proxmark3/armsrc/em4x50.c
Philippe Teuwen 21bc3b8822 typos
2020-10-24 01:18:51 +02:00

1106 lines
32 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2020 tharexde
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency EM4x50 commands
//-----------------------------------------------------------------------------
#include "fpgaloader.h"
#include "ticks.h"
#include "dbprint.h"
#include "lfadc.h"
#include "commonutil.h"
#include "em4x50.h"
#include "appmain.h" // tear
// 4 data bytes
// + byte with row parities
// + column parity byte
// + byte with stop bit
static em4x50_tag_t tag = {
.sectors = {
[0] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // password
[1] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // protection word
[2] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // control word
[3] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[4] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[5] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[7] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[9] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[10] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[11] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[12] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[13] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[14] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[15] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[17] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[18] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[19] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[20] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[21] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[22] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[23] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[24] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[25] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[26] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[27] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[28] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[29] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[30] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[31] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
[32] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // device serial number
[33] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // device identification
},
};
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// EM4x50 units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
#ifndef T0
#define T0 192
#endif
#define EM4X50_T_TAG_QUARTER_PERIOD 16
#define EM4X50_T_TAG_HALF_PERIOD 32
#define EM4X50_T_TAG_THREE_QUARTER_PERIOD 48
#define EM4X50_T_TAG_FULL_PERIOD 64
#define EM4X50_T_TAG_TPP 64
#define EM4X50_T_TAG_TWA 64
#define EM4X50_T_WAITING_FOR_SNGLLIW 50
#define EM4X50_T_WAITING_FOR_DBLLIW 1550
#define EM4X50_TAG_TOLERANCE 8
#define EM4X50_TAG_WORD 45
#define EM4X50_BIT_0 0
#define EM4X50_BIT_1 1
#define EM4X50_BIT_OTHER 2
#define EM4X50_COMMAND_LOGIN 0x01
#define EM4X50_COMMAND_RESET 0x80
#define EM4X50_COMMAND_WRITE 0x12
#define EM4X50_COMMAND_WRITE_PASSWORD 0x11
#define EM4X50_COMMAND_SELECTIVE_READ 0x0A
#define EM4X50_COMMAND_TIMEOUT 5000
#define FPGA_TIMER_0 0
int gHigh = 0;
int gLow = 0;
// auxiliary functions
static void init_tag(void) {
// iceman: memset(tag.sectors, 0x00, sizeof));
// initialize global tag structure
for (int i = 0; i < 34; i++)
for (int j = 0; j < 7; j++)
tag.sectors[i][j] = 0x00;
}
static uint8_t bits2byte(uint8_t *bits, int length) {
// converts <length> separate bits into a single "byte"
uint8_t byte = 0;
for (int i = 0; i < length; i++) {
byte |= bits[i];
if (i != length - 1)
byte <<= 1;
}
return byte;
}
static void msb2lsb_word(uint8_t *word) {
// reorders given <word> according to EM4x50 datasheet (msb -> lsb)
uint8_t buff[4];
buff[0] = reflect8(word[3]);
buff[1] = reflect8(word[2]);
buff[2] = reflect8(word[1]);
buff[3] = reflect8(word[0]);
word[0] = buff[0];
word[1] = buff[1];
word[2] = buff[2];
word[3] = buff[3];
}
static void save_word(int pos, uint8_t bits[EM4X50_TAG_WORD]) {
// split "raw" word into data, row and column parity bits and stop bit and
// save them in global tag structure
uint8_t row_parity[4];
uint8_t col_parity[8];
// data and row parities
for (int i = 0; i < 4; i++) {
tag.sectors[pos][i] = bits2byte(&bits[9 * i], 8);
row_parity[i] = bits[9 * i + 8];
}
tag.sectors[pos][4] = bits2byte(row_parity, 4);
// column parities
for (int i = 0; i < 8; i++)
col_parity[i] = bits[36 + i];
tag.sectors[pos][5] = bits2byte(col_parity, 8);
// stop bit
tag.sectors[pos][6] = bits[44];
}
static void wait_timer(int timer, uint32_t period) {
// do nothing for <period> using timer <timer>
if (timer == FPGA_TIMER_0) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < period);
} else {
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC1->TC_CV < period);
}
}
static void em4x50_setup_read(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// 50ms for the resonant antenna to settle.
