mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-11 02:31:23 +08:00
1419 lines
45 KiB
C
1419 lines
45 KiB
C
// Merlok, 2011, 2012, 2019
|
|
// people from mifare@nethemba.com, 2010
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// mifare commands
|
|
//-----------------------------------------------------------------------------
|
|
#include "mifarehost.h"
|
|
|
|
#include <inttypes.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "comms.h"
|
|
#include "commonutil.h"
|
|
#include "mifare4.h"
|
|
#include "ui.h" // PrintAndLog...
|
|
#include "crapto1/crapto1.h"
|
|
#include "crc16.h"
|
|
#include "protocols.h"
|
|
#include "mfkey.h"
|
|
#include "util_posix.h" // msclock
|
|
#include "cmdparser.h" // detection of flash capabilities
|
|
#include "cmdflashmemspiffs.h" // upload to flash mem
|
|
|
|
int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) {
|
|
uint32_t uid = 0;
|
|
uint32_t nt = 0, nr = 0, ar = 0;
|
|
uint64_t par_list = 0, ks_list = 0;
|
|
uint64_t *keylist = NULL, *last_keylist = NULL;
|
|
bool first_run = true;
|
|
|
|
// message
|
|
PrintAndLogEx(NORMAL, "--------------------------------------------------------------------------------\n");
|
|
PrintAndLogEx(NORMAL, "executing Darkside attack. Expected execution time: 25sec on average");
|
|
PrintAndLogEx(NORMAL, "press pm3-button on the Proxmark3 device to abort both Proxmark3 and client.");
|
|
PrintAndLogEx(NORMAL, "--------------------------------------------------------------------------------\n");
|
|
|
|
while (true) {
|
|
clearCommandBuffer();
|
|
struct {
|
|
uint8_t first_run;
|
|
uint8_t blockno;
|
|
uint8_t key_type;
|
|
} PACKED payload;
|
|
payload.first_run = first_run;
|
|
payload.blockno = blockno;
|
|
payload.key_type = key_type;
|
|
SendCommandNG(CMD_HF_MIFARE_READER, (uint8_t *)&payload, sizeof(payload));
|
|
|
|
//flush queue
|
|
while (kbd_enter_pressed()) {
|
|
return PM3_EOPABORTED;
|
|
}
|
|
|
|
// wait cycle
|
|
while (true) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
if (kbd_enter_pressed()) {
|
|
return PM3_EOPABORTED;
|
|
}
|
|
|
|
PacketResponseNG resp;
|
|
if (WaitForResponseTimeout(CMD_HF_MIFARE_READER, &resp, 2000)) {
|
|
if (resp.status == PM3_EOPABORTED) {
|
|
return -1;
|
|
}
|
|
|
|
struct p {
|
|
int32_t isOK;
|
|
uint8_t cuid[4];
|
|
uint8_t nt[4];
|
|
uint8_t par_list[8];
|
|
uint8_t ks_list[8];
|
|
uint8_t nr[4];
|
|
uint8_t ar[4];
|
|
} PACKED;
|
|
|
|
struct p *package = (struct p *) resp.data.asBytes;
|
|
|
|
if (package->isOK == -6) {
|
|
*key = 0101;
|
|
return 1;
|
|
}
|
|
|
|
if (package->isOK < 0)
|
|
return package->isOK;
|
|
|
|
|
|
uid = (uint32_t)bytes_to_num(package->cuid, sizeof(package->cuid));
|
|
nt = (uint32_t)bytes_to_num(package->nt, sizeof(package->nr));
|
|
par_list = bytes_to_num(package->par_list, sizeof(package->par_list));
|
|
ks_list = bytes_to_num(package->ks_list, sizeof(package->ks_list));
|
|
nr = (uint32_t)bytes_to_num(package->nr, 4);
|
|
ar = (uint32_t)bytes_to_num(package->ar, 4);
|
|
break;
|
|
}
|
|
}
|
|
PrintAndLogEx(NORMAL, "\n");
|
|
|
|
if (par_list == 0 && first_run == true) {
|
|
PrintAndLogEx(SUCCESS, "Parity is all zero. Most likely this card sends NACK on every authentication.");
|
|
}
|
|
first_run = false;
|
|
|
|
uint32_t keycount = nonce2key(uid, nt, nr, ar, par_list, ks_list, &keylist);
|
|
|
|
if (keycount == 0) {
|
|
PrintAndLogEx(FAILED, "key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
|
|
PrintAndLogEx(FAILED, "this is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
|
|
continue;
|
|
}
|
|
|
|
// only parity zero attack
|
|
if (par_list == 0) {
|
|
qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
|
|
keycount = intersection(last_keylist, keylist);
|
|
if (keycount == 0) {
|
|
free(last_keylist);
|
|
last_keylist = keylist;
|
|
PrintAndLogEx(FAILED, "no candidates found, trying again");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
PrintAndLogEx(SUCCESS, "found " _YELLOW_("%u") "candidate key%s", keycount, (keycount > 1) ? "s." : ".");
|
|
|
|
*key = UINT64_C(-1);
|
|
uint8_t keyBlock[PM3_CMD_DATA_SIZE];
|
|
uint32_t max_keys = KEYS_IN_BLOCK;
|
|
for (uint32_t i = 0; i < keycount; i += max_keys) {
|
|
|
|
uint8_t size = keycount - i > max_keys ? max_keys : keycount - i;
|
|
register uint8_t j;
|
|
for (j = 0; j < size; j++) {
|
|
if (par_list == 0) {
|
|
num_to_bytes(last_keylist[i * max_keys + j], 6, keyBlock + (j * 6));
|
|
} else {
|
|
num_to_bytes(keylist[i * max_keys + j], 6, keyBlock + (j * 6));
|
|
}
|
|
}
|
|
|
|
if (mfCheckKeys(blockno, key_type - 0x60, false, size, keyBlock, key) == PM3_SUCCESS) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (*key != UINT64_C(-1)) {
|
|
break;
|
|
} else {
|
|
PrintAndLogEx(FAILED, "all candidate keys failed. Restarting darkside attack");
|
|
free(last_keylist);
|
|
last_keylist = keylist;
|
|
first_run = true;
|
|
}
|
|
}
|
|
free(last_keylist);
|
|
free(keylist);
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t *keyBlock, uint64_t *key) {
|
|
*key = -1;
|
|
clearCommandBuffer();
|
|
uint8_t data[PM3_CMD_DATA_SIZE] = {0};
|
|
data[0] = keyType;
|
|
data[1] = blockNo;
|
|
data[2] = clear_trace;
|
|
data[3] = 0;
|
|
data[4] = keycnt;
|
|
memcpy(data + 5, keyBlock, 6 * keycnt);
|
|
SendCommandNG(CMD_HF_MIFARE_CHKKEYS, data, (5 + 6 * keycnt));
|
|
|
|
PacketResponseNG resp;
|
|
if (!WaitForResponseTimeout(CMD_HF_MIFARE_CHKKEYS, &resp, 2500)) return PM3_ETIMEOUT;
|
|
if (resp.status != PM3_SUCCESS) return resp.status;
|
|
|
|
struct kr {
|
|
uint8_t key[6];
|
|
bool found;
|
|
} PACKED;
|
|
struct kr *keyresult = (struct kr *)&resp.data.asBytes;
|
|
if (!keyresult->found) return PM3_ESOFT;
|
|
*key = bytes_to_num(keyresult->key, sizeof(keyresult->key));
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// Sends chunks of keys to device.
