proxmark3/client/cmdanalyse.c

862 lines
29 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2016 iceman
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Analyse bytes commands
//-----------------------------------------------------------------------------
#include "cmdanalyse.h"
static int CmdHelp(const char *Cmd);
int usage_analyse_lcr(void) {
PrintAndLogEx(NORMAL, "Specifying the bytes of a UID with a known LRC will find the last byte value");
PrintAndLogEx(NORMAL, "needed to generate that LRC with a rolling XOR. All bytes should be specified in HEX.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: analyse lcr [h] <bytes>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " <bytes> bytes to calc missing XOR in a LCR");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " analyse lcr 04008064BA");
PrintAndLogEx(NORMAL, "expected output: Target (BA) requires final LRC XOR byte value: 5A");
return 0;
}
int usage_analyse_checksum(void) {
PrintAndLogEx(NORMAL, "The bytes will be added with eachother and than limited with the applied mask");
PrintAndLogEx(NORMAL, "Finally compute ones' complement of the least significant bytes");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: analyse chksum [h] [v] b <bytes> m <mask>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " v supress header");
PrintAndLogEx(NORMAL, " b <bytes> bytes to calc missing XOR in a LCR");
PrintAndLogEx(NORMAL, " m <mask> bit mask to limit the outpuyt");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " analyse chksum b 137AF00A0A0D m FF");
PrintAndLogEx(NORMAL, "expected output: 0x61");
return 0;
}
int usage_analyse_crc(void){
PrintAndLogEx(NORMAL, "A stub method to test different crc implementations inside the PM3 sourcecode. Just because you figured out the poly, doesn't mean you get the desired output");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: analyse crc [h] <bytes>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " <bytes> bytes to calc crc");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " analyse crc 137AF00A0A0D");
return 0;
}
int usage_analyse_nuid(void){
PrintAndLogEx(NORMAL, "Generate 4byte NUID from 7byte UID");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: analyse hid [h] <bytes>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " <bytes> input bytes (14 hexsymbols)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " analyse nuid 11223344556677");
return 0;
}
static uint8_t calculateLRC( uint8_t* bytes, uint8_t len) {
uint8_t LRC = 0;
for (uint8_t i = 0; i < len; i++)
LRC ^= bytes[i];
return LRC;
}
/*
static uint16_t matrixadd ( uint8_t* bytes, uint8_t len){
-----------
0x9c | 1001 1100
0x97 | 1001 0111
0x72 | 0111 0010
0x5e | 0101 1110
-----------------
C32F 9d74
return 0;
}
*/
/*
static uint16_t shiftadd ( uint8_t* bytes, uint8_t len){
return 0;
}
*/
static uint16_t calcSumCrumbAdd( uint8_t* bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum += CRUMB(bytes[i], 0);
sum += CRUMB(bytes[i], 2);
sum += CRUMB(bytes[i], 4);
sum += CRUMB(bytes[i], 6);
}
sum &= mask;
return sum;
}
static uint16_t calcSumCrumbAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask) {
return (~calcSumCrumbAdd(bytes, len, mask) & mask);
}
static uint16_t calcSumNibbleAdd( uint8_t* bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum += NIBBLE_LOW(bytes[i]);
sum += NIBBLE_HIGH(bytes[i]);
}
sum &= mask;
return sum;
}
static uint16_t calcSumNibbleAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask){
return (~calcSumNibbleAdd(bytes, len, mask) & mask);
}
static uint16_t calcSumCrumbXor( uint8_t* bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum ^= CRUMB(bytes[i], 0);
sum ^= CRUMB(bytes[i], 2);
sum ^= CRUMB(bytes[i], 4);
sum ^= CRUMB(bytes[i], 6);
}
sum &= mask;
return sum;
}
static uint16_t calcSumNibbleXor( uint8_t* bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum ^= NIBBLE_LOW(bytes[i]);
sum ^= NIBBLE_HIGH(bytes[i]);
}
sum &= mask;
return sum;
}