SpinDelay(50);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc(FPGA_MAJOR_MODE_LF_READER);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Steal this pin from the SSP (SPI communication channel with fpga) and
// use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
// Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
// TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
// Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// synchronized startup procedure
while (AT91C_BASE_TC0->TC_CV > 0) {}; // wait until TC1 returned to zero
// Watchdog hit
WDT_HIT();
}
// functions for "reader" use case
static bool get_signalproperties(void) {
// calculate signal properties (mean amplitudes) from measured data:
// 32 amplitudes (maximum values) -> mean amplitude value -> gHigh -> gLow
bool signal_found = false;
int no_periods = 32, pct = 75, noise = 140;
uint8_t sample_ref = 127;
uint8_t sample_max_mean = 0;
uint8_t sample_max[no_periods];
uint32_t sample_max_sum = 0;
memcpy(sample_max, 0x00, sizeof(sample_max));
// wait until signal/noise > 1 (max. 32 periods)
for (int i = 0; i < T0 * no_periods; i++) {
// about 2 samples per bit period
wait_timer(0, T0 * EM4X50_T_TAG_HALF_PERIOD);
if (AT91C_BASE_SSC->SSC_RHR > noise) {
signal_found = true;
break;
}
}
if (signal_found == false)
return false;
// calculate mean maximum value of 32 periods, each period has a length of
// 3 single "full periods" to eliminate the influence of a listen window
for (int i = 0; i < no_periods; i++) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < T0 * 3 * EM4X50_T_TAG_FULL_PERIOD) {
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if (sample > sample_max[i])
sample_max[i] = sample;
}
sample_max_sum += sample_max[i];
}
sample_max_mean = sample_max_sum / no_periods;
// set global envelope variables
gHigh = sample_ref + pct * (sample_max_mean - sample_ref) / 100;
gLow = sample_ref - pct * (sample_max_mean - sample_ref) / 100;
return true;
}
static int get_next_bit(void) {
// returns bit value (or EM4X50_BIT_OTHER -> no bit pattern) by evaluating
// a single sample within a bit period (given there is no LIW, ACK or NAK)
// This function is not used for decoding, it is only used for identifying
// a listen window (return value = EM4X50_BIT_OTHER) in functions
// "find_double_listen_window" and "check_ack"
// get sample at 3/4 of bit period
wait_timer(0, T0 * EM4X50_T_TAG_THREE_QUARTER_PERIOD);
uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// wait until end of bit period
wait_timer(0, T0 * EM4X50_T_TAG_QUARTER_PERIOD);
// decide wether "0" or "1"
if (sample > gHigh)
return EM4X50_BIT_0;
else if (sample < gLow)
return EM4X50_BIT_1;
return EM4X50_BIT_OTHER;
}
static uint32_t get_pulse_length(void) {
// Dbprintf( _CYAN_("4x50 get_pulse_length A") );
int32_t timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD);
// iterates pulse length (low -> high -> low)
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
while (sample > gLow && (timeout--)) {
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
if (timeout == 0)
return 0;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD);
while (sample < gHigh && (timeout--)) {
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
if (timeout == 0)
return 0;
timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD);
while (sample > gLow && (timeout--)) {
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
if (timeout == 0)
return 0;
return (uint32_t)AT91C_BASE_TC1->TC_CV;
}
static bool check_pulse_length(uint32_t pl, int length) {
// check if pulse length <pl> corresponds to given length <length>
return ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) & (pl <= T0 * (length + EM4X50_TAG_TOLERANCE)));
}
static void em4x50_send_bit(int bit) {
// send single bit according to EM4x50 application note and datasheet
// reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
if (bit == 0) {
// disable modulation (drop the field) for 7 cycles of carrier
// period (Opt64)
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * 7);
// enable modulation (activates the field) for remaining first
// half of bit period
HIGH(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_HALF_PERIOD);
// disable modulation for second half of bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
} else {
// bit = "1" means disable modulation for full bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
}
}
static void em4x50_send_byte(uint8_t byte) {
// send byte (without parity)
for (int i = 0; i < 8; i++)
em4x50_send_bit((byte >> (7 - i)) & 1);
}
static void em4x50_send_byte_with_parity(uint8_t byte) {
// send byte followed by its (equal) parity bit
int parity = 0, bit = 0;
for (int i = 0; i < 8; i++) {
bit = (byte >> (7 - i)) & 1;
em4x50_send_bit(bit);
parity ^= bit;
}
em4x50_send_bit(parity);
}
static void em4x50_send_word(const uint8_t bytes[4]) {
// send 32 bit word with parity bits according to EM4x50 datasheet
for (int i = 0; i < 4; i++)
em4x50_send_byte_with_parity(bytes[i]);
// send column parities
em4x50_send_byte(bytes[0] ^ bytes[1] ^ bytes[2] ^ bytes[3]);
// send final stop bit (always "0")
em4x50_send_bit(0);
}
static bool find_single_listen_window(void) {
// find single listen window
int cnt_pulses = 0;
while (cnt_pulses < EM4X50_T_WAITING_FOR_SNGLLIW) {
// identification of listen window is done via evaluation of
// pulse lengths
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// listen window found
return true;
}
}
cnt_pulses++;
}
return false;
}
static bool find_double_listen_window(bool bcommand) {
// find two successive listen windows that indicate the beginning of
// data transmission
// double listen window to be detected within 1600 pulses -> worst case
// reason: first detectable double listen window after 34 words
// -> 34 words + 34 single listen windows -> about 1600 pulses
int cnt_pulses = 0;
while (cnt_pulses < EM4X50_T_WAITING_FOR_DBLLIW) {
// identification of listen window is done via evaluation of
// pulse lengths
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// first listen window found
if (bcommand) {
// SpinDelay(10);
// data transmission from card has to be stopped, because
// a commamd shall be issued
// unfortunately the position in listen window (where
// command request has to be sent) has gone, so if a
// second window follows - sync on this to issue a command
// skip the next bit...
