mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-07 00:28:07 +08:00
881 lines
22 KiB
C
881 lines
22 KiB
C
//-----------------------------------------------------------------------------
|
|
// The main application code. This is the first thing called after start.c
|
|
// executes.
|
|
// Jonathan Westhues, Mar 2006
|
|
// Edits by Gerhard de Koning Gans, Sep 2007 (##)
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include <proxmark3.h>
|
|
#include <stdlib.h>
|
|
#include "apps.h"
|
|
#include "legicrf.h"
|
|
#ifdef WITH_LCD
|
|
#include "fonts.h"
|
|
#include "LCD.h"
|
|
#endif
|
|
|
|
#define va_list __builtin_va_list
|
|
#define va_start __builtin_va_start
|
|
#define va_arg __builtin_va_arg
|
|
#define va_end __builtin_va_end
|
|
int kvsprintf(char const *fmt, void *arg, int radix, va_list ap);
|
|
|
|
//=============================================================================
|
|
// A buffer where we can queue things up to be sent through the FPGA, for
|
|
// any purpose (fake tag, as reader, whatever). We go MSB first, since that
|
|
// is the order in which they go out on the wire.
|
|
//=============================================================================
|
|
|
|
BYTE ToSend[512];
|
|
int ToSendMax;
|
|
static int ToSendBit;
|
|
struct common_area common_area __attribute__((section(".commonarea")));
|
|
|
|
void BufferClear(void)
|
|
{
|
|
memset(BigBuf,0,sizeof(BigBuf));
|
|
Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
|
|
}
|
|
|
|
void ToSendReset(void)
|
|
{
|
|
ToSendMax = -1;
|
|
ToSendBit = 8;
|
|
}
|
|
|
|
void ToSendStuffBit(int b)
|
|
{
|
|
if(ToSendBit >= 8) {
|
|
ToSendMax++;
|
|
ToSend[ToSendMax] = 0;
|
|
ToSendBit = 0;
|
|
}
|
|
|
|
if(b) {
|
|
ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
|
|
}
|
|
|
|
ToSendBit++;
|
|
|
|
if(ToSendBit >= sizeof(ToSend)) {
|
|
ToSendBit = 0;
|
|
DbpString("ToSendStuffBit overflowed!");
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
// Debug print functions, to go out over USB, to the usual PC-side client.
|
|
//=============================================================================
|
|
|
|
void DbpString(char *str)
|
|
{
|
|
/* this holds up stuff unless we're connected to usb */
|
|
if (!UsbConnected())
|
|
return;
|
|
|
|
UsbCommand c;
|
|
c.cmd = CMD_DEBUG_PRINT_STRING;
|
|
c.arg[0] = strlen(str);
|
|
if(c.arg[0] > sizeof(c.d.asBytes)) {
|
|
c.arg[0] = sizeof(c.d.asBytes);
|
|
}
|
|
memcpy(c.d.asBytes, str, c.arg[0]);
|
|
|
|
UsbSendPacket((BYTE *)&c, sizeof(c));
|
|
// TODO fix USB so stupid things like this aren't req'd
|
|
SpinDelay(50);
|
|
}
|
|
|
|
#if 0
|
|
void DbpIntegers(int x1, int x2, int x3)
|
|
{
|
|
/* this holds up stuff unless we're connected to usb */
|
|
if (!UsbConnected())
|
|
return;
|
|
|
|
UsbCommand c;
|
|
c.cmd = CMD_DEBUG_PRINT_INTEGERS;
|
|
c.arg[0] = x1;
|
|
c.arg[1] = x2;
|
|
c.arg[2] = x3;
|
|
|
|
UsbSendPacket((BYTE *)&c, sizeof(c));
|
|
// XXX
|
|
SpinDelay(50);
|
|
}
|
|
#endif
|
|
|
|
void Dbprintf(const char *fmt, ...) {
|
|
// should probably limit size here; oh well, let's just use a big buffer
|
|
char output_string[128];
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
kvsprintf(fmt, output_string, 10, ap);
|
|
va_end(ap);
|
|
|
|
DbpString(output_string);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read an ADC channel and block till it completes, then return the result
|
|
// in ADC units (0 to 1023). Also a routine to average 32 samples and
|
|
// return that.