static uint16_t calcSumByteXor( uint8_t* bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum ^= bytes[i];
}
sum &= mask;
return sum;
}
static uint16_t calcSumByteAdd( uint8_t* bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum += bytes[i];
}
sum &= mask;
return sum;
}
// Ones complement
static uint16_t calcSumByteAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask) {
return (~calcSumByteAdd(bytes, len, mask) & mask);
}
static uint16_t calcSumByteSub( uint8_t* bytes, uint8_t len, uint32_t mask) {
uint8_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum -= bytes[i];
}
sum &= mask;
return sum;
}
static uint16_t calcSumByteSubOnes( uint8_t* bytes, uint8_t len, uint32_t mask){
return (~calcSumByteSub(bytes, len, mask) & mask);
}
static uint16_t calcSumNibbleSub( uint8_t* bytes, uint8_t len, uint32_t mask) {
uint8_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum -= NIBBLE_LOW(bytes[i]);
sum -= NIBBLE_HIGH(bytes[i]);
}
sum &= mask;
return sum;
}
static uint16_t calcSumNibbleSubOnes( uint8_t* bytes, uint8_t len, uint32_t mask) {
return (~calcSumNibbleSub(bytes, len, mask) & mask);
}
// BSD shift checksum 8bit version
static uint16_t calcBSDchecksum8( uint8_t* bytes, uint8_t len, uint32_t mask){
uint16_t sum = 0;
for(uint8_t i = 0; i < len; i++){
sum = ((sum & 0xFF) >> 1) | ((sum & 0x1) << 7); // rotate accumulator
sum += bytes[i]; // add next byte
sum &= 0xFF; //
}
sum &= mask;
return sum;
}
// BSD shift checksum 4bit version
static uint16_t calcBSDchecksum4( uint8_t* bytes, uint8_t len, uint32_t mask){
uint16_t sum = 0;
for(uint8_t i = 0; i < len; i++){
sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator
sum += NIBBLE_HIGH(bytes[i]); // add high nibble
sum &= 0xF; //
sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator
sum += NIBBLE_LOW(bytes[i]); // add low nibble
sum &= 0xF; //
}
sum &= mask;
return sum;
}
// measuring LFSR maximum length
int CmdAnalyseLfsr(const char *Cmd){
uint16_t start_state = 0; /* Any nonzero start state will work. */
uint16_t lfsr = start_state;
//uint32_t period = 0;
uint8_t iv = param_get8ex(Cmd, 0, 0, 16);
uint8_t find = param_get8ex(Cmd, 1, 0, 16);
PrintAndLogEx(NORMAL, "LEGIC LFSR IV 0x%02X: \n", iv);
PrintAndLogEx(NORMAL, " bit# | lfsr | ^0x40 | 0x%02X ^ lfsr \n",find);
for (uint8_t i = 0x01; i < 0x30; i += 1) {
//period = 0;
legic_prng_init(iv);
legic_prng_forward(i);
lfsr = legic_prng_get_bits(12);
PrintAndLogEx(NORMAL, " %02X | %03X | %03X | %03X \n",i, lfsr, 0x40 ^ lfsr, find ^ lfsr);
}
return 0;
}
int CmdAnalyseLCR(const char *Cmd) {
uint8_t data[50];
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) == 0|| cmdp == 'h' || cmdp == 'H') return usage_analyse_lcr();
int len = 0;
param_gethex_ex(Cmd, 0, data, &len);
if ( len%2 ) return usage_analyse_lcr();
len >>= 1;
uint8_t finalXor = calculateLRC(data, len);
PrintAndLogEx(NORMAL, "Target [%02X] requires final LRC XOR byte value: 0x%02X",data[len-1] ,finalXor);
return 0;
}
int CmdAnalyseCRC(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_analyse_crc();
int len = strlen(Cmd);
if ( len & 1 ) return usage_analyse_crc();
// add 1 for null terminator.
uint8_t *data = malloc(len+1);
if ( data == NULL ) return 1;
if ( param_gethex(Cmd, 0, data, len)) {
free(data);
return usage_analyse_crc();
}
len >>= 1;
PrintAndLogEx(NORMAL, "\nTests with (%d) | %s",len, sprint_hex(data, len));
// 51 f5 7a d6
uint8_t uid[] = {0x51, 0xf5, 0x7a, 0xd6}; //12 34 56
init_table(CRC_LEGIC);
uint8_t legic8 = CRC8Legic(uid, sizeof(uid));
PrintAndLogEx(NORMAL, "Legic 16 | %X (EF6F expected) [legic8 = %02x]", crc16_legic(data, len, legic8), legic8);
init_table(CRC_FELICA);
PrintAndLogEx(NORMAL, "FeliCa | %X ", crc16_xmodem(data, len));
PrintAndLogEx(NORMAL, "\nTests of reflection. Current methods in source code");
PrintAndLogEx(NORMAL, " reflect(0x3e23L,3) is %04X == 0x3e26", reflect(0x3e23L,3) );
PrintAndLogEx(NORMAL, " reflect8(0x80) is %02X == 0x01", reflect8(0x80));
PrintAndLogEx(NORMAL, " reflect16(0x8000) is %04X == 0x0001", reflect16(0xc6c6));
//
// Test of CRC16, '123456789' string.