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_FULL_PERIOD);
// ...and check if the following bit does make sense
// (if not it is the correct position within the second
// listen window)
if (get_next_bit() == EM4X50_BIT_OTHER) {
// send RM for request mode
em4x50_send_bit(0);
em4x50_send_bit(0);
return true;
}
}
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
// return although second listen window consists of one
// more bit period but this period is necessary for
// evaluating further pulse lengths
return true;
}
}
cnt_pulses++;
}
}
return false;
}
static bool find_em4x50_tag(void) {
// function is used to check wether a tag on the proxmark is an
// EM4x50 tag or not -> speed up "lf search" process
return find_single_listen_window();
}
static bool request_receive_mode(void) {
// To issue a command we have to find a listen window first.
// Because identification and synchronization at the same time is not
// possible when using pulse lengths a double listen window is used.
bool bcommand = true;
return find_double_listen_window(bcommand);
}
static bool check_ack(bool bliw) {
// returns true if signal structue corresponds to ACK, anything else is
// counted as NAK (-> false)
// Only relevant for pasword writing function:
// If <bliw> is true then within the single listen window right after the
// ack signal a RM request has to be sent.
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < T0 * 4 * EM4X50_T_TAG_FULL_PERIOD) {
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// The received signal is either ACK or NAK.
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// Now the signal must be ACK.
if (!bliw) {
return true;
} else {
// send RM request after ack signal
// wait for 2 bits (remaining "bit" of ACK signal + first
// "bit" of listen window)
wait_timer(FPGA_TIMER_0, T0 * 2 * EM4X50_T_TAG_FULL_PERIOD);
// check for listen window (if first bit cannot be interpreted
// as a valid bit it must belong to a listen window)
if (get_next_bit() == EM4X50_BIT_OTHER) {
// send RM for request mode
em4x50_send_bit(0);
em4x50_send_bit(0);
return true;
}
}
} else {
// It's NAK -> stop searching
break;
}
}
}
return false;
}
static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
// decodes one word by evaluating pulse lengths and previous bit;
// word must have 45 bits in total:
// 32 data bits + 4 row parity bits + 8 column parity bits + 1 stop bit
bool bbitchange = false;
int i = 0;
uint32_t pl = 0;
// initial bit value depends on last pulse length of listen window
pl = get_pulse_length();
if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) {
// pulse length = 1.5
bits[0] = 1;
} else if (check_pulse_length(pl, 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length = 2
bits[0] = 0;
bbitchange = true;
} else {
// pulse length = 2.5
bits[0] = 0;
bits[1] = 1;
i++;
}
// identify remaining bits based on pulse lengths
// between two listen windows only pulse lengths of 1, 1.5 and 2 are possible
while (true) {
i++;
pl = get_pulse_length();
if (check_pulse_length(pl, EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length = 1 -> keep former bit value
bits[i] = bits[i - 1];
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) {
// pulse length = 1.5 -> decision on bit change
if (bbitchange) {
// if number of pulse lengths with 1.5 periods is even -> add bit
bits[i] = (bits[i - 1] == 1) ? 1 : 0;
// pulse length of 1.5 changes bit value
bits[i + 1] = (bits[i] == 1) ? 0 : 1;
i++;
// next time add only one bit
bbitchange = false;
} else {
bits[i] = (bits[i - 1] == 1) ? 0 : 1;
// next time two bits have to be added
bbitchange = true;
}
} else if (check_pulse_length(pl, 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length of 2 means: adding 2 bits "01"
bits[i] = 0;
bits[i + 1] = 1;
i++;
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length of 3 indicates listen window -> clear last
// bit (= 0) and return
return --i;
}
}
}
//==============================================================================
// login function
//==============================================================================
static bool login(uint8_t password[4]) {
// simple login to EM4x50,
// used in operations that require authentication
if (request_receive_mode()) {
// send login command
em4x50_send_byte_with_parity(EM4X50_COMMAND_LOGIN);
// send password
em4x50_send_word(password);