|
|
//-----------------------------------------------------------------------------
|
|
static int ReadAdc(int ch)
|
|
{
|
|
DWORD d;
|
|
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
|
|
AT91C_BASE_ADC->ADC_MR =
|
|
ADC_MODE_PRESCALE(32) |
|
|
ADC_MODE_STARTUP_TIME(16) |
|
|
ADC_MODE_SAMPLE_HOLD_TIME(8);
|
|
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
|
|
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
|
|
while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
|
|
;
|
|
d = AT91C_BASE_ADC->ADC_CDR[ch];
|
|
|
|
return d;
|
|
}
|
|
|
|
static int AvgAdc(int ch)
|
|
{
|
|
int i;
|
|
int a = 0;
|
|
|
|
for(i = 0; i < 32; i++) {
|
|
a += ReadAdc(ch);
|
|
}
|
|
|
|
return (a + 15) >> 5;
|
|
}
|
|
|
|
void MeasureAntennaTuning(void)
|
|
{
|
|
BYTE *dest = (BYTE *)BigBuf;
|
|
int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
|
|
int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
|
|
|
|
UsbCommand c;
|
|
|
|
DbpString("Measuring antenna characteristics, please wait.");
|
|
memset(BigBuf,0,sizeof(BigBuf));
|
|
|
|
/*
|
|
* Sweeps the useful LF range of the proxmark from
|
|
* 46.8kHz (divisor=255) to 600kHz (divisor=19) and
|
|
* read the voltage in the antenna, the result left
|
|
* in the buffer is a graph which should clearly show
|
|
* the resonating frequency of your LF antenna
|
|
* ( hopefully around 95 if it is tuned to 125kHz!)
|
|
*/
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
|
|
for (i=255; i>19; i--) {
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
|
|
SpinDelay(20);
|
|
// Vref = 3.3V, and a 10000:240 voltage divider on the input
|
|
// can measure voltages up to 137500 mV
|
|
adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
|
|
if (i==95) vLf125 = adcval; // voltage at 125Khz
|
|
if (i==89) vLf134 = adcval; // voltage at 134Khz
|
|
|
|
dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
|
|
if(dest[i] > peak) {
|
|
peakv = adcval;
|
|
peak = dest[i];
|
|
peakf = i;
|
|
ptr = i;
|
|
}
|
|
}
|
|
|
|
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
|
|
SpinDelay(20);
|
|
// Vref = 3300mV, and an 10:1 voltage divider on the input
|
|
// can measure voltages up to 33000 mV
|
|
vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
|
|
|
|
c.cmd = CMD_MEASURED_ANTENNA_TUNING;
|
|
c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
|
|
c.arg[1] = vHf;
|
|
c.arg[2] = peakf | (peakv << 16);
|
|
UsbSendPacket((BYTE *)&c, sizeof(c));
|
|
}
|
|
|
|
void MeasureAntennaTuningHf(void)
|
|
{
|
|
int vHf = 0; // in mV
|
|
|
|
DbpString("Measuring HF antenna, press button to exit");
|
|
|
|
for (;;) {
|
|
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
|
|
SpinDelay(20);
|
|
// Vref = 3300mV, and an 10:1 voltage divider on the input
|
|
// can measure voltages up to 33000 mV
|
|
vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
|
|
|
|
Dbprintf("%d mV",vHf);
|
|
if (BUTTON_PRESS()) break;
|
|
}
|
|
DbpString("cancelled");
|
|
}
|
|
|
|
|
|
void SimulateTagHfListen(void)
|
|
{
|
|
BYTE *dest = (BYTE *)BigBuf;
|
|
int n = sizeof(BigBuf);
|
|
BYTE v = 0;
|
|
int i;
|
|
int p = 0;
|
|
|
|
// We're using this mode just so that I can test it out; the simulated
|
|
// tag mode would work just as well and be simpler.
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
|
|
|
|
// We need to listen to the high-frequency, peak-detected path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
FpgaSetupSsc();
|
|
|
|
i = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0xff;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
BYTE r = (BYTE)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
v <<= 1;
|
|
if(r & 1) {
|
|
v |= 1;
|
|
}
|
|
p++;
|
|
|
|
if(p >= 8) {
|
|
dest[i] = v;
|
|
v = 0;
|
|
p = 0;
|
|
i++;
|
|
|
|
if(i >= n) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DbpString("simulate tag (now type bitsamples)");
|
|
}
|
|
|
|
void ReadMem(int addr)
|
|
{
|
|
const BYTE *data = ((BYTE *)addr);
|
|
|
|
Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
|
|
}
|
|
|
|
/* osimage version information is linked in */
|
|
extern struct version_information version_information;
|
|
/* bootrom version information is pointed to from _bootphase1_version_pointer */
|
|
extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
|
|
void SendVersion(void)
|
|
{
|
|
char temp[48]; /* Limited data payload in USB packets */
|
|
DbpString("Prox/RFID mark3 RFID instrument");
|
|
|
|
/* Try to find the bootrom version information. Expect to find a pointer at
|
|
* symbol _bootphase1_version_pointer, perform slight sanity checks on the
|
|
* pointer, then use it.