//
uint8_t b1, b2;
PrintAndLogEx(NORMAL, "\n\nStandard test with 31 32 33 34 35 36 37 38 39 '123456789'\n\n");
uint8_t dataStr[] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39 };
legic8 = CRC8Legic(dataStr, sizeof(dataStr));
//these below has been tested OK.
PrintAndLogEx(NORMAL, "Confirmed CRC Implementations");
PrintAndLogEx(NORMAL, "-------------------------------------\n");
PrintAndLogEx(NORMAL, "CRC 8 based\n\n");
PrintAndLogEx(NORMAL, "LEGIC: CRC8 : %X (C6 expected)", legic8);
PrintAndLogEx(NORMAL, "MAXIM: CRC8 : %X (A1 expected)", CRC8Maxim(dataStr, sizeof(dataStr)));
PrintAndLogEx(NORMAL, "-------------------------------------\n");
PrintAndLogEx(NORMAL, "CRC16 based\n\n");
// input from commandline
PrintAndLogEx(NORMAL, "CCITT | %X (29B1 expected)", crc(CRC_CCITT, dataStr, sizeof(dataStr)));
uint8_t poll[] = {0xb2,0x4d,0x12,0x01,0x01,0x2e,0x3d,0x17,0x26,0x47,0x80, 0x95,0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00,0xb3,0x7f};
PrintAndLogEx(NORMAL, "FeliCa | %X (B37F expected)", crc(CRC_FELICA, poll+2, sizeof(poll)-4));
PrintAndLogEx(NORMAL, "FeliCa | %X (0000 expected)", crc(CRC_FELICA, poll+2, sizeof(poll)-2));
uint8_t sel_corr[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x43, 0x01};
PrintAndLogEx(NORMAL, "iCLASS | %04x (0143 expected)", crc(CRC_ICLASS, sel_corr, sizeof(sel_corr)-2));
PrintAndLogEx(NORMAL, "---------------------------------------------------------------\n\n\n");
// ISO14443 crc A
compute_crc(CRC_14443_A, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcAA = b1 << 8 | b2;
PrintAndLogEx(NORMAL, "ISO14443 crc A | %04x or %04x (BF05 expected)\n", crcAA, crc(CRC_14443_A, dataStr, sizeof(dataStr)) );
// ISO14443 crc B
compute_crc(CRC_14443_B, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcBB = b1 << 8 | b2;
PrintAndLogEx(NORMAL, "ISO14443 crc B | %04x or %04x (906E expected)\n", crcBB, crc(CRC_14443_B, dataStr, sizeof(dataStr)) );
// ISO15693 crc (x.25)
compute_crc(CRC_15693, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcCC = b1 << 8 | b2;
PrintAndLogEx(NORMAL, "ISO15693 crc X25| %04x or %04x (906E expected)\n", crcCC, crc(CRC_15693, dataStr, sizeof(dataStr)) );
// ICLASS
compute_crc(CRC_ICLASS, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcDD = b1 << 8 | b2;
PrintAndLogEx(NORMAL, "ICLASS crc | %04x or %04x\n", crcDD, crc(CRC_ICLASS, dataStr, sizeof(dataStr)) );
// FeliCa
compute_crc(CRC_FELICA, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcEE = b1 << 8 | b2;
PrintAndLogEx(NORMAL, "FeliCa | %04x or %04x (31C3 expected)\n", crcEE, crc(CRC_FELICA, dataStr, sizeof(dataStr)));
free(data);
return 0;
}
int CmdAnalyseCHKSUM(const char *Cmd){
uint8_t data[50];
uint8_t cmdp = 0;
uint32_t mask = 0xFFFF;
bool errors = false;
bool useHeader = false;
int len = 0;
memset(data, 0x0, sizeof(data));
while(param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch(param_getchar(Cmd, cmdp)) {
case 'b':
