X_READWORD, &resp, 2500)) {
PrintAndLogEx(DEBUG, "timeout while waiting for reply.");
return PM3_ETIMEOUT;
}
if (!downloadSamplesEM()) {
return PM3_ESOFT;
}
return demodEM4x05resp(word);
}
static int CmdEM4x05Demod(const char *Cmd) {
// uint8_t ctmp = tolower(param_getchar(Cmd, 0));
// if (ctmp == 'h') return usage_lf_em4x05_demod();
uint32_t word = 0;
return demodEM4x05resp(&word);
}
static int CmdEM4x05Dump(const char *Cmd) {
uint8_t addr = 0;
uint32_t pwd = 0;
bool usePwd = false;
uint8_t cmdp = 0;
uint8_t bytes[4] = {0};
uint32_t data[16];
char preferredName[FILE_PATH_SIZE] = {0};
char optchk[10];
while (param_getchar(Cmd, cmdp) != 0x00) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_lf_em4x05_dump();
break;
case 'f': // since f could match in password, lets confirm it is 1 character only for an option
param_getstr(Cmd, cmdp, optchk, sizeof(optchk));
if (strlen(optchk) == 1) { // Have a single character f so filename no password
param_getstr(Cmd, cmdp + 1, preferredName, FILE_PATH_SIZE);
cmdp += 2;
break;
} // if not a single 'f' dont break and flow onto default as should be password
default : // for backwards-compatibility options should be > 'f' else assume its the hex password`
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
pwd = param_get32ex(Cmd, cmdp, 1, 16);
if (pwd != 1)
usePwd = true;
cmdp++;
};
}
int success = PM3_SUCCESS;
int status;
uint32_t lock_bits = 0x00; // no blocks locked
uint32_t word = 0;
PrintAndLogEx(NORMAL, "Addr | data | ascii |lck| info");
PrintAndLogEx(NORMAL, "-----+----------+-------+---+-----");
// To flag any blocks locked we need to read blocks 14 and 15 first
// dont swap endin until we get block lock flags.
status = EM4x05ReadWord_ext(14, pwd, usePwd, &word);
if (status != PM3_SUCCESS)
success = PM3_ESOFT; // If any error ensure fail is set so not to save invalid data
if (word != 0x00)
lock_bits = word;
data[14] = word;
status = EM4x05ReadWord_ext(15, pwd, usePwd, &word);
if (status != PM3_SUCCESS)
success = PM3_ESOFT; // If any error ensure fail is set so not to save invalid data
if (word != 0x00) // assume block 15 is the current lock block
lock_bits = word;
data[15] = word;
// Now read blocks 0 - 13 as we have 14 and 15
for (; addr < 14; addr++) {
if (addr == 2) {
if (usePwd) {
data[addr] = BSWAP_32(pwd);
num_to_bytes(pwd, 4, bytes);
PrintAndLogEx(NORMAL, " %02u | %08X | %s | %c | password", addr, pwd, sprint_ascii(bytes, 4), ((lock_bits >> addr) & 1) ? 'x' : ' ');
} else {
data[addr] = 0x00; // Unknown password, but not used to set to zeros
PrintAndLogEx(NORMAL, " 02 | | | | " _RED_("cannot read"));
}
} else {
// success &= EM4x05ReadWord_ext(addr, pwd, usePwd, &word);
status = EM4x05ReadWord_ext(addr, pwd, usePwd, &word); // Get status for single read
if (status != PM3_SUCCESS)
success = PM3_ESOFT; // If any error ensure fail is set so not to save invalid data
data[addr] = BSWAP_32(word);
if (status == PM3_SUCCESS) {
num_to_bytes(word, 4, bytes);
PrintAndLogEx(NORMAL, " %02d | %08X | %s | %c |", addr, word, sprint_ascii(bytes, 4), ((lock_bits >> addr) & 1) ? 'x' : ' ');
} else
PrintAndLogEx(NORMAL, " %02d | | | | " _RED_("Fail"), addr);
}
}
// Print blocks 14 and 15
// Both lock bits are protected with bit idx 14 (special case)
PrintAndLogEx(NORMAL, " %02d | %08X | %s | %c | Lock", 14, data[14], sprint_ascii(bytes, 4), ((lock_bits >> 14) & 1) ? 'x' : ' ');
PrintAndLogEx(NORMAL, " %02d | %08X | %s | %c | Lock", 15, data[15], sprint_ascii(bytes, 4), ((lock_bits >> 14) & 1) ? 'x' : ' ');
// Update endian for files
data[14] = BSWAP_32(data[14]);
data[15] = BSWAP_32(data[15]);
if (success == PM3_SUCCESS) { // all ok save dump to file
// saveFileEML will add .eml extension to filename
// saveFile (binary) passes in the .bin extension.