|
|
*/
|
|
char *bootrom_version = *(char**)&_bootphase1_version_pointer;
|
|
if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
|
|
DbpString("bootrom version information appears invalid");
|
|
} else {
|
|
FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
|
|
DbpString(temp);
|
|
}
|
|
|
|
FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
|
|
DbpString(temp);
|
|
|
|
FpgaGatherVersion(temp, sizeof(temp));
|
|
DbpString(temp);
|
|
}
|
|
|
|
#ifdef WITH_LF
|
|
// samy's sniff and repeat routine
|
|
void SamyRun()
|
|
{
|
|
DbpString("Stand-alone mode! No PC necessary.");
|
|
|
|
// 3 possible options? no just 2 for now
|
|
#define OPTS 2
|
|
|
|
int high[OPTS], low[OPTS];
|
|
|
|
// Oooh pretty -- notify user we're in elite samy mode now
|
|
LED(LED_RED, 200);
|
|
LED(LED_ORANGE, 200);
|
|
LED(LED_GREEN, 200);
|
|
LED(LED_ORANGE, 200);
|
|
LED(LED_RED, 200);
|
|
LED(LED_ORANGE, 200);
|
|
LED(LED_GREEN, 200);
|
|
LED(LED_ORANGE, 200);
|
|
LED(LED_RED, 200);
|
|
|
|
int selected = 0;
|
|
int playing = 0;
|
|
|
|
// Turn on selected LED
|
|
LED(selected + 1, 0);
|
|
|
|
for (;;)
|
|
{
|
|
UsbPoll(FALSE);
|
|
WDT_HIT();
|
|
|
|
// Was our button held down or pressed?
|
|
int button_pressed = BUTTON_HELD(1000);
|
|
SpinDelay(300);
|
|
|
|
// Button was held for a second, begin recording
|
|
if (button_pressed > 0)
|
|
{
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
LED(LED_RED2, 0);
|
|
|
|
// record
|
|
DbpString("Starting recording");
|
|
|
|
// wait for button to be released
|
|
while(BUTTON_PRESS())
|
|
WDT_HIT();
|
|
|
|
/* need this delay to prevent catching some weird data */
|
|
SpinDelay(500);
|
|
|
|
CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
|
|
Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
|
|
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
// Finished recording
|
|
|
|
// If we were previously playing, set playing off
|
|
// so next button push begins playing what we recorded
|
|
playing = 0;
|
|
}
|
|
|
|
// Change where to record (or begin playing)
|
|
else if (button_pressed)
|
|
{
|
|
// Next option if we were previously playing
|
|
if (playing)
|
|
selected = (selected + 1) % OPTS;
|
|
playing = !playing;
|
|
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
|
|
// Begin transmitting
|
|
if (playing)
|
|
{
|
|
LED(LED_GREEN, 0);
|
|
DbpString("Playing");
|
|
// wait for button to be released
|
|
while(BUTTON_PRESS())
|
|
WDT_HIT();
|
|
Dbprintf("%x %x %x", selected, high[selected], low[selected]);
|
|
CmdHIDsimTAG(high[selected], low[selected], 0);
|
|
DbpString("Done playing");
|
|
if (BUTTON_HELD(1000) > 0)
|
|
{
|
|
DbpString("Exiting");
|
|
LEDsoff();
|
|
return;
|
|
}
|
|
|
|
/* We pressed a button so ignore it here with a delay */
|
|
SpinDelay(300);
|
|
|
|
// when done, we're done playing, move to next option
|
|
selected = (selected + 1) % OPTS;
|
|
playing = !playing;
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
}
|
|
else
|
|
while(BUTTON_PRESS())
|
|
WDT_HIT();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
OBJECTIVE
|
|
Listen and detect an external reader. Determine the best location
|
|
for the antenna.
|
|
|
|
INSTRUCTIONS:
|
|
Inside the ListenReaderField() function, there is two mode.