case 'B':
param_gethex_ex(Cmd, cmdp+1, data, &len);
if ( len%2 ) errors = true;
len >>= 1;
cmdp += 2;
break;
case 'm':
case 'M':
mask = param_get32ex(Cmd, cmdp+1, 0, 16);
cmdp += 2;
break;
case 'v':
case 'V':
useHeader = true;
cmdp++;
break;
case 'h':
case 'H':
return usage_analyse_checksum();
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0 ) return usage_analyse_checksum();
if (useHeader) {
PrintAndLogEx(NORMAL, " add | sub | add 1's compl | sub 1's compl | xor");
PrintAndLogEx(NORMAL, "byte nibble crumb | byte nibble | byte nibble cumb | byte nibble | byte nibble cumb | BSD |");
PrintAndLogEx(NORMAL, "------------------+-------------+------------------+-----------------+--------------------");
}
PrintAndLogEx(NORMAL, "0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X |\n",
calcSumByteAdd(data, len, mask)
, calcSumNibbleAdd(data, len, mask)
, calcSumCrumbAdd(data, len, mask)
, calcSumByteSub(data, len, mask)
, calcSumNibbleSub(data, len, mask)
, calcSumByteAddOnes(data, len, mask)
, calcSumNibbleAddOnes(data, len, mask)
, calcSumCrumbAddOnes(data, len, mask)
, calcSumByteSubOnes(data, len, mask)
, calcSumNibbleSubOnes(data, len, mask)
, calcSumByteXor(data, len, mask)
, calcSumNibbleXor(data, len, mask)
, calcSumCrumbXor(data, len, mask)
, calcBSDchecksum8(data, len, mask)
, calcBSDchecksum4(data, len, mask)
);
return 0;
}
int CmdAnalyseDates(const char *Cmd){
// look for datestamps in a given array of bytes
PrintAndLogEx(NORMAL, "To be implemented. Feel free to contribute!");
return 0;
}
int CmdAnalyseTEASelfTest(const char *Cmd){
uint8_t v[8], v_le[8];
memset(v, 0x00, sizeof(v));
memset(v_le, 0x00, sizeof(v_le));
uint8_t* v_ptr = v_le;
uint8_t cmdlen = strlen(Cmd);
cmdlen = ( sizeof(v)<<2 < cmdlen ) ? sizeof(v)<<2 : cmdlen;
if ( param_gethex(Cmd, 0, v, cmdlen) > 0 ){
PrintAndLogEx(WARNING, "Can't read hex chars, uneven? :: %u", cmdlen);
return 1;
}
SwapEndian64ex(v , 8, 4, v_ptr);
// ENCRYPTION KEY:
uint8_t key[16] = {0x55,0xFE,0xF6,0x30,0x62,0xBF,0x0B,0xC1,0xC9,0xB3,0x7C,0x34,0x97,0x3E,0x29,0xFB };
uint8_t keyle[16];
uint8_t* key_ptr = keyle;
SwapEndian64ex(key , sizeof(key), 4, key_ptr);
PrintAndLogEx(NORMAL, "TEST LE enc| %s", sprint_hex(v_ptr, 8));
tea_decrypt(v_ptr, key_ptr);
PrintAndLogEx(NORMAL, "TEST LE dec | %s", sprint_hex_ascii(v_ptr, 8));
tea_encrypt(v_ptr, key_ptr);
tea_encrypt(v_ptr, key_ptr);
PrintAndLogEx(NORMAL, "TEST enc2 | %s", sprint_hex_ascii(v_ptr, 8));
return 0;
}
char* pb(uint32_t b) {
static char buf1[33] = {0};
static char buf2[33] = {0};
static char *s;
if (s != buf1)
s = buf1;
else
s = buf2;
memset(s, 0, sizeof(buf1));
uint32_t mask = 0x80000000;
for (uint8_t i=0; i<32;i++) {
s[i] = (mask & b)?'1':'0';
mask >>= 1;
}
return s;
}
int CmdAnalyseA(const char *Cmd){
UsbCommand c = {CMD_READ_FLASH_MEM, {0,0,0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) {
PrintAndLogEx(NORMAL, "timeout while waiting for reply.");