|
|
// 0 == ok all keys found
|
|
// 1 ==
|
|
// 2 == Time-out, aborting
|
|
int mfCheckKeys_fast(uint8_t sectorsCnt, uint8_t firstChunk, uint8_t lastChunk, uint8_t strategy,
|
|
uint32_t size, uint8_t *keyBlock, sector_t *e_sector, bool use_flashmemory) {
|
|
|
|
uint64_t t2 = msclock();
|
|
uint32_t timeout = 0;
|
|
|
|
// send keychunk
|
|
clearCommandBuffer();
|
|
SendCommandOLD(CMD_HF_MIFARE_CHKKEYS_FAST, (sectorsCnt | (firstChunk << 8) | (lastChunk << 12)), ((use_flashmemory << 8) | strategy), size, keyBlock, 6 * size);
|
|
PacketResponseNG resp;
|
|
|
|
while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
|
|
timeout++;
|
|
printf(".");
|
|
fflush(stdout);
|
|
// max timeout for one chunk of 85keys, 60*3sec = 180seconds
|
|
// s70 with 40*2 keys to check, 80*85 = 6800 auth.
|
|
// takes about 97s, still some margin before abort
|
|
if (timeout > 180) {
|
|
PrintAndLogEx(WARNING, "\nNo response from Proxmark3. Aborting...");
|
|
return PM3_ETIMEOUT;
|
|
}
|
|
}
|
|
t2 = msclock() - t2;
|
|
|
|
// time to convert the returned data.
|
|
uint8_t curr_keys = resp.oldarg[0];
|
|
|
|
PrintAndLogEx(SUCCESS, "\nChunk: %.1fs | found %u/%u keys (%u)", (float)(t2 / 1000.0), curr_keys, (sectorsCnt << 1), size);
|
|
|
|
// all keys?
|
|
if (curr_keys == sectorsCnt * 2 || lastChunk) {
|
|
|
|
// success array. each byte is status of key
|
|
uint8_t arr[80];
|
|
uint64_t foo = 0;
|
|
uint16_t bar = 0;
|
|
foo = bytes_to_num(resp.data.asBytes + 480, 8);
|
|
bar = (resp.data.asBytes[489] << 8 | resp.data.asBytes[488]);
|
|
|
|
for (uint8_t i = 0; i < 64; i++)
|
|
arr[i] = (foo >> i) & 0x1;
|
|
|
|
for (uint8_t i = 0; i < 16; i++)
|
|
arr[i + 64] = (bar >> i) & 0x1;
|
|
|
|
// initialize storage for found keys
|
|
icesector_t *tmp = calloc(sectorsCnt, sizeof(icesector_t));
|
|
if (tmp == NULL)
|
|
return PM3_EMALLOC;
|
|
|
|
memcpy(tmp, resp.data.asBytes, sectorsCnt * sizeof(icesector_t));
|
|
|
|
for (int i = 0; i < sectorsCnt; i++) {
|
|
// key A
|
|
if (!e_sector[i].foundKey[0]) {
|
|
e_sector[i].Key[0] = bytes_to_num(tmp[i].keyA, 6);
|
|
e_sector[i].foundKey[0] = arr[(i * 2) ];
|
|
}
|
|
// key B
|
|
if (!e_sector[i].foundKey[1]) {
|
|
e_sector[i].Key[1] = bytes_to_num(tmp[i].keyB, 6);
|
|
e_sector[i].foundKey[1] = arr[(i * 2) + 1 ];
|
|
}
|
|
}
|
|
free(tmp);
|
|
|
|
if (curr_keys == sectorsCnt * 2)
|
|
return PM3_SUCCESS;
|
|
if (lastChunk)
|
|
return PM3_ESOFT;
|
|
}
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
// Trigger device to use a binary file on flash mem as keylist for mfCheckKeys.
|
|
// As of now, 255 keys possible in the file
|
|
// 6 * 255 = 1500 bytes
|
|
int mfCheckKeys_file(uint8_t *destfn, uint64_t *key) {
|
|
*key = -1;
|
|
clearCommandBuffer();
|
|
|
|
struct {
|
|
uint8_t filename[32];
|
|
} PACKED payload_file;
|
|
|
|
memcpy(payload_file.filename, destfn, sizeof(payload_file.filename) - 1);
|
|
|
|
PacketResponseNG resp;
|
|
clearCommandBuffer();
|
|
SendCommandNG(CMD_HF_MIFARE_CHKKEYS_FILE, (uint8_t *)&payload_file, sizeof(payload_file));
|
|
|
|
uint8_t retry = 10;
|
|
|
|
while (!WaitForResponseTimeout(CMD_HF_MIFARE_CHKKEYS, &resp, 2000)) {
|
|
retry--;
|
|
if (retry ==0) {
|
|
PrintAndLogEx(WARNING, "Chk keys file, timeouted");
|
|
return PM3_ETIMEOUT;
|
|
}
|
|
}
|
|
|
|
if (resp.status != PM3_SUCCESS) return resp.status;
|
|
|
|
struct kr {
|
|
uint8_t key[6];
|
|
bool found;
|
|
} PACKED;
|
|
struct kr *keyresult = (struct kr *)&resp.data.asBytes;
|
|
if (!keyresult->found) return PM3_ESOFT;
|
|
*key = bytes_to_num(keyresult->key, sizeof(keyresult->key));
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// PM3 imp of J-Run mf_key_brute (part 2)
|
|
// ref: https://github.com/J-Run/mf_key_brute
|
|
int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultkey) {
|
|
|
|
uint64_t key64;
|
|
uint8_t found = false;
|
|
uint8_t candidates[CANDIDATE_SIZE] = {0x00};
|
|
uint8_t keyBlock[KEYBLOCK_SIZE] = {0x00};
|
|
|
|
memset(candidates, 0, sizeof(candidates));
|
|
memset(keyBlock, 0, sizeof(keyBlock));
|
|
|
|
// Generate all possible keys for the first two unknown bytes.
|
|
for (uint16_t i = 0; i < 0xFFFF; ++i) {
|
|
uint32_t j = i * 6;
|
|
candidates[0 + j] = i >> 8;
|
|
candidates[1 + j] = i;
|
|
candidates[2 + j] = key[2];
|
|
candidates[3 + j] = key[3];
|
|
candidates[4 + j] = key[4];
|
|
candidates[5 + j] = key[5];
|
|
}
|
|
uint32_t counter, i;
|
|
for (i = 0, counter = 1; i < CANDIDATE_SIZE; i += KEYBLOCK_SIZE, ++counter) {
|
|
|
|
key64 = 0;
|
|
|
|
// copy candidatekeys to test key block
|
|
memcpy(keyBlock, candidates + i, KEYBLOCK_SIZE);
|
|
|
|
// check a block of generated candidate keys.