if (strcmp(preferredName, "") == 0) // Set default filename, if not set by user
sprintf(preferredName, "lf-4x05-%08X-data", BSWAP_32(data[1]));
saveFileEML(preferredName, (uint8_t *)data, 16 * sizeof(uint32_t), sizeof(uint32_t));
saveFile(preferredName, ".bin", data, sizeof(data));
}
return success;
}
static int CmdEM4x05Read(const char *Cmd) {
uint8_t addr;
uint32_t pwd;
bool usePwd = false;
uint8_t ctmp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || ctmp == 'h') return usage_lf_em4x05_read();
addr = param_get8ex(Cmd, 0, 50, 10);
pwd = param_get32ex(Cmd, 1, 0xFFFFFFFF, 16);
if (addr > 15) {
PrintAndLogEx(NORMAL, "Address must be between 0 and 15");
return PM3_ESOFT;
}
if (pwd == 0xFFFFFFFF) {
PrintAndLogEx(NORMAL, "Reading address %02u", addr);
} else {
usePwd = true;
PrintAndLogEx(NORMAL, "Reading address %02u | password %08X", addr, pwd);
}
uint32_t word = 0;
int status = EM4x05ReadWord_ext(addr, pwd, usePwd, &word);
if (status == PM3_SUCCESS)
PrintAndLogEx(NORMAL, "Address %02d | %08X - %s", addr, word, (addr > 13) ? "Lock" : "");
else
PrintAndLogEx(NORMAL, "Read Address %02d | " _RED_("Fail"), addr);
return status;
}
static int CmdEM4x05Write(const char *Cmd) {
uint8_t ctmp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || ctmp == 'h') return usage_lf_em4x05_write();
bool usePwd = false;
uint8_t addr;
uint32_t data, pwd;
addr = param_get8ex(Cmd, 0, 50, 10);
data = param_get32ex(Cmd, 1, 0, 16);
pwd = param_get32ex(Cmd, 2, 0xFFFFFFFF, 16);
if (addr > 15) {
PrintAndLogEx(NORMAL, "Address must be between 0 and 15");
return PM3_EINVARG;
}
if (pwd == 0xFFFFFFFF)
PrintAndLogEx(NORMAL, "Writing address %d data %08X", addr, data);
else {
usePwd = true;
PrintAndLogEx(NORMAL, "Writing address %d data %08X using password %08X", addr, data, pwd);
}
struct {
uint32_t password;
uint32_t data;
uint8_t address;
uint8_t usepwd;
} PACKED payload;
payload.password = pwd;
payload.data = data;
payload.address = addr;
payload.usepwd = usePwd;
clearCommandBuffer();
SendCommandNG(CMD_LF_EM4X_WRITEWORD, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_LF_EM4X_WRITEWORD, &resp, 2000)) {
PrintAndLogEx(ERR, "Error occurred, device did not respond during write operation.");
return PM3_ETIMEOUT;
}
if (!downloadSamplesEM())
return PM3_ENODATA;
//need 0 bits demoded (after preamble) to verify write cmd
uint32_t dummy = 0;
int status = demodEM4x05resp(&dummy);
if (status == PM3_SUCCESS)
PrintAndLogEx(NORMAL, "Write " _GREEN_("Verified"));
else
PrintAndLogEx(NORMAL, "Write could " _RED_("not") "be verified");
return status;
}
static int CmdEM4x05Wipe(const char *Cmd) {
uint8_t addr = 0;
uint32_t pwd = 0;
uint8_t cmdp = 0;
uint8_t chipType = 1; // em4305
uint32_t chipInfo = 0x00040072; // Chip info/User Block normal 4305 Chip Type
uint32_t chipUID = 0x614739AE; // UID normally readonly, but just in case
uint32_t blockData = 0x00000000; // UserBlock/Password (set to 0x00000000 for a wiped card1
uint32_t config = 0x0001805F; // Default config (no password)
int success = PM3_SUCCESS;
char cmdStr [100];
char optchk[10];
while (param_getchar(Cmd, cmdp) != 0x00) {
// check if cmd is a 1 byte option
param_getstr(Cmd, cmdp, optchk, sizeof(optchk));
if (strlen(optchk) == 1) { // Have a single character so option not part of password
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'c': // chip type
if (param_getchar(Cmd, cmdp) != 0x00)
chipType = param_get8ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
case 'h': // return usage_lf_em4x05_wipe();
default : // Unknown or 'h' send help
return usage_lf_em4x05_wipe();
break;
};