return 1;
}
return 0;
PrintAndLogEx(NORMAL, "-- " _BLUE_(its my message) "\n");
PrintAndLogEx(NORMAL, "-- " _RED_(its my message) "\n");
PrintAndLogEx(NORMAL, "-- " _YELLOW_(its my message) "\n");
PrintAndLogEx(NORMAL, "-- " _GREEN_(its my message) "\n");
//uint8_t syncBit = 99;
// The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
// Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
// we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
// (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
# define SYNC_16BIT 0xB24D
uint32_t shiftReg = param_get32ex(Cmd, 0, 0xb24d, 16);
uint8_t bt = param_get8ex(Cmd, 1, 0xBB, 16);
uint8_t byte_offset = 99;
// reverse byte
uint8_t rev = reflect8(bt);
PrintAndLogEx(NORMAL, "input %02x | %02x \n", bt, rev);
// add byte to shift register
shiftReg = shiftReg << 8 | rev;
PrintAndLogEx(NORMAL, "shiftreg after %08x | pattern %08x \n", shiftReg, SYNC_16BIT);
uint8_t n0 = 0, n1 = 0;
n0 = (rev & (uint8_t)(~(0xFF >> (8-4)))) >> 4;
n1 = (n1 << 4) | (rev & (uint8_t)(~(0xFF << 4)));
PrintAndLogEx(NORMAL, "rev %02X | %02X %s | %02X %s |\n", rev, n0, pb(n0), n1, pb(n1) );
/*
hex(0xb24d shr 0) 0xB24D 0b1011001001001101
hex(0xb24d shr 1) 0x5926
hex(0xb24d shr 2) 0x2C93
*/
for ( int i =0; i< 16; i++) {
PrintAndLogEx(NORMAL, " (shiftReg >> %d) & 0xFFFF == %08x ---", i, (( shiftReg >> i) & 0xFFFF ));
// kolla om SYNC_PATTERN finns.
if ((( shiftReg >> 7) & 0xFFFF ) == SYNC_16BIT) byte_offset = 7;
else if ((( shiftReg >> 6) & 0xFFFF ) == SYNC_16BIT) byte_offset = 6;
else if ((( shiftReg >> 5) & 0xFFFF ) == SYNC_16BIT) byte_offset = 5;
else if ((( shiftReg >> 4) & 0xFFFF ) == SYNC_16BIT) byte_offset = 4;
else if ((( shiftReg >> 3) & 0xFFFF ) == SYNC_16BIT) byte_offset = 3;
else if ((( shiftReg >> 2) & 0xFFFF ) == SYNC_16BIT) byte_offset = 2;
else if ((( shiftReg >> 1) & 0xFFFF ) == SYNC_16BIT) byte_offset = 1;
else if ((( shiftReg >> 0) & 0xFFFF ) == SYNC_16BIT) byte_offset = 0;
PrintAndLogEx(NORMAL, "Offset %u \n", byte_offset);
if ( byte_offset != 99 )
break;
shiftReg >>=1;
}
uint8_t p1 = (rev & (uint8_t)(~(0xFF << byte_offset)));
PrintAndLogEx(NORMAL, "Offset %u | leftovers %02x %s \n", byte_offset, p1, pb(p1) );
/*
pm3 --> da hex2bin 4db2 0100110110110010
*/
return 0;
/*
// split byte into two parts.
uint8_t offset = 3, n0 = 0, n1 = 0;
rev = 0xB2;
for (uint8_t m=0; m<8; m++) {
offset = m;
n0 = (rev & (uint8_t)(~(0xFF >> (8-offset)))) >> offset;
n1 = (n1 << offset) | (rev & (uint8_t)(~(0xFF << offset)));
PrintAndLogEx(NORMAL, "rev %02X | %02X %s | %02X %s |\n", rev, n0, pb(n0), n1, pb(n1) );
n0 = 0, n1 = 0;
// PrintAndLogEx(NORMAL, " (0xFF >> offset) == %s |\n", pb( (0xFF >> offset)) );
//PrintAndLogEx(NORMAL, "~(0xFF >> (8-offset)) == %s |\n", pb( (uint8_t)(~(0xFF >> (8-offset))) ) );
//PrintAndLogEx(NORMAL, " rev & xxx == %s\n\n", pb( (rev & (uint8_t)(~(0xFF << offset))) ));
}
return 0;
// from A -- x bits into B and the rest into C.