|
|
By default, when you call the function, you will enter mode 1.
|
|
If you press the PM3 button one time, you will enter mode 2.
|
|
If you press the PM3 button a second time, you will exit the function.
|
|
|
|
DESCRIPTION OF MODE 1:
|
|
This mode just listens for an external reader field and lights up green
|
|
for HF and/or red for LF. This is the original mode of the detectreader
|
|
function.
|
|
|
|
DESCRIPTION OF MODE 2:
|
|
This mode will visually represent, using the LEDs, the actual strength of the
|
|
current compared to the maximum current detected. Basically, once you know
|
|
what kind of external reader is present, it will help you spot the best location to place
|
|
your antenna. You will probably not get some good results if there is a LF and a HF reader
|
|
at the same place! :-)
|
|
|
|
LIGHT SCHEME USED:
|
|
*/
|
|
static const char LIGHT_SCHEME[] = {
|
|
0x0, /* ---- | No field detected */
|
|
0x1, /* X--- | 14% of maximum current detected */
|
|
0x2, /* -X-- | 29% of maximum current detected */
|
|
0x4, /* --X- | 43% of maximum current detected */
|
|
0x8, /* ---X | 57% of maximum current detected */
|
|
0xC, /* --XX | 71% of maximum current detected */
|
|
0xE, /* -XXX | 86% of maximum current detected */
|
|
0xF, /* XXXX | 100% of maximum current detected */
|
|
};
|
|
static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
|
|
|
|
void ListenReaderField(int limit)
|
|
{
|
|
int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
|
|
int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
|
|
int mode=1, display_val, display_max, i;
|
|
|
|
#define LF_ONLY 1
|
|
#define HF_ONLY 2
|
|
|
|
LEDsoff();
|
|
|
|
lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
|
|
|
|
if(limit != HF_ONLY) {
|
|
Dbprintf("LF 125/134 Baseline: %d", lf_av);
|
|
lf_baseline = lf_av;
|
|
}
|
|
|
|
hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
|
|
|
|
if (limit != LF_ONLY) {
|
|
Dbprintf("HF 13.56 Baseline: %d", hf_av);
|
|
hf_baseline = hf_av;
|
|
}
|
|
|
|
for(;;) {
|
|
if (BUTTON_PRESS()) {
|
|
SpinDelay(500);
|
|
switch (mode) {
|
|
case 1:
|
|
mode=2;
|
|
DbpString("Signal Strength Mode");
|
|
break;
|
|
case 2:
|
|
default:
|
|
DbpString("Stopped");
|
|
LEDsoff();
|
|
return;
|
|
break;
|
|
}
|
|
}
|
|
WDT_HIT();
|
|
|
|
if (limit != HF_ONLY) {
|
|
if(mode==1) {
|
|
if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
|
|
else LED_D_OFF();
|
|
}
|
|
|
|
++lf_count;
|
|
lf_av_new= ReadAdc(ADC_CHAN_LF);
|
|
// see if there's a significant change
|
|
if(abs(lf_av - lf_av_new) > 10) {
|
|
Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
|
|
lf_av = lf_av_new;
|
|
if (lf_av > lf_max)
|
|
lf_max = lf_av;
|
|
lf_count= 0;
|
|
}
|
|
}
|
|
|
|
if (limit != LF_ONLY) {
|
|
if (mode == 1){
|
|
if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
|
|
else LED_B_OFF();
|
|
}
|
|
|
|
++hf_count;
|
|
hf_av_new= ReadAdc(ADC_CHAN_HF);
|
|
// see if there's a significant change
|
|
if(abs(hf_av - hf_av_new) > 10) {
|
|
Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
|
|
hf_av = hf_av_new;
|
|
if (hf_av > hf_max)
|
|
hf_max = hf_av;
|
|
hf_count= 0;
|
|
}
|
|
}
|
|
|
|
if(mode == 2) {
|
|
if (limit == LF_ONLY) {
|
|
display_val = lf_av;
|
|
display_max = lf_max;
|
|
} else if (limit == HF_ONLY) {
|
|
display_val = hf_av;
|
|
display_max = hf_max;
|
|
} else { /* Pick one at random */
|
|
if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
|
|
display_val = hf_av;
|
|
display_max = hf_max;
|
|
} else {
|
|
display_val = lf_av;
|
|
display_max = lf_max;
|
|
}
|
|
}
|
|
for (i=0; i<LIGHT_LEN; i++) {
|
|
if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
|
|
if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
|
|
if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
|
|
if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
|
|