// check if ACK is returned
if (check_ack(false))
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
}
//==============================================================================
// reset function
//==============================================================================
static bool reset(void) {
// resets EM4x50 tag (used by write function)
if (request_receive_mode()) {
// send login command
em4x50_send_byte_with_parity(EM4X50_COMMAND_RESET);
if (check_ack(false))
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
}
//==============================================================================
// read functions
//==============================================================================
static bool standard_read(int *now) {
// reads data that tag transmits when exposed to reader field
// (standard read mode); number of read words is saved in <now>
int fwr = *now;
uint8_t bits[EM4X50_TAG_WORD] = {0};
// start with the identification of two successive listening windows
if (find_double_listen_window(false)) {
// read and save words until following double listen window is detected
while (get_word_from_bitstream(bits) == EM4X50_TAG_WORD)
save_word((*now)++, bits);
// number of detected words
*now -= fwr;
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("didn't find a listen window");
}
return false;
}
static bool selective_read(uint8_t addresses[4]) {
// reads from "first word read" (fwr = addresses[3]) to "last word read"
// (lwr = addresses[2])
// result is verified by "standard read mode"
int fwr = addresses[3]; // first word read
int lwr = addresses[2]; // last word read
int now = fwr; // number of words
if (request_receive_mode()) {
// send selective read command
em4x50_send_byte_with_parity(EM4X50_COMMAND_SELECTIVE_READ);
// send address data
em4x50_send_word(addresses);
// look for ACK sequence
if (check_ack(false))
// save and verify via standard read mode (compare number of words)
if (standard_read(&now))
if (now == (lwr - fwr + 1))
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
}
void em4x50_info(em4x50_data_t *etd) {
// collects as much information as possible via selective read mode
// if no password is given -> try with standard password "0x00000000"
// otherwise continue without login
bool bsuccess = false, blogin = false;
uint8_t status = 0;
uint8_t addresses[] = {0x00, 0x00, 0x21, 0x00}; // fwr = 0, lwr = 33
uint8_t password[] = {0x00, 0x00, 0x00, 0x00}; // default password
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
if (etd->pwd_given) {
// try to login with given password
blogin = login(etd->password);
} else {
// if no password is given, try to login with "0x00000000"
blogin = login(password);
}
bsuccess = selective_read(addresses);
}
status = (bsuccess << 1) + blogin;
lf_finalize();
reply_ng(CMD_LF_EM4X50_INFO, status, (uint8_t *)tag.sectors, 238);
}
void em4x50_read(em4x50_data_t *etd) {
// reads in two different ways:
// - using "selective read mode" -> bidirectional communication
// - using "standard read mode" -> unidirectional communication (read
// data that tag transmits "voluntarily")
bool bsuccess = false, blogin = false;
int now = 0;
uint8_t status = 0;
uint8_t addresses[] = {0x00, 0x00, 0x00, 0x00};
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
if (etd->addr_given) {
// selective read mode
// try to login with given password
if (etd->pwd_given)
blogin = login(etd->password);
// only one word has to be read -> first word read = last word read
addresses[2] = addresses[3] = etd->address;
bsuccess = selective_read(addresses);
} else {
// standard read mode
bsuccess = standard_read(&now);
}
}
status = (now << 2) + (bsuccess << 1) + blogin;
lf_finalize();
reply_ng(CMD_LF_EM4X50_READ, status, (uint8_t *)tag.sectors, 238);
}
//==============================================================================
// write functions
//==============================================================================
static int write(uint8_t word[4], uint8_t address) {
// writes <word> to specified <address>
if (request_receive_mode()) {
// send write command
em4x50_send_byte_with_parity(EM4X50_COMMAND_WRITE);
// send address data
em4x50_send_byte_with_parity(address);
// send data
em4x50_send_word(word);
if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred
reply_ng(CMD_LF_EM4X50_WRITE, PM3_ETEAROFF, NULL, 0);
return PM3_ETEAROFF;
} else {