for ( uint8_t i=0; i<8; i++){
PrintAndLogEx(NORMAL, "%u | %02X %s | %02X %s |\n", i, a, pb(a), b, pb(b) );
b = a & (a & (0xFF >> (8-i)));
a >>=1;
}
*/
return 0;
// 14443-A
uint8_t u14_c[] = {0x09, 0x78, 0x00, 0x92, 0x02, 0x54, 0x13, 0x02, 0x04, 0x2d, 0xe8 }; // atqs w crc
uint8_t u14_w[] = {0x09, 0x78, 0x00, 0x92, 0x02, 0x54, 0x13, 0x02, 0x04, 0x2d, 0xe7 }; // atqs w crc
PrintAndLogEx(FAILED, "14a check wrong crc | %s\n", (check_crc(CRC_14443_A, u14_w, sizeof(u14_w))) ? "YES": "NO" );
PrintAndLogEx(SUCCESS, "14a check correct crc | %s\n", (check_crc(CRC_14443_A, u14_c, sizeof(u14_c))) ? "YES": "NO" );
// 14443-B
uint8_t u14b[] = {0x05,0x00,0x08,0x39,0x73};
PrintAndLogEx(NORMAL, "14b check crc | %s\n", (check_crc(CRC_14443_B, u14b, sizeof(u14b))) ? "YES": "NO");
// 15693 test
uint8_t u15_c[] = {0x05,0x00,0x08,0x39,0x73}; // correct
uint8_t u15_w[] = {0x05,0x00,0x08,0x39,0x72}; // wrong
PrintAndLogEx(FAILED, "15 check wrong crc | %s\n", (check_crc(CRC_15693, u15_w, sizeof(u15_w))) ? "YES": "NO");
PrintAndLogEx(SUCCESS, "15 check correct crc | %s\n", (check_crc(CRC_15693, u15_c, sizeof(u15_c))) ? "YES": "NO");
// iCLASS test - wrong crc , swapped bytes.
uint8_t iclass_w[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x01, 0x43};
uint8_t iclass_c[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x43, 0x01};
PrintAndLogEx(FAILED, "iCLASS check wrong crc | %s\n", (check_crc(CRC_ICLASS, iclass_w, sizeof(iclass_w))) ? "YES": "NO");
PrintAndLogEx(SUCCESS, "iCLASS check correct crc | %s\n", (check_crc(CRC_ICLASS, iclass_c, sizeof(iclass_c))) ? "YES": "NO");
// FeliCa test
uint8_t felica_w[] = {0x12,0x01,0x01,0x2e,0x3d,0x17,0x26,0x47,0x80, 0x95,0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00,0xb3,0x7e};
uint8_t felica_c[] = {0x12,0x01,0x01,0x2e,0x3d,0x17,0x26,0x47,0x80, 0x95,0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00,0xb3,0x7f};
PrintAndLogEx(FAILED, "FeliCa check wrong crc | %s\n", (check_crc(CRC_FELICA, felica_w, sizeof(felica_w))) ? "YES": "NO");
PrintAndLogEx(SUCCESS, "FeliCa check correct crc | %s\n", (check_crc(CRC_FELICA, felica_c, sizeof(felica_c))) ? "YES": "NO");
PrintAndLogEx(NORMAL, "\n\n");
return 0;
/*
bool term = !isatty(STDIN_FILENO);
if (!term) {
char star[4];
star[0] = '-';
star[1] = '\\';
star[2] = '|';
star[3] = '/';
for (uint8_t k=0; k<4; k = (k+1) % 4 ) {
PrintAndLogEx(NORMAL, "\e[s%c\e[u", star[k]);
fflush(stdout);
if (ukbhit()) {
int gc = getchar(); (void)gc;
break;
}
}
}
*/
//piwi
// uid(2e086b1a) nt(230736f6) ks(0b0008000804000e) nr(000000000)
// uid(2e086b1a) nt(230736f6) ks(0e0b0e0b090c0d02) nr(000000001)
// uid(2e086b1a) nt(230736f6) ks(0e05060e01080b08) nr(000000002)
//uint64_t d1[] = {0x2e086b1a, 0x230736f6, 0x0000001, 0x0e0b0e0b090c0d02};
//uint64_t d2[] = {0x2e086b1a, 0x230736f6, 0x0000002, 0x0e05060e01080b08};
// uid(17758822) nt(c0c69e59) ks(080105020705040e) nr(00000001)
// uid(17758822) nt(c0c69e59) ks(01070a05050c0705) nr(00000002)
//uint64_t d1[] = {0x17758822, 0xc0c69e59, 0x0000001, 0x080105020705040e};
//uint64_t d2[] = {0x17758822, 0xc0c69e59, 0x0000002, 0x01070a05050c0705};
// uid(6e442129) nt(8f699195) ks(090d0b0305020f02) nr(00000001)
// uid(6e442129) nt(8f699195) ks(03030508030b0c0e) nr(00000002)
// uid(6e442129) nt(8f699195) ks(02010f030c0d050d) nr(00000003)