if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void UsbPacketReceived(BYTE *packet, int len)
|
|
{
|
|
UsbCommand *c = (UsbCommand *)packet;
|
|
UsbCommand ack;
|
|
ack.cmd = CMD_ACK;
|
|
|
|
switch(c->cmd) {
|
|
#ifdef WITH_LF
|
|
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
|
|
AcquireRawAdcSamples125k(c->arg[0]);
|
|
UsbSendPacket((BYTE*)&ack, sizeof(ack));
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_LF
|
|
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
|
|
ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO15693
|
|
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
|
|
AcquireRawAdcSamplesIso15693();
|
|
break;
|
|
#endif
|
|
|
|
case CMD_BUFF_CLEAR:
|
|
BufferClear();
|
|
break;
|
|
|
|
#ifdef WITH_ISO15693
|
|
case CMD_READER_ISO_15693:
|
|
ReaderIso15693(c->arg[0]);
|
|
break;
|
|
#endif
|
|
|
|
case CMD_READER_LEGIC_RF:
|
|
LegicRfReader(c->arg[0], c->arg[1]);
|
|
break;
|
|
|
|
#ifdef WITH_ISO15693
|
|
case CMD_SIMTAG_ISO_15693:
|
|
SimTagIso15693(c->arg[0]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443b
|
|
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
|
|
AcquireRawAdcSamplesIso14443(c->arg[0]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443b
|
|
case CMD_READ_SRI512_TAG:
|
|
ReadSRI512Iso14443(c->arg[0]);
|
|
break;
|
|
case CMD_READ_SRIX4K_TAG:
|
|
ReadSRIX4KIso14443(c->arg[0]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443a
|
|
case CMD_READER_ISO_14443a:
|
|
ReaderIso14443a(c->arg[0]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443a
|
|
case CMD_READER_MIFARE:
|
|
ReaderMifare(c->arg[0]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443b
|
|
case CMD_SNOOP_ISO_14443:
|
|
SnoopIso14443();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443a
|
|
case CMD_SNOOP_ISO_14443a:
|
|
SnoopIso14443a();
|
|
break;
|
|
#endif
|
|
|
|
case CMD_SIMULATE_TAG_HF_LISTEN:
|
|
SimulateTagHfListen();
|
|
break;
|
|
|
|
#ifdef WITH_ISO14443b
|
|
case CMD_SIMULATE_TAG_ISO_14443:
|
|
SimulateIso14443Tag();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443a
|
|
case CMD_SIMULATE_TAG_ISO_14443a:
|
|
SimulateIso14443aTag(c->arg[0], c->arg[1]); // ## Simulate iso14443a tag - pass tag type & UID
|
|
break;
|
|
#endif
|
|
|
|
case CMD_MEASURE_ANTENNA_TUNING:
|
|
MeasureAntennaTuning();
|
|
break;
|
|
|
|
case CMD_MEASURE_ANTENNA_TUNING_HF:
|
|
MeasureAntennaTuningHf();
|
|
break;
|
|
|
|
case CMD_LISTEN_READER_FIELD:
|
|
ListenReaderField(c->arg[0]);
|
|
break;
|
|
|
|
#ifdef WITH_LF
|
|
case CMD_HID_DEMOD_FSK:
|
|
CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_LF
|
|
case CMD_HID_SIM_TAG:
|
|
CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
|
|
break;
|
|
#endif
|
|
|
|
case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
LED_D_OFF(); // LED D indicates field ON or OFF
|
|
break;
|
|
|
|
#ifdef WITH_LF
|
|
case CMD_READ_TI_TYPE:
|
|
ReadTItag();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_LF
|
|
case CMD_WRITE_TI_TYPE:
|
|
WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
|
|
break;
|
|
#endif
|
|
|
|
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
|
|
UsbCommand n;
|
|
if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
|
|
n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
|
|
} else {
|
|
n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
|
|
}
|
|
n.arg[0] = c->arg[0];
|
|
memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(DWORD));
|
|
UsbSendPacket((BYTE *)&n, sizeof(n));
|
|
break;
|
|
}
|
|
|
|
case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
|
|
BYTE *b = (BYTE *)BigBuf;
|
|
memcpy(b+c->arg[0], c->d.asBytes, 48);
|
|
//Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
|
|
UsbSendPacket((BYTE*)&ack, sizeof(ack));
|
|
break;
|
|
}
|
|
|
|
#ifdef WITH_LF
|
|
case CMD_SIMULATE_TAG_125K:
|
|
LED_A_ON();
|
|
SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