// wait for T0 * EM4X50_T_TAG_TWA (write access time)
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_TWA);
// look for ACK sequence
if (check_ack(false)) {
// now EM4x50 needs T0 * EM4X50_T_TAG_TWEE (EEPROM write time)
// for saving data and should return with ACK
if (check_ack(false))
return PM3_SUCCESS;
}
}
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return PM3_ESOFT;
}
static int write_password(uint8_t password[4], uint8_t new_password[4]) {
// changes password from <password> to <new_password>
if (request_receive_mode()) {
// send write password command
em4x50_send_byte_with_parity(EM4X50_COMMAND_WRITE_PASSWORD);
// send address data
em4x50_send_word(password);
if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred
reply_ng(CMD_LF_EM4X50_WRITE, PM3_ETEAROFF, NULL, 0);
return PM3_ETEAROFF;
} else {
// wait for T0 * EM4x50_T_TAG_TPP (processing pause time)
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_TPP);
// look for ACK sequence and send rm request
// during following listen window
if (check_ack(true)) {
// send new password
em4x50_send_word(new_password);
// wait for T0 * EM4X50_T_TAG_TWA (write access time)
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_TWA);
if (check_ack(false))
if (check_ack(false))
return PM3_SUCCESS;
}
}
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return PM3_ESOFT;
}
void em4x50_write(em4x50_data_t *etd) {
// write operation process for EM4x50 tag,
// single word is written to given address, verified by selective read operation
bool bsuccess = false, blogin = false;
uint8_t status = 0;
uint8_t word[4] = {0x00, 0x00, 0x00, 0x00};
uint8_t addresses[4] = {0x00, 0x00, 0x00, 0x00};
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// reorder word according to datasheet
msb2lsb_word(etd->word);
// if password is given try to login first
if (etd->pwd_given)
blogin = login(etd->password);
// write word to given address
int res = write(etd->word, etd->address);
if (res == PM3_ETEAROFF) {
lf_finalize();
return;
}
if (res == PM3_SUCCESS) {
// to verify result reset EM4x50
if (reset()) {
// if password is given login
if (etd->pwd_given)
blogin &= login(etd->password);
// call a selective read
addresses[2] = addresses[3] = etd->address;
if (selective_read(addresses)) {
// compare with given word
word[0] = tag.sectors[etd->address][0];
word[1] = tag.sectors[etd->address][1];
word[2] = tag.sectors[etd->address][2];
word[3] = tag.sectors[etd->address][3];
msb2lsb_word(word);
bsuccess = true;
for (int i = 0; i < 4; i++)
bsuccess &= (word[i] == etd->word[i]) ? true : false;
}
}
}
}
status = (bsuccess << 1) + blogin;
lf_finalize();
reply_ng(CMD_LF_EM4X50_WRITE, status, (uint8_t *)tag.sectors, 238);
}
void em4x50_write_password(em4x50_data_t *etd) {
// simple change of password
bool bsuccess = false;
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// login and change password
if (login(etd->password)) {
int res = write_password(etd->password, etd->new_password);
if (res == PM3_ETEAROFF) {
lf_finalize();
return;
}
bsuccess = (res == PM3_SUCCESS);
}
}
lf_finalize();
reply_ng(CMD_LF_EM4X50_WRITE_PASSWORD, bsuccess, 0, 0);
}
void em4x50_wipe(em4x50_data_t *etd) {
// set all data of EM4x50 tag to 0x0 including password
bool bsuccess = false;
uint8_t zero[4] = {0, 0, 0, 0};
uint8_t addresses[4] = {0, 0, EM4X50_NO_WORDS - 3, 1};
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// login first
if (login(etd->password)) {
// write 0x0 to each address but ignore addresses
// 0 -> password, 32 -> serial, 33 -> uid
// writing 34 words takes about 3.6 seconds -> high timeout needed
for (int i = 1; i <= EM4X50_NO_WORDS - 3; i++)
write(zero, i);
// to verify result reset EM4x50
if (reset()) {
// login not necessary because protected word has been set to 0
// -> no read protected words
// -> selective read can be called immediately
if (selective_read(addresses)) {
// check if everything is zero
bsuccess = true;
for (int i = 1; i <= EM4X50_NO_WORDS - 3; i++)
for (int j = 0; j < 4; j++)
bsuccess &= (tag.sectors[i][j] == 0) ? true : false;
}
if (bsuccess) {
// so far everything is fine
// last task: reset password
if (login(etd->password))
bsuccess = write_password(etd->password, zero);
// verify by login with new password
if (bsuccess)
bsuccess = login(zero);
}
}
}
}
lf_finalize();
reply_ng(CMD_LF_EM4X50_WIPE, bsuccess, (uint8_t *)tag.sectors, 238);
}