// uid(6e442129) nt(8f699195) ks(00040f0f0305030e) nr(00000004)
//uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0x090d0b0305020f02};
//uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0x00040f0f0305030e};
/*
uid(3e172b29) nt(039b7bd2) ks(0c0e0f0505080800) nr(00000001)
uid(3e172b29) nt(039b7bd2) ks(0e06090d03000b0f) nr(00000002)
*/
uint64_t *keylistA = NULL, *keylistB = NULL;
uint32_t keycountA = 0, keycountB = 0;
// uint64_t d1[] = {0x3e172b29, 0x039b7bd2, 0x0000001, 0, 0x0c0e0f0505080800};
// uint64_t d2[] = {0x3e172b29, 0x039b7bd2, 0x0000002, 0, 0x0e06090d03000b0f};
uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0, 0x090d0b0305020f02};
uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0, 0x00040f0f0305030e};
keycountA = nonce2key(d1[0], d1[1], d1[2], 0, d1[3], d1[4] ,&keylistA);
keycountB = nonce2key(d2[0], d2[1], d2[2], 0, d2[3], d2[4], &keylistB);
switch (keycountA) {
case 0: PrintAndLogEx(FAILED, "Key test A failed\n"); break;
case 1: PrintAndLogEx(SUCCESS, "KEY A | %012" PRIX64 " ", keylistA[0]); break;
}
switch (keycountB) {
case 0: PrintAndLogEx(FAILED, "Key test B failed\n"); break;
case 1: PrintAndLogEx(SUCCESS, "KEY B | %012" PRIX64 " ", keylistB[0]); break;
}
free(keylistA);
free(keylistB);
// qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
// keycount = intersection(last_keylist, keylist);
/*
uint64_t keys[] = {
0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961,
0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3,
0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c,
0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9,
0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a,
0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba,
0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b,
0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe
};
uint64_t keya[] = {
0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961,
0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3,
0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c,
0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9
};
uint64_t keyb[] = {
0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a,
0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba,
0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b,
0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe
};
*/
/*
uint64_t xor[] = {
0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B,
0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6,
0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52,
0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC, 0xB6E97F5F6776,
0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F,
0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD,
0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8,
0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244
};
uint64_t xorA[] = {
0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B,
0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6,
0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52,
0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC
};
uint64_t xorB[] = {
0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F,
0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD,
0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8,
0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244