|
|
if (mfCheckKeys(blockNo, keyType, true, KEYS_IN_BLOCK, keyBlock, &key64) == PM3_SUCCESS) {
|
|
*resultkey = key64;
|
|
found = true;
|
|
break;
|
|
}
|
|
|
|
// progress
|
|
if (counter % 20 == 0)
|
|
PrintAndLogEx(SUCCESS, "tried : %s.. \t %u keys", sprint_hex(candidates + i, 6), counter * KEYS_IN_BLOCK);
|
|
}
|
|
return found;
|
|
}
|
|
|
|
// Compare 16 Bits out of cryptostate
|
|
inline static int Compare16Bits(const void *a, const void *b) {
|
|
if ((*(uint64_t *)b & 0x00ff000000ff0000) == (*(uint64_t *)a & 0x00ff000000ff0000)) return 0;
|
|
if ((*(uint64_t *)b & 0x00ff000000ff0000) > (*(uint64_t *)a & 0x00ff000000ff0000)) return 1;
|
|
return -1;
|
|
}
|
|
|
|
// wrapper function for multi-threaded lfsr_recovery32
|
|
static void
|
|
#ifdef __has_attribute
|
|
#if __has_attribute(force_align_arg_pointer)
|
|
__attribute__((force_align_arg_pointer))
|
|
#endif
|
|
#endif
|
|
*nested_worker_thread(void *arg) {
|
|
struct Crypto1State *p1;
|
|
StateList_t *statelist = arg;
|
|
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt_enc ^ statelist->uid);
|
|
|
|
for (p1 = statelist->head.slhead; * (uint64_t *)p1 != 0; p1++) {};
|
|
|
|
statelist->len = p1 - statelist->head.slhead;
|
|
statelist->tail.sltail = --p1;
|
|
|
|
qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
|
|
|
|
return statelist->head.slhead;
|
|
}
|
|
|
|
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
|
|
|
|
uint32_t uid;
|
|
StateList_t statelists[2];
|
|
struct Crypto1State *p1, *p2, *p3, *p4;
|
|
|
|
struct {
|
|
uint8_t block;
|
|
uint8_t keytype;
|
|
uint8_t target_block;
|
|
uint8_t target_keytype;
|
|
bool calibrate;
|
|
uint8_t key[6];
|
|
} PACKED payload;
|
|
payload.block = blockNo;
|
|
payload.keytype = keyType;
|
|
payload.target_block = trgBlockNo;
|
|
payload.target_keytype = trgKeyType;
|
|
payload.calibrate = calibrate;
|
|
memcpy(payload.key, key, sizeof(payload.key));
|
|
|
|
PacketResponseNG resp;
|
|
clearCommandBuffer();
|
|
SendCommandNG(CMD_HF_MIFARE_NESTED, (uint8_t *)&payload, sizeof(payload));
|
|
|
|
if (!WaitForResponseTimeout(CMD_HF_MIFARE_NESTED, &resp, 2000)) {
|
|
SendCommandNG(CMD_BREAK_LOOP, NULL, 0);
|
|
return PM3_ETIMEOUT;
|
|
}
|
|
|
|
if (resp.status != PM3_SUCCESS)
|
|
return PM3_ESOFT;
|
|
|
|
struct p {
|
|
int16_t isOK;
|
|
uint8_t block;
|
|
uint8_t keytype;
|
|
uint8_t cuid[4];
|
|
uint8_t nt_a[4];
|
|
uint8_t ks_a[4];
|
|
uint8_t nt_b[4];
|
|
uint8_t ks_b[4];
|
|
} PACKED;
|
|
struct p *package = (struct p *)resp.data.asBytes;
|
|
|
|
// error during nested
|
|
if (package->isOK) return package->isOK;
|
|
|
|
memcpy(&uid, package->cuid, sizeof(package->cuid));
|
|
|
|
for (uint8_t i = 0; i < 2; i++) {
|
|
statelists[i].blockNo = package->block;
|
|
statelists[i].keyType = package->keytype;
|
|
statelists[i].uid = uid;
|
|
}
|
|
|
|
memcpy(&statelists[0].nt_enc, package->nt_a, sizeof(package->nt_a));
|
|
memcpy(&statelists[0].ks1, package->ks_a, sizeof(package->ks_a));
|
|
|
|
memcpy(&statelists[1].nt_enc, package->nt_b, sizeof(package->nt_b));
|
|
memcpy(&statelists[1].ks1, package->ks_b, sizeof(package->ks_b));
|
|
|
|
|
|
// calc keys
|
|
pthread_t thread_id[2];
|
|
|
|
// create and run worker threads
|
|
for (uint8_t i = 0; i < 2; i++)
|
|
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
|
|
|
|
// wait for threads to terminate:
|
|
for (uint8_t i = 0; i < 2; i++)
|
|
pthread_join(thread_id[i], (void *)&statelists[i].head.slhead);
|
|
|
|
// the first 16 Bits of the cryptostate already contain part of our key.