|
|
LED_A_OFF();
|
|
break;
|
|
#endif
|
|
|
|
case CMD_READ_MEM:
|
|
ReadMem(c->arg[0]);
|
|
break;
|
|
|
|
case CMD_SET_LF_DIVISOR:
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
|
|
break;
|
|
|
|
case CMD_SET_ADC_MUX:
|
|
switch(c->arg[0]) {
|
|
case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
|
|
case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
|
|
case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
|
|
case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
|
|
}
|
|
break;
|
|
|
|
case CMD_VERSION:
|
|
SendVersion();
|
|
break;
|
|
|
|
#ifdef WITH_LF
|
|
case CMD_LF_SIMULATE_BIDIR:
|
|
SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_LCD
|
|
case CMD_LCD_RESET:
|
|
LCDReset();
|
|
break;
|
|
case CMD_LCD:
|
|
LCDSend(c->arg[0]);
|
|
break;
|
|
#endif
|
|
case CMD_SETUP_WRITE:
|
|
case CMD_FINISH_WRITE:
|
|
case CMD_HARDWARE_RESET:
|
|
USB_D_PLUS_PULLUP_OFF();
|
|
SpinDelay(1000);
|
|
SpinDelay(1000);
|
|
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
|
|
for(;;) {
|
|
// We're going to reset, and the bootrom will take control.
|
|
}
|
|
break;
|
|
|
|
case CMD_START_FLASH:
|
|
if(common_area.flags.bootrom_present) {
|
|
common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
|
|
}
|
|
USB_D_PLUS_PULLUP_OFF();
|
|
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
|
|
for(;;);
|
|
break;
|
|
|
|
case CMD_DEVICE_INFO: {
|
|
UsbCommand c;
|
|
c.cmd = CMD_DEVICE_INFO;
|
|
c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
|
|
if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
|
|
UsbSendPacket((BYTE*)&c, sizeof(c));
|
|
}
|
|
break;
|
|
default:
|
|
Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void __attribute__((noreturn)) AppMain(void)
|
|
{
|
|
SpinDelay(100);
|
|
|
|
if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
|
|
/* Initialize common area */
|
|
memset(&common_area, 0, sizeof(common_area));
|
|
common_area.magic = COMMON_AREA_MAGIC;
|
|
common_area.version = 1;
|
|
}
|
|
common_area.flags.osimage_present = 1;
|
|
|
|
LED_D_OFF();
|
|
LED_C_OFF();
|
|
LED_B_OFF();
|
|
LED_A_OFF();
|
|
|
|
UsbStart();
|
|
|
|
// The FPGA gets its clock from us from PCK0 output, so set that up.
|
|
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
|
|
AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
|
|
// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
|
|
AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
|
|
AT91C_PMC_PRES_CLK_4;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
|
|
|
|
// Reset SPI
|
|
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
|
|
// Reset SSC
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
|
|
|
// Load the FPGA image, which we have stored in our flash.
|
|
FpgaDownloadAndGo();
|
|
|
|
#ifdef WITH_LCD
|
|
|
|
LCDInit();
|
|
|
|
// test text on different colored backgrounds
|
|
LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK );
|
|
LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE );
|
|
LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED );
|
|
LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN );
|
|
LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE );
|
|
LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW);
|
|
LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN );
|
|
LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
|
|
|
|
// color bands
|
|
LCDFill(0, 1+8* 8, 132, 8, BLACK);
|
|
LCDFill(0, 1+8* 9, 132, 8, WHITE);
|
|
LCDFill(0, 1+8*10, 132, 8, RED);
|
|
LCDFill(0, 1+8*11, 132, 8, GREEN);
|
|
LCDFill(0, 1+8*12, 132, 8, BLUE);
|
|
LCDFill(0, 1+8*13, 132, 8, YELLOW);
|
|
LCDFill(0, 1+8*14, 132, 8, CYAN);
|
|
LCDFill(0, 1+8*15, 132, 8, MAGENTA);
|
|
|
|
#endif
|
|
|
|
for(;;) {
|
|
UsbPoll(FALSE);
|
|
WDT_HIT();
|
|
|
|
#ifdef WITH_LF
|
|
if (BUTTON_HELD(1000) > 0)
|
|
SamyRun();
|
|
#endif
|
|
}
|
|
}
|