};
*/
/*
// xor key A | xor key B
1 | 0DEFED88E531 | 2F87A1BDC230
2 | 7577AFA2E1BC | E43F502B984C
3 | 14D7D7BDBEC3 | 8A776AB752D9
4 | F5ABD3C6278B | 9A58D96A472F
5 | AABDFA08276F | EF3702E01916
6 | B77C275C10D6 | 48A03B01D007
7 | B6DD0B434080 | 14754B0D659E
8 | AAF2444499C6 | 009AD1868FDD
9 | 852D7F8EBF90 | 6082DB527C11
10 | 3108821DB92C | 4D666ADA4C0E
11 | B3756A1FB685 | 2D461D05F163
12 | DFE627C86A52 | 3596CFF0FEC8
13 | 5D3C093EF375 | 8CBD9258FE22
14 | 28C81D6FBF0E | 00D29A7B304B
15 | 1204DF4D3ECC | BC33DC6C9244
*/
// generate xor table :)
/*
for (uint8_t i=0; i<31; i++){
uint64_t a = keys[i] ^ keys[i+1];
PrintAndLogEx(NORMAL, "%u | %012" PRIX64 " | \n", i, a);
}
*/
/*
uint32_t id = param_get32ex(Cmd, 0, 0x93290142, 16);
uint8_t uid[6] = {0};
num_to_bytes(id,4,uid);
uint8_t key_s0a[] = {
uid[1] ^ uid[2] ^ uid[3] ^ 0x11,
uid[1] ^ 0x72,
uid[2] ^ 0x80,
(uid[0] + uid[1] + uid[2] + uid[3] ) ^ uid[3] ^ 0x19,
0xA3,
0x2F
};
PrintAndLogEx(NORMAL, "UID | %s\n", sprint_hex(uid,4 ));
PrintAndLogEx(NORMAL, "KEY A | %s\n", sprint_hex(key_s0a, 6));
// arrays w all keys
uint64_t foo[32] = {0};
//A
foo[0] = bytes_to_num(key_s0a, 6);
//B
//foo[16] = 0xcafe71411fbf;
foo[16] = 0xeafe51411fbf;
for (uint8_t i=0; i<15; i++){
foo[i+1] = foo[i] ^ xorA[i];
foo[i+16+1] = foo[i+16] ^ xorB[i];
}
for (uint8_t i=0; i<15; i++){
uint64_t a = foo[i];
uint64_t b = foo[i+16];
PrintAndLogEx(NORMAL, "%02u | %012" PRIX64 " %s | %012" PRIX64 " %s\n",
i,
a,
( a == keya[i])?"ok":"err",
b,
( b == keyb[i])?"ok":"err"
);
}
*/
return 0;
}
void generate4bNUID(uint8_t *uid, uint8_t *nuid){
uint16_t crc;
uint8_t b1, b2;
compute_crc(CRC_14443_A, uid, 3, &b1, &b2);
nuid[0] |= (b2 & 0xE0) | 0xF;
nuid[1] = b1;
crc = b1;
crc |= b2 << 8;
crc = update_crc16(uid[3], crc);
crc = update_crc16(uid[4], crc);
crc = update_crc16(uid[5], crc);
crc = update_crc16(uid[6], crc);
nuid[2] = (crc >> 8) & 0xFF ;
nuid[3] = crc & 0xFF;
}
int CmdAnalyseNuid(const char *Cmd){
uint8_t nuid[4] = {0};
uint8_t uid[7] = {0};
int len = 0;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) == 0|| cmdp == 'h' || cmdp == 'H') return usage_analyse_nuid();
/* selftest UID 040D681AB52281 -> NUID 8F430FEF */
if (cmdp == 't' || cmdp == 'T') {
memcpy(uid, "\x04\x0d\x68\x1a\xb5\x22\x81", 7);
generate4bNUID(uid, nuid);
if ( 0 == memcmp(nuid, "\x8f\x43\x0f\xef", 4))
PrintAndLogEx(SUCCESS, "Selftest OK\n");
else
PrintAndLogEx(FAILED, "Selftest Failed\n");
return 0;
}
param_gethex_ex(Cmd, 0, uid, &len);
if ( len%2 || len != 14) return usage_analyse_nuid();
generate4bNUID(uid, nuid);
PrintAndLogEx(NORMAL, "UID | %s \n", sprint_hex(uid, 7));
PrintAndLogEx(NORMAL, "NUID | %s \n", sprint_hex(nuid, 4));
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"lcr", CmdAnalyseLCR, 1, "Generate final byte for XOR LRC"},
{"crc", CmdAnalyseCRC, 1, "Stub method for CRC evaluations"},
{"chksum", CmdAnalyseCHKSUM, 1, "Checksum with adding, masking and one's complement"},
{"dates", CmdAnalyseDates, 1, "Look for datestamps in a given array of bytes"},
{"tea", CmdAnalyseTEASelfTest, 1, "Crypto TEA test"},
{"lfsr", CmdAnalyseLfsr, 1, "LFSR tests"},
{"a", CmdAnalyseA, 1, "num bits test"},
{"nuid", CmdAnalyseNuid, 1, "create NUID from 7byte UID"},
{NULL, NULL, 0, NULL}
};
int CmdAnalyse(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}