|
|
// Create the intersection of the two lists based on these 16 Bits and
|
|
// roll back the cryptostate
|
|
p1 = p3 = statelists[0].head.slhead;
|
|
p2 = p4 = statelists[1].head.slhead;
|
|
|
|
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
|
|
if (Compare16Bits(p1, p2) == 0) {
|
|
|
|
struct Crypto1State savestate;
|
|
savestate = *p1;
|
|
while (Compare16Bits(p1, &savestate) == 0 && p1 <= statelists[0].tail.sltail) {
|
|
*p3 = *p1;
|
|
lfsr_rollback_word(p3, statelists[0].nt_enc ^ statelists[0].uid, 0);
|
|
p3++;
|
|
p1++;
|
|
}
|
|
savestate = *p2;
|
|
while (Compare16Bits(p2, &savestate) == 0 && p2 <= statelists[1].tail.sltail) {
|
|
*p4 = *p2;
|
|
lfsr_rollback_word(p4, statelists[1].nt_enc ^ statelists[1].uid, 0);
|
|
p4++;
|
|
p2++;
|
|
}
|
|
} else {
|
|
while (Compare16Bits(p1, p2) == -1) p1++;
|
|
while (Compare16Bits(p1, p2) == 1) p2++;
|
|
}
|
|
}
|
|
|
|
*(uint64_t *)p3 = -1;
|
|
*(uint64_t *)p4 = -1;
|
|
statelists[0].len = p3 - statelists[0].head.slhead;
|
|
statelists[1].len = p4 - statelists[1].head.slhead;
|
|
statelists[0].tail.sltail = --p3;
|
|
statelists[1].tail.sltail = --p4;
|
|
|
|
// the statelists now contain possible keys. The key we are searching for must be in the
|
|
// intersection of both lists
|
|
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
|
|
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
|
|
// Create the intersection
|
|
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
|
|
|
|
//statelists[0].tail.keytail = --p7;
|
|
uint32_t keycnt = statelists[0].len;
|
|
if (keycnt == 0) goto out;
|
|
|
|
PrintAndLogEx(SUCCESS, "Found " _YELLOW_("%u") "candidate keys", keycnt);
|
|
|
|
memset(resultKey, 0, 6);
|
|
uint64_t key64 = -1;
|
|
|
|
// The list may still contain several key candidates. Test each of them with mfCheckKeys
|
|
uint32_t max_keys = keycnt > KEYS_IN_BLOCK ? KEYS_IN_BLOCK : keycnt;
|
|
uint8_t keyBlock[PM3_CMD_DATA_SIZE] = {0x00};
|
|
|
|
for (uint32_t i = 0; i < keycnt; i += max_keys) {
|
|
|
|
uint64_t start_time = msclock();
|
|
|
|
uint8_t size = keycnt - i > max_keys ? max_keys : keycnt - i;
|
|
|
|
register uint8_t j;
|
|
for (j = 0; j < size; j++) {
|
|
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
|
|
num_to_bytes(key64, 6, keyBlock + j * 6);
|
|
}
|
|
|
|
if (mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, size, keyBlock, &key64) == PM3_SUCCESS) {
|
|
free(statelists[0].head.slhead);
|
|
free(statelists[1].head.slhead);
|
|
num_to_bytes(key64, 6, resultKey);
|
|
|
|
PrintAndLogEx(SUCCESS, "target block:%3u key type: %c -- found valid key [ " _YELLOW_("%s") "]",
|
|
package->block,
|
|
package->keytype ? 'B' : 'A',
|
|
sprint_hex_inrow(resultKey, 6)
|
|
);
|
|
return -5;
|
|
}
|
|
|
|
float bruteforce_per_second = (float)KEYS_IN_BLOCK / (float)(msclock() - start_time) * 1000.0;
|
|
start_time = msclock();
|
|
|
|
if ( i + 1 % 10 == 0)
|
|
PrintAndLogEx(INFO, " %8d/%u keys | %5.1f keys/sec | worst case %6.1f seconds remaining", i, keycnt , bruteforce_per_second, (keycnt-i) / bruteforce_per_second);
|
|
|
|
}
|
|
|
|
out:
|
|
PrintAndLogEx(SUCCESS, "target block:%3u key type: %c",
|
|
package->block,
|
|
package->keytype ? 'B' : 'A'
|
|
);
|
|
|
|
free(statelists[0].head.slhead);
|
|
free(statelists[1].head.slhead);
|
|
return -4;
|
|
}
|
|
|
|
int mfStaticNested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey) {
|
|
|
|
uint32_t uid;
|
|
StateList_t statelists[1];
|
|
struct Crypto1State *p1, *p3;
|
|
|
|
struct {
|
|
uint8_t block;
|
|
uint8_t keytype;
|
|
uint8_t target_block;
|
|
uint8_t target_keytype;
|
|
uint8_t key[6];
|
|
} PACKED payload;
|
|
payload.block = blockNo;
|
|
payload.keytype = keyType;
|
|
payload.target_block = trgBlockNo;
|
|
payload.target_keytype = trgKeyType;
|
|
memcpy(payload.key, key, sizeof(payload.key));
|
|
|
|
PacketResponseNG resp;
|
|
clearCommandBuffer();
|
|
SendCommandNG(CMD_HF_MIFARE_STATIC_NESTED, (uint8_t *)&payload, sizeof(payload));
|
|
|
|
if (!WaitForResponseTimeout(CMD_HF_MIFARE_STATIC_NESTED, &resp, 2000))
|
|
return PM3_ETIMEOUT;
|
|
|
|
if (resp.status != PM3_SUCCESS)
|
|
return resp.status;
|
|
|
|
struct p {
|
|
int16_t isOK;
|
|
uint8_t block;
|
|
uint8_t keytype;
|
|
uint8_t cuid[4];
|
|
uint8_t nt[4];
|
|
uint8_t ks[4];
|
|
} PACKED;
|
|
struct p *package = (struct p *)resp.data.asBytes;
|
|
|
|
// error during collecting static nested information
|
|
if (package->isOK == 0) return PM3_EUNDEF;
|
|
|
|
memcpy(&uid, package->cuid, sizeof(package->cuid));
|
|
|
|
statelists[0].blockNo = package->block;
|
|
statelists[0].keyType = package->keytype;
|
|
statelists[0].uid = uid;
|
|
|
|
memcpy(&statelists[0].nt_enc, package->nt, sizeof(package->nt));
|
|
memcpy(&statelists[0].ks1, package->ks, sizeof(package->ks));
|
|
|
|
// calc keys
|
|
pthread_t t;
|
|
|
|
// create and run worker thread
|
|
pthread_create(&t, NULL, nested_worker_thread, &statelists[0]);
|
|
|
|
// wait for thread to terminate:
|
|
pthread_join(t, (void *)&statelists[0].head.slhead);
|
|
|
|
// the first 16 Bits of the cryptostate already contain part of our key.
|
|
p1 = p3 = statelists[0].head.slhead;
|
|
|
|
// create key candidates.
|
|
while (p1 <= statelists[0].tail.sltail) {
|
|
struct Crypto1State savestate;
|
|
savestate = *p1;
|
|
while (Compare16Bits(p1, &savestate) == 0 && p1 <= statelists[0].tail.sltail) {
|
|
*p3 = *p1;
|
|
lfsr_rollback_word(p3, statelists[0].nt_enc ^ statelists[0].uid, 0);
|
|
p3++;
|
|
p1++;
|
|
}
|
|
}
|
|
|
|
*(uint64_t *)p3 = -1;
|
|
statelists[0].len = p3 - statelists[0].head.slhead;
|
|
statelists[0].tail.sltail = --p3;
|
|
|
|
uint32_t keycnt = statelists[0].len;
|
|
if (keycnt == 0) goto out;
|
|
|
|
PrintAndLogEx(SUCCESS, "Found " _YELLOW_("%u") "candidate keys", keycnt);
|
|
|
|
memset(resultKey, 0, 6);
|
|
uint64_t key64 = -1;
|
|
|
|
// The list may still contain several key candidates. Test each of them with mfCheckKeys
|
|
uint32_t maxkeysinblock = IfPm3Flash() ? 1600 : KEYS_IN_BLOCK;
|
|
uint32_t max_keys_slice = keycnt > maxkeysinblock ? maxkeysinblock : keycnt;
|
|
|
|
uint8_t *mem = calloc( (maxkeysinblock * 6) + 5, sizeof(uint8_t));
|
|
if (mem == NULL) {
|
|
free(statelists[0].head.slhead);
|
|
return PM3_EMALLOC;
|
|
}
|
|
|
|
uint8_t *p_keyblock = mem + 5;
|
|
mem[0] = statelists[0].keyType;
|
|
mem[1] = statelists[0].blockNo;
|
|
mem[2] = 1;
|
|
mem[3] = ((maxkeysinblock >> 8) & 0xFF);
|
|
mem[4] = (maxkeysinblock & 0xFF);
|
|
|
|
uint8_t destfn[32];
|
|
strncpy((char*)destfn, "static_nested_000.bin", sizeof(destfn) - 1);
|
|
|
|
for (uint32_t i = 0; i < keycnt; i += max_keys_slice) {
|
|
|
|
int res = 0;
|
|
uint64_t start_time = msclock();
|
|
|
|
key64 = 0;
|
|
uint32_t size = keycnt - i > max_keys_slice ? max_keys_slice : keycnt - i;
|
|
|
|
// copy x keys to device.