} else { // Not a single character so assume password
pwd = param_get32ex(Cmd, cmdp, 1, 16);
cmdp++;
}
}
switch (chipType) {
case 0 : // em4205
chipInfo = 0x00040070;
config = 0x0001805F;
break;
case 1 : // em4305
chipInfo = 0x00040072;
config = 0x0001805F;
break;
default : // Type 0/Default : EM4305
chipInfo = 0x00040072;
config = 0x0001805F;
}
// block 0 : User Data or Chip Info
sprintf(cmdStr, "%d %08X %08X", 0, chipInfo, pwd);
CmdEM4x05Write(cmdStr);
// block 1 : UID - this should be read only for EM4205 and EM4305 not sure about others
sprintf(cmdStr, "%d %08X %08X", 1, chipUID, pwd);
CmdEM4x05Write(cmdStr);
// block 2 : password
sprintf(cmdStr, "%d %08X %08X", 2, blockData, pwd);
CmdEM4x05Write(cmdStr);
pwd = blockData; // Password should now have changed, so use new password
// block 3 : user data
sprintf(cmdStr, "%d %08X %08X", 3, blockData, pwd);
CmdEM4x05Write(cmdStr);
// block 4 : config
sprintf(cmdStr, "%d %08X %08X", 4, config, pwd);
CmdEM4x05Write(cmdStr);
// Remainder of user/data blocks
for (addr = 5; addr < 14; addr++) {// Clear user data blocks
sprintf(cmdStr, "%d %08X %08X", addr, blockData, pwd);
CmdEM4x05Write(cmdStr);
}
return success;
}
static void printEM4x05config(uint32_t wordData) {
uint16_t datarate = (((wordData & 0x3F) + 1) * 2);
uint8_t encoder = ((wordData >> 6) & 0xF);
char enc[14];
memset(enc, 0, sizeof(enc));
uint8_t PSKcf = (wordData >> 10) & 0x3;
char cf[10];
memset(cf, 0, sizeof(cf));
uint8_t delay = (wordData >> 12) & 0x3;
char cdelay[33];
memset(cdelay, 0, sizeof(cdelay));
uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData);
uint8_t LWR = numblks + 5 - 1; //last word read
switch (encoder) {
case 0:
snprintf(enc, sizeof(enc), "NRZ");
break;
case 1:
snprintf(enc, sizeof(enc), "Manchester");
break;
case 2:
snprintf(enc, sizeof(enc), "Biphase");
break;
case 3:
snprintf(enc, sizeof(enc), "Miller");
break;
case 4:
snprintf(enc, sizeof(enc), "PSK1");
break;
case 5:
snprintf(enc, sizeof(enc), "PSK2");
break;
case 6:
snprintf(enc, sizeof(enc), "PSK3");
break;
case 7:
snprintf(enc, sizeof(enc), "Unknown");
break;
case 8:
snprintf(enc, sizeof(enc), "FSK1");
break;
case 9:
snprintf(enc, sizeof(enc), "FSK2");
break;
default:
snprintf(enc, sizeof(enc), "Unknown");
break;
}
switch (PSKcf) {
case 0:
snprintf(cf, sizeof(cf), "RF/2");
break;
case 1:
snprintf(cf, sizeof(cf), "RF/8");
break;
case 2:
snprintf(cf, sizeof(cf), "RF/4");
break;
case 3:
snprintf(cf, sizeof(cf), "unknown");
break;
}
switch (delay) {
case 0:
snprintf(cdelay, sizeof(cdelay), "no delay");
break;
case 1:
snprintf(cdelay, sizeof(cdelay), "BP/8 or 1/8th bit period delay");
break;
case 2:
snprintf(cdelay, sizeof(cdelay), "BP/4 or 1/4th bit period delay");
break;
case 3:
snprintf(cdelay, sizeof(cdelay), "no delay");
break;
}
uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ) >> 18;
uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ) >> 19;
uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ) >> 20;
uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ) >> 21;
uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE) >> 22;
uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED) >> 23;
uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST) >> 24;
uint8_t pigeon = (wordData & (1 << 26)) >> 26;
PrintAndLogEx(NORMAL, "ConfigWord: %08X (Word 4)\n", wordData);
PrintAndLogEx(NORMAL, "Config Breakdown:");
PrintAndLogEx(NORMAL, " Data Rate: %02u | "_YELLOW_("RF/%u"), wordData & 0x3F, datarate);
PrintAndLogEx(NORMAL, " Encoder: %u | " _YELLOW_("%s"), encoder, enc);
PrintAndLogEx(NORMAL, " PSK CF: %u | %s", PSKcf, cf);