|
|
for (uint32_t j = 0; j < size; j++) {
|
|
crypto1_get_lfsr(statelists[0].head.slhead + i + j, &key64);
|
|
num_to_bytes(key64, 6, p_keyblock + j * 6);
|
|
}
|
|
|
|
// check a block of generated candidate keys.
|
|
if (IfPm3Flash()) {
|
|
// upload to flash.
|
|
res = flashmem_spiffs_load(destfn, mem, 5 + (size * 6) );
|
|
if (res != PM3_SUCCESS) {
|
|
PrintAndLogEx(WARNING, "SPIFFS upload failed");
|
|
return res;
|
|
}
|
|
|
|
res = mfCheckKeys_file(destfn, &key64);
|
|
} else {
|
|
res = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, size, mem, &key64);
|
|
}
|
|
|
|
if (res == PM3_SUCCESS) {
|
|
p_keyblock = NULL;
|
|
free(statelists[0].head.slhead);
|
|
free(mem);
|
|
|
|
num_to_bytes(key64, 6, resultKey);
|
|
|
|
PrintAndLogEx(SUCCESS, "target block:%3u key type: %c -- found valid key [ " _YELLOW_("%s") "]",
|
|
package->block,
|
|
package->keytype ? 'B' : 'A',
|
|
sprint_hex_inrow(resultKey, 6)
|
|
);
|
|
return PM3_SUCCESS;
|
|
} else if (res == PM3_ETIMEOUT) {
|
|
return res;
|
|
}
|
|
|
|
float bruteforce_per_second = (float)maxkeysinblock / (float)(msclock() - start_time) * 1000.0;
|
|
start_time = msclock();
|
|
|
|
PrintAndLogEx(INFO, "Chunk %8u/%u keys | %5.1f keys/sec | worst case %6.1f seconds remaining", i, keycnt, bruteforce_per_second, (keycnt-i) / bruteforce_per_second);
|
|
}
|
|
|
|
p_keyblock = NULL;
|
|
free(mem);
|
|
|
|
out:
|
|
PrintAndLogEx(SUCCESS, "target block:%3u key type: %c",
|
|
package->block,
|
|
package->keytype ? 'B' : 'A'
|
|
);
|
|
|
|
free(statelists[0].head.slhead);
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
// MIFARE
|
|
int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
|
|
|
|
clearCommandBuffer();
|
|
SendCommandOLD(CMD_HF_MIFARE_READSC, sectorNo, keyType, 0, key, 6);
|
|
|
|
PacketResponseNG resp;
|
|
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
|
|
uint8_t isOK = resp.oldarg[0] & 0xff;
|
|
|
|
if (isOK) {
|
|
memcpy(data, resp.data.asBytes, mfNumBlocksPerSector(sectorNo) * 16);
|
|
return PM3_SUCCESS;
|
|
} else {
|
|
return PM3_EUNDEF;
|
|
}
|
|
} else {
|
|
PrintAndLogEx(ERR, "Command execute timeout");
|
|
return PM3_ETIMEOUT;
|
|
}
|
|
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// EMULATOR
|
|
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
|
|
|
|
size_t size = blocksCount * 16;
|
|
if (size > PM3_CMD_DATA_SIZE) {
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
struct {
|
|
uint8_t blockno;
|
|
uint8_t blockcnt;
|
|
} PACKED payload;
|
|
|
|
payload.blockno = blockNum;
|
|
payload.blockcnt = blocksCount;
|
|
|
|
clearCommandBuffer();
|
|
SendCommandNG(CMD_HF_MIFARE_EML_MEMGET, (uint8_t *)&payload, sizeof(payload));
|
|
|
|
PacketResponseNG resp;
|
|
if (WaitForResponseTimeout(CMD_HF_MIFARE_EML_MEMGET, &resp, 1500) == 0) {
|
|
PrintAndLogEx(WARNING, "Command execute timeout");
|
|
return PM3_ETIMEOUT;
|
|
}
|
|
|
|
if (resp.status == PM3_SUCCESS)
|
|
memcpy(data, resp.data.asBytes, size);
|
|
|
|
return resp.status;
|
|
}
|
|
|
|
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
|
|
return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
|
|
}
|
|
|
|
int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
|
|
|
|
struct p {
|
|
uint8_t blockno;
|
|
uint8_t blockcnt;
|
|
uint8_t blockwidth;
|
|
uint8_t data[];
|
|
} PACKED;
|
|
|
|
size_t size = blocksCount * blockBtWidth;
|
|
if (size > (PM3_CMD_DATA_SIZE - sizeof(struct p))) {
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
struct p *payload = calloc(1, sizeof(struct p) + size);
|
|
payload->blockno = blockNum;
|
|
payload->blockcnt = blocksCount;
|
|
payload->blockwidth = blockBtWidth;
|
|
memcpy(payload->data, data, size);
|
|
|
|
clearCommandBuffer();
|
|
SendCommandNG(CMD_HF_MIFARE_EML_MEMSET, (uint8_t *)payload, sizeof(payload) + size);
|
|
free(payload);
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// "MAGIC" CARD
|
|
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
|
|
|
|
uint8_t params = MAGIC_SINGLE;
|
|
uint8_t block0[16];
|
|
memset(block0, 0x00, sizeof(block0));
|
|
|
|
int old = mfCGetBlock(0, block0, params);
|
|
if (old == 0)
|
|
PrintAndLogEx(SUCCESS, "old block 0: %s", sprint_hex(block0, sizeof(block0)));
|
|
else
|
|
PrintAndLogEx(FAILED, "couldn't get old data. Will write over the last bytes of Block 0.");
|
|
|
|
// fill in the new values
|
|
// UID
|
|
memcpy(block0, uid, 4);
|
|
// Mifare UID BCC
|
|
block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3];
|
|
// mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
|
|
if (sak != NULL)
|
|
block0[5] = sak[0];
|
|
|
|
if (atqa != NULL) {
|
|
block0[6] = atqa[1];
|
|
block0[7] = atqa[0];
|
|
}
|
|
PrintAndLogEx(SUCCESS, "new block 0: %s", sprint_hex(block0, 16));
|
|
|
|
if (wipecard) params |= MAGIC_WIPE;
|
|
if (oldUID == NULL) params |= MAGIC_UID;
|
|
|
|
return mfCSetBlock(0, block0, oldUID, params);
|
|
}
|
|
|
|
int mfCWipe(uint8_t *uid, uint8_t *atqa, uint8_t *sak) {
|
|
uint8_t block0[16] = {0x01, 0x02, 0x03, 0x04, 0x04, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xBE, 0xAF};
|
|
uint8_t blockD[16] = {0x00};
|
|
uint8_t blockK[16] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x08, 0x77, 0x8F, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
|
|
uint8_t params = MAGIC_SINGLE;
|
|
|
|
if (uid != NULL) {
|
|
memcpy(block0, uid, 4);
|
|
block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3];
|
|
}
|
|
if (sak != NULL)
|
|
block0[5] = sak[0];
|
|
|
|
if (atqa != NULL) {
|
|
block0[6] = atqa[1];
|
|
block0[7] = atqa[0];
|
|
}
|
|
int res;
|
|
for (int blockNo = 0; blockNo < 4 * 16; blockNo++) {
|
|
for (int retry = 0; retry < 3; retry++) {
|
|
if (blockNo == 0) {
|
|
res = mfCSetBlock(blockNo, block0, NULL, params);