PrintAndLogEx(NORMAL, " Delay: %u | %s", delay, cdelay);
PrintAndLogEx(NORMAL, " LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks);
PrintAndLogEx(NORMAL, " ReadLogin: %u | Read login is %s", readLogin, readLogin ? _YELLOW_("required") : _GREEN_("not required"));
PrintAndLogEx(NORMAL, " ReadHKL: %u | Read housekeeping words login is %s", readHKL, readHKL ? _YELLOW_("required") : _GREEN_("not required"));
PrintAndLogEx(NORMAL, "WriteLogin: %u | Write login is %s", writeLogin, writeLogin ? _YELLOW_("required") : _GREEN_("not required"));
PrintAndLogEx(NORMAL, " WriteHKL: %u | Write housekeeping words login is %s", writeHKL, writeHKL ? _YELLOW_("required") : _GREEN_("not Required"));
PrintAndLogEx(NORMAL, " R.A.W.: %u | Read after write is %s", raw, raw ? "on" : "off");
PrintAndLogEx(NORMAL, " Disable: %u | Disable command is %s", disable, disable ? "accepted" : "not accepted");
PrintAndLogEx(NORMAL, " R.T.F.: %u | Reader talk first is %s", rtf, rtf ? _YELLOW_("enabled") : "disabled");
PrintAndLogEx(NORMAL, " Pigeon: %u | Pigeon mode is %s\n", pigeon, pigeon ? _YELLOW_("enabled") : "disabled");
}
static void printEM4x05info(uint32_t block0, uint32_t serial) {
uint8_t chipType = (block0 >> 1) & 0xF;
uint8_t cap = (block0 >> 5) & 3;
uint16_t custCode = (block0 >> 9) & 0x3FF;
char ctstr[50];
snprintf(ctstr, sizeof(ctstr), "\n Chip Type: %u | ", chipType);
switch (chipType) {
case 9:
snprintf(ctstr + strlen(ctstr), sizeof(ctstr) - strlen(ctstr), _YELLOW_("%s"), "EM4305");
break;
case 8:
snprintf(ctstr + strlen(ctstr), sizeof(ctstr) - strlen(ctstr), _YELLOW_("%s"), "EM4205");
break;
case 4:
snprintf(ctstr + strlen(ctstr), sizeof(ctstr) - strlen(ctstr), _YELLOW_("%s"), "Unknown");
break;
case 2:
snprintf(ctstr + strlen(ctstr), sizeof(ctstr) - strlen(ctstr), _YELLOW_("%s"), "EM4469");
break;
//add more here when known
default:
snprintf(ctstr + strlen(ctstr), sizeof(ctstr) - strlen(ctstr), _YELLOW_("%s"), "Unknown");
break;
}
PrintAndLogEx(NORMAL, "%s", ctstr);
switch (cap) {
case 3:
PrintAndLogEx(NORMAL, " Cap Type: %u | 330pF", cap);
break;
case 2:
PrintAndLogEx(NORMAL, " Cap Type: %u | %spF", cap, (chipType == 2) ? "75" : "210");
break;
case 1:
PrintAndLogEx(NORMAL, " Cap Type: %u | 250pF", cap);
break;
case 0:
PrintAndLogEx(NORMAL, " Cap Type: %u | no resonant capacitor", cap);
break;
default:
PrintAndLogEx(NORMAL, " Cap Type: %u | unknown", cap);
break;
}
PrintAndLogEx(NORMAL, " Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default" : "Unknown");
if (serial != 0)
PrintAndLogEx(NORMAL, "\n Serial #: " _YELLOW_("%08X") "\n", serial);
}
static void printEM4x05ProtectionBits(uint32_t word) {
for (uint8_t i = 0; i < 15; i++) {
PrintAndLogEx(NORMAL, " Word: %02u | %s", i, (((1 << i) & word) || i < 2) ? _RED_("write Locked") : "unlocked");
if (i == 14)
PrintAndLogEx(NORMAL, " Word: %02u | %s", i + 1, (((1 << i) & word) || i < 2) ? _RED_("write locked") : "unlocked");
}
}
//quick test for EM4x05/EM4x69 tag
bool EM4x05IsBlock0(uint32_t *word) {
return (EM4x05ReadWord_ext(0, 0, false, word) == PM3_SUCCESS);
}
static int CmdEM4x05Info(const char *Cmd) {
#define EM_SERIAL_BLOCK 1
#define EM_CONFIG_BLOCK 4
#define EM_PROT1_BLOCK 14
#define EM_PROT2_BLOCK 15
uint32_t pwd;
uint32_t word = 0, block0 = 0, serial = 0;
bool usePwd = false;
uint8_t ctmp = tolower(param_getchar(Cmd, 0));
if (ctmp == 'h') return usage_lf_em4x05_info();
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
pwd = param_get32ex(Cmd, 0, 0xFFFFFFFF, 16);
if (pwd != 0xFFFFFFFF)
usePwd = true;
// read word 0 (chip info)
// block 0 can be read even without a password.