|
|
} else {
|
|
if (mfIsSectorTrailer(blockNo))
|
|
res = mfCSetBlock(blockNo, blockK, NULL, params);
|
|
else
|
|
res = mfCSetBlock(blockNo, blockD, NULL, params);
|
|
}
|
|
|
|
if (res == PM3_SUCCESS)
|
|
break;
|
|
PrintAndLogEx(WARNING, "Retry block[%d]...", blockNo);
|
|
}
|
|
|
|
if (res) {
|
|
PrintAndLogEx(ERR, "Error setting block[%d]: %d", blockNo, res);
|
|
return res;
|
|
}
|
|
}
|
|
DropField();
|
|
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
|
|
|
|
clearCommandBuffer();
|
|
SendCommandOLD(CMD_HF_MIFARE_CSETBL, params, blockNo, 0, data, 16);
|
|
PacketResponseNG resp;
|
|
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
|
|
uint8_t isOK = resp.oldarg[0] & 0xff;
|
|
if (uid != NULL)
|
|
memcpy(uid, resp.data.asBytes, 4);
|
|
if (!isOK)
|
|
return PM3_EUNDEF;
|
|
} else {
|
|
PrintAndLogEx(WARNING, "command execute timeout");
|
|
return PM3_ETIMEOUT;
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
|
|
clearCommandBuffer();
|
|
SendCommandMIX(CMD_HF_MIFARE_CGETBL, params, blockNo, 0, NULL, 0);
|
|
PacketResponseNG resp;
|
|
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
|
|
uint8_t isOK = resp.oldarg[0] & 0xff;
|
|
if (!isOK)
|
|
return PM3_EUNDEF;
|
|
memcpy(data, resp.data.asBytes, 16);
|
|
} else {
|
|
PrintAndLogEx(WARNING, "command execute timeout");
|
|
return PM3_ETIMEOUT;
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// SNIFFER
|
|
// [iceman] so many global variables....
|
|
|
|
// constants
|
|
static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
|
|
|
|
// variables
|
|
char logHexFileName[FILE_PATH_SIZE] = {0x00};
|
|
static uint8_t traceCard[4096] = {0x00};
|
|
static char traceFileName[FILE_PATH_SIZE] = {0x00};
|
|
static int traceState = TRACE_IDLE;
|
|
static uint8_t traceCurBlock = 0;
|
|
static uint8_t traceCurKey = 0;
|
|
|
|
struct Crypto1State *traceCrypto1 = NULL;
|
|
struct Crypto1State *revstate = NULL;
|
|
|
|
uint32_t cuid = 0; // uid part used for crypto1.
|
|
|
|
int isTraceCardEmpty(void) {
|
|
return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
|
|
}
|
|
|
|
int isBlockEmpty(int blockN) {
|
|
for (int i = 0; i < 16; i++)
|
|
if (traceCard[blockN * 16 + i] != 0) return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int isBlockTrailer(int blockN) {
|
|
return ((blockN & 0x03) == 0x03);
|
|
}
|
|
|
|
int loadTraceCard(uint8_t *tuid, uint8_t uidlen) {
|
|
FILE *f;
|
|
char buf[64] = {0x00};
|
|
uint8_t buf8[64] = {0x00};
|
|
int i, blockNum;
|
|
uint32_t tmp;
|
|
|
|
if (!isTraceCardEmpty())
|
|
saveTraceCard();
|
|
|
|
memset(traceCard, 0x00, 4096);
|
|
memcpy(traceCard, tuid, uidlen);
|
|
|
|
FillFileNameByUID(traceFileName, tuid, ".eml", uidlen);
|
|
|
|
f = fopen(traceFileName, "r");
|
|
if (!f) return PM3_EFILE;
|
|
|
|
blockNum = 0;
|
|
|
|
while (!feof(f)) {
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
if (fgets(buf, sizeof(buf), f) == NULL) {
|
|
PrintAndLogEx(FAILED, "No trace file found or reading error.");
|
|
fclose(f);
|
|
return PM3_EFILE;
|
|
}
|
|
|
|
if (strlen(buf) < 32) {
|
|
if (feof(f)) break;
|
|
PrintAndLogEx(FAILED, "File content error. Block data must include 32 HEX symbols");
|
|
fclose(f);
|
|
return PM3_EFILE;
|
|
}
|
|
for (i = 0; i < 32; i += 2) {
|
|
sscanf(&buf[i], "%02X", &tmp);
|
|
buf8[i / 2] = tmp & 0xFF;
|
|
}
|
|
|
|
memcpy(traceCard + blockNum * 16, buf8, 16);
|
|
|
|
blockNum++;
|
|
}
|
|
fclose(f);
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
int saveTraceCard(void) {
|
|
|
|
if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return PM3_ESOFT;
|
|
|
|
FILE *f;
|
|
f = fopen(traceFileName, "w+");
|
|
if (!f) return PM3_EFILE;
|
|
|
|
// given 4096 tracecard size, these loop will only match a 1024, 1kb card memory
|
|
// 4086/16 == 256blocks.
|
|
for (uint16_t i = 0; i < 256; i++) { // blocks
|
|
for (uint8_t j = 0; j < 16; j++) // bytes
|
|
fprintf(f, "%02X", *(traceCard + i * 16 + j));
|
|
|
|
// no extra line in the end
|
|
if (i < 255)
|
|
fprintf(f, "\n");
|
|
}
|
|
fflush(f);
|
|
fclose(f);
|
|
return PM3_SUCCESS;
|
|
}
|
|
//
|
|
int mfTraceInit(uint8_t *tuid, uint8_t uidlen, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
|
|
|
|
if (traceCrypto1)
|
|
crypto1_destroy(traceCrypto1);
|
|
|
|
traceCrypto1 = NULL;
|
|
|
|
if (wantSaveToEmlFile)
|
|
loadTraceCard(tuid, uidlen);
|
|
|
|
traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
|
|
traceCard[5] = sak;
|
|
memcpy(&traceCard[6], atqa, 2);
|
|
traceCurBlock = 0;
|
|
cuid = bytes_to_num(tuid + (uidlen - 4), 4);
|
|
traceState = TRACE_IDLE;
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted) {
|
|
if (len != 1) {
|
|
for (int i = 0; i < len; i++)
|
|
data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
|
|
} else {
|
|
uint8_t bt = 0;
|
|
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 0)) << 0;
|
|
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 1)) << 1;
|
|
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 2)) << 2;
|
|
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 3)) << 3;
|
|
data[0] = bt;
|
|
}
|
|
}
|
|
|
|
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
|
|
if (traceState == TRACE_ERROR)
|
|
return PM3_ESOFT;
|
|
|
|
if (len > 255) {
|
|
traceState = TRACE_ERROR;
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
uint8_t data[255];
|
|
memset(data, 0x00, sizeof(data));
|
|
|
|
memcpy(data, data_src, len);
|
|
|
|
if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
|
|
mf_crypto1_decrypt(traceCrypto1, data, len, 0);
|
|
PrintAndLogEx(NORMAL, "DEC| %s", sprint_hex(data, len));
|
|
AddLogHex(logHexFileName, "DEC| ", data, len);
|
|
}
|
|
|
|
switch (traceState) {
|
|
case TRACE_IDLE:
|
|
// check packet crc16!