if (EM4x05IsBlock0(&block0) == false)
return PM3_ESOFT;
// read word 1 (serial #) doesn't need pwd
// continue if failed, .. non blocking fail.
EM4x05ReadWord_ext(EM_SERIAL_BLOCK, 0, false, &serial);
printEM4x05info(block0, serial);
// read word 4 (config block)
// needs password if one is set
if (EM4x05ReadWord_ext(EM_CONFIG_BLOCK, pwd, usePwd, &word) != PM3_SUCCESS)
return PM3_ESOFT;
printEM4x05config(word);
// read word 14 and 15 to see which is being used for the protection bits
if (EM4x05ReadWord_ext(EM_PROT1_BLOCK, pwd, usePwd, &word) != PM3_SUCCESS) {
return PM3_ESOFT;
}
// if status bit says this is not the used protection word
if (!(word & 0x8000)) {
if (EM4x05ReadWord_ext(EM_PROT2_BLOCK, pwd, usePwd, &word) != PM3_SUCCESS)
return PM3_ESOFT;
}
//something went wrong
if (!(word & 0x8000))
return PM3_ESOFT;
printEM4x05ProtectionBits(word);
return PM3_SUCCESS;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
//{"410x_demod", CmdEMdemodASK, IfPm3Lf, "Extract ID from EM410x tag on antenna)"},
{"410x_demod", CmdEM410xDemod, AlwaysAvailable, "demodulate a EM410x tag from the GraphBuffer"},
{"410x_read", CmdEM410xRead, IfPm3Lf, "attempt to read and extract tag data"},
{"410x_sim", CmdEM410xSim, IfPm3Lf, "simulate EM410x tag"},
{"410x_brute", CmdEM410xBrute, IfPm3Lf, "reader bruteforce attack by simulating EM410x tags"},
{"410x_watch", CmdEM410xWatch, IfPm3Lf, "watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
{"410x_spoof", CmdEM410xWatchnSpoof, IfPm3Lf, "watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
{"410x_write", CmdEM410xWrite, IfPm3Lf, "write EM410x UID to T5555(Q5) or T55x7 tag"},
{"4x05_demod", CmdEM4x05Demod, AlwaysAvailable, "demodulate a EM4x05/EM4x69 tag from the GraphBuffer"},
{"4x05_dump", CmdEM4x05Dump, IfPm3Lf, "dump EM4x05/EM4x69 tag"},
{"4x05_wipe", CmdEM4x05Wipe, IfPm3Lf, "wipe EM4x05/EM4x69 tag"},
{"4x05_info", CmdEM4x05Info, IfPm3Lf, "tag information EM4x05/EM4x69"},
{"4x05_read", CmdEM4x05Read, IfPm3Lf, "read word data from EM4x05/EM4x69"},
{"4x05_write", CmdEM4x05Write, IfPm3Lf, "write word data to EM4x05/EM4x69"},
{"4x50_demod", CmdEM4x50Demod, AlwaysAvailable, "demodulate a EM4x50 tag from the GraphBuffer"},
{"4x50_dump", CmdEM4x50Dump, IfPm3Lf, "dump EM4x50 tag"},
{"4x50_read", CmdEM4x50Read, IfPm3Lf, "read word data from EM4x50"},
{"4x50_write", CmdEM4x50Write, IfPm3Lf, "write word data to EM4x50"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}
int CmdLFEM4X(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}
int demodEM410x(void) {
return CmdEM410xDemod("");
}