|
|
if ((len >= 4) && (!check_crc(CRC_14443_A, data, len))) {
|
|
PrintAndLogEx(NORMAL, "DEC| CRC ERROR!!!");
|
|
AddLogLine(logHexFileName, "DEC| ", "CRC ERROR!!!");
|
|
traceState = TRACE_ERROR; // do not decrypt the next commands
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
// AUTHENTICATION
|
|
if ((len == 4) && ((data[0] == MIFARE_AUTH_KEYA) || (data[0] == MIFARE_AUTH_KEYB))) {
|
|
traceState = TRACE_AUTH1;
|
|
traceCurBlock = data[1];
|
|
traceCurKey = data[0] == 60 ? 1 : 0;
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// READ
|
|
if ((len == 4) && ((data[0] == ISO14443A_CMD_READBLOCK))) {
|
|
traceState = TRACE_READ_DATA;
|
|
traceCurBlock = data[1];
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// WRITE
|
|
if ((len == 4) && ((data[0] == ISO14443A_CMD_WRITEBLOCK))) {
|
|
traceState = TRACE_WRITE_OK;
|
|
traceCurBlock = data[1];
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// HALT
|
|
if ((len == 4) && ((data[0] == ISO14443A_CMD_HALT) && (data[1] == 0x00))) {
|
|
traceState = TRACE_ERROR; // do not decrypt the next commands
|
|
return PM3_SUCCESS;
|
|
}
|
|
return PM3_SUCCESS;
|
|
|
|
case TRACE_READ_DATA:
|
|
if (len == 18) {
|
|
traceState = TRACE_IDLE;
|
|
|
|
if (isBlockTrailer(traceCurBlock)) {
|
|
memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
|
|
} else {
|
|
memcpy(traceCard + traceCurBlock * 16, data, 16);
|
|
}
|
|
if (wantSaveToEmlFile) saveTraceCard();
|
|
return PM3_SUCCESS;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return PM3_ESOFT;
|
|
}
|
|
break;
|
|
case TRACE_WRITE_OK:
|
|
if ((len == 1) && (data[0] == 0x0a)) {
|
|
traceState = TRACE_WRITE_DATA;
|
|
return PM3_SUCCESS;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return PM3_ESOFT;
|
|
}
|
|
break;
|
|
case TRACE_WRITE_DATA:
|
|
if (len == 18) {
|
|
traceState = TRACE_IDLE;
|
|
memcpy(traceCard + traceCurBlock * 16, data, 16);
|
|
if (wantSaveToEmlFile) saveTraceCard();
|
|
return PM3_SUCCESS;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return PM3_ESOFT;
|
|
}
|
|
break;
|
|
case TRACE_AUTH1:
|
|
if (len == 4) {
|
|
traceState = TRACE_AUTH2;
|
|
//nt = bytes_to_num(data, 4);
|
|
return PM3_SUCCESS;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return PM3_ESOFT;
|
|
}
|
|
break;
|
|
case TRACE_AUTH2:
|
|
if (len == 8) {
|
|
traceState = TRACE_AUTH_OK;
|
|
//nr_enc = bytes_to_num(data, 4);
|
|
//ar_enc = bytes_to_num(data + 4, 4);
|
|
return PM3_SUCCESS;
|
|
} else {
|
|
traceState = TRACE_ERROR;
|
|
return PM3_ESOFT;
|
|
}
|
|
break;
|
|
case TRACE_AUTH_OK:
|
|
if (len == 4) {
|
|
uint32_t nt = 0; // tag challenge
|
|
uint32_t nr_enc = 0; // encrypted reader challenge
|
|
uint32_t ar_enc = 0; // encrypted reader response
|
|
uint32_t at_enc = 0; // encrypted tag response
|
|
traceState = TRACE_IDLE;
|
|
// encrypted tag response
|
|
at_enc = bytes_to_num(data, 4);
|
|
|
|
// mfkey64 recover key.
|
|
uint64_t key = 0;
|
|
uint32_t ks2 = ar_enc ^ prng_successor(nt, 64);
|
|
uint32_t ks3 = at_enc ^ prng_successor(nt, 96);
|
|
revstate = lfsr_recovery64(ks2, ks3);
|
|
lfsr_rollback_word(revstate, 0, 0);
|
|
lfsr_rollback_word(revstate, 0, 0);
|
|
lfsr_rollback_word(revstate, nr_enc, 1);
|
|
lfsr_rollback_word(revstate, cuid ^ nt, 0);
|
|
crypto1_get_lfsr(revstate, &key);
|
|
PrintAndLogEx(SUCCESS, "found Key: [%012" PRIx64 "]", key);
|
|
|
|
//if ( tryMfk64(cuid, nt, nr_enc, ar_enc, at_enc, &key) )
|
|
AddLogUint64(logHexFileName, "Found Key: ", key);
|
|
|
|
int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
|
|
if (isBlockEmpty((traceCurBlock & 0xFC) + 3))
|
|
memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
|
|
|
|
// keytype A/B
|
|
if (traceCurKey)
|
|
num_to_bytes(key, 6, traceCard + blockShift + 10);
|
|
else
|
|
num_to_bytes(key, 6, traceCard + blockShift);
|
|
|
|
if (wantSaveToEmlFile)
|
|
saveTraceCard();
|
|
|
|
if (traceCrypto1)
|
|
crypto1_destroy(traceCrypto1);
|
|
|
|
// set cryptosystem state
|
|
traceCrypto1 = lfsr_recovery64(ks2, ks3);
|
|
|
|
} else {
|
|
PrintAndLogEx(NORMAL, "[!] nested key recovery not implemented!\n");
|
|
//at_enc = bytes_to_num(data, 4);
|
|
crypto1_destroy(traceCrypto1);
|
|
traceState = TRACE_ERROR;
|
|
}
|
|
break;
|
|
default:
|
|
traceState = TRACE_ERROR;
|
|
return PM3_ESOFT;
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len) {
|
|
PrintAndLogEx(SUCCESS, "\nencrypted data: [%s]", sprint_hex(data, len));
|
|
struct Crypto1State *s;
|
|
uint32_t ks2 = ar_enc ^ prng_successor(nt, 64);
|
|
uint32_t ks3 = at_enc ^ prng_successor(nt, 96);
|
|
s = lfsr_recovery64(ks2, ks3);
|
|
mf_crypto1_decrypt(s, data, len, false);
|
|
PrintAndLogEx(SUCCESS, "decrypted data: [%s]", sprint_hex(data, len));
|
|
crypto1_destroy(s);
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
/* Detect Tag Prng,
|
|
* function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce.
|
|
* the tag nonce is check to see if it has a predictable PRNG.
|
|
* @returns
|
|
* TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
|
|
* FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key)
|
|
*/
|
|
int detect_classic_prng(void) {
|
|
|
|
PacketResponseNG resp, respA;
|
|
uint8_t cmd[] = {MIFARE_AUTH_KEYA, 0x00};
|
|
uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS;
|
|
|
|
clearCommandBuffer();
|
|
SendCommandMIX(CMD_HF_ISO14443A_READER, flags, sizeof(cmd), 0, cmd, sizeof(cmd));
|
|
|
|
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
|
|
PrintAndLogEx(WARNING, "PRNG UID: Reply timeout.");
|
|
return PM3_ETIMEOUT;
|
|
}
|
|
|
|
// if select tag failed.
|
|
if (resp.oldarg[0] == 0) {
|
|
PrintAndLogEx(ERR, "error: selecting tag failed, can't detect prng\n");
|
|
return PM3_ERFTRANS;
|
|
}
|
|
if (!WaitForResponseTimeout(CMD_ACK, &respA, 2500)) {
|
|
PrintAndLogEx(WARNING, "PRNG data: Reply timeout.");
|
|
return PM3_ETIMEOUT;
|
|
}
|
|
|
|
// check respA
|
|
if (respA.oldarg[0] != 4) {
|
|
PrintAndLogEx(ERR, "PRNG data error: Wrong length: %"PRIu64, respA.oldarg[0]);
|
|
return PM3_ESOFT;
|
|
}
|
|
|
|
uint32_t nonce = bytes_to_num(respA.data.asBytes, respA.oldarg[0]);
|
|
return validate_prng_nonce(nonce);
|
|
}
|
|
/* Detect Mifare Classic NACK bug
|
|
|
|
returns:
|
|
0 = error during test / aborted
|
|
1 = has nack bug
|
|
2 = has not nack bug
|
|
3 = always leak nacks (clones)
|
|
*/
|
|
int detect_classic_nackbug(bool verbose) {
|
|
|
|
clearCommandBuffer();
|
|
SendCommandNG(CMD_HF_MIFARE_NACK_DETECT, NULL, 0);
|
|
PacketResponseNG resp;
|
|
|
|
if (verbose)
|
|
PrintAndLogEx(SUCCESS, "press pm3-button on the Proxmark3 device to abort both Proxmark3 and client.\n");
|
|
|
|
while (true) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
if (kbd_enter_pressed()) {
|
|
return PM3_EOPABORTED;
|
|
}
|
|
|
|
if (WaitForResponseTimeout(CMD_HF_MIFARE_NACK_DETECT, &resp, 500)) {
|
|
|
|
if (resp.status == PM3_EOPABORTED) {
|
|
PrintAndLogEx(WARNING, "button pressed. Aborted.");
|
|
return PM3_EOPABORTED;
|
|
}
|
|
|
|
uint8_t ok = resp.data.asBytes[0];
|
|
uint8_t nacks = resp.data.asBytes[1];
|
|
uint16_t auths = bytes_to_num(resp.data.asBytes + 2, 2);
|
|
PrintAndLogEx(NORMAL, "");
|
|
|
|
if (verbose) {
|
|
PrintAndLogEx(SUCCESS, "num of auth requests : %u", auths);
|
|
PrintAndLogEx(SUCCESS, "num of received NACK : %u", nacks);
|
|
}
|
|
switch (ok) {
|
|
case 96 :
|
|
case 98 : {
|
|
if (verbose)
|
|
PrintAndLogEx(FAILED, "card random number generator is not predictable.");
|
|
PrintAndLogEx(WARNING, "detection failed");
|
|
return PM3_SUCCESS;
|
|
}
|
|
case 97 : {
|
|
if (verbose) {
|
|
PrintAndLogEx(FAILED, "card random number generator seems to be based on the well-known generating polynomial");
|
|
PrintAndLogEx(NORMAL, "[- ]with 16 effective bits only, but shows unexpected behavior, try again.");
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
case 2 :
|
|
PrintAndLogEx(SUCCESS, _GREEN_("always leak NACK detected"));
|
|
return PM3_SUCCESS;
|
|
case 1 :
|
|
PrintAndLogEx(SUCCESS, _GREEN_("NACK bug detected"));
|
|
return PM3_SUCCESS;
|
|
case 0 :
|
|
PrintAndLogEx(SUCCESS, "No NACK bug detected");
|
|
return PM3_SUCCESS;
|
|
default :
|
|
PrintAndLogEx(ERR, "errorcode from device [%i]", ok);
|
|
return PM3_EUNDEF;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
/* Detect Mifare Classic Static / Fixed nonce
|
|
detects special magic cards that has a static / fixed nonce
|
|
returns:
|
|
0 = has normal nonce
|
|
1 = has static/fixed nonce
|
|
2 = cmd failed
|
|
*/
|
|
int detect_classic_static_nonce(void) {
|
|
|
|
clearCommandBuffer();
|
|
SendCommandNG(CMD_HF_MIFARE_STATIC_NONCE, NULL, 0);
|
|
PacketResponseNG resp;
|
|
|
|
if (WaitForResponseTimeout(CMD_HF_MIFARE_STATIC_NONCE, &resp, 500)) {
|
|
|
|
if (resp.status == PM3_ESOFT)
|
|
return 2;
|
|
|
|
if (resp.data.asBytes[0] == 0)
|
|
return 0;
|
|
|
|
if (resp.data.asBytes[0] != 0)
|
|
return 1;
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
/* try to see if card responses to "chinese magic backdoor" commands. */
|
|
void detect_classic_magic(void) {
|
|
|
|
uint8_t isGeneration = 0;
|
|
PacketResponseNG resp;
|
|
clearCommandBuffer();
|
|
SendCommandNG(CMD_HF_MIFARE_CIDENT, NULL, 0);
|
|
if (WaitForResponseTimeout(CMD_HF_MIFARE_CIDENT, &resp, 1500)) {
|
|
if (resp.status == PM3_SUCCESS)
|
|
isGeneration = resp.data.asBytes[0];
|
|
}
|
|
|
|
switch (isGeneration) {
|
|
case MAGIC_GEN_1A:
|
|
PrintAndLogEx(SUCCESS, "Magic capabilities : " _GREEN_("Gen 1a"));
|
|
break;
|
|
case MAGIC_GEN_1B:
|
|
PrintAndLogEx(SUCCESS, "Magic capabilities : " _GREEN_("Gen 1b"));
|
|
break;
|
|
case MAGIC_GEN_2:
|
|
PrintAndLogEx(SUCCESS, "Magic capabilities : " _GREEN_("Gen 2 / CUID"));
|
|
break;
|
|
case MAGIC_GEN_UNFUSED:
|
|
PrintAndLogEx(SUCCESS, "Magic capabilities : " _GREEN_("Write Once / FUID"));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|