proxmark3/client/fpga_compress.c
2019-04-16 16:56:56 +02:00

486 lines
17 KiB
C

//-----------------------------------------------------------------------------
// piwi, 2017, 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Compression tool for FPGA config files. Compress several *.bit files at
// compile time. Decompression is done at run time (see fpgaloader.c).
// This uses the zlib library tuned to this specific case. The small file sizes
// allow to use "insane" parameters for optimum compression ratio.
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <libgen.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <inttypes.h>
#include "fpga.h"
#include "zlib.h"
#define MAX(a,b) ((a)>(b)?(a):(b))
// zlib configuration
#define COMPRESS_LEVEL 9 // use best possible compression
#define COMPRESS_WINDOW_BITS 15 // default = max = 15 for a window of 2^15 = 32KBytes
#define COMPRESS_MEM_LEVEL 9 // determines the amount of memory allocated during compression. Default = 8.
/* COMPRESS_STRATEGY can be
Z_DEFAULT_STRATEGY (the default),
Z_FILTERED (more huffmann, less string matching),
Z_HUFFMAN_ONLY (huffman only, no string matching)
Z_RLE (distances limited to one)
Z_FIXED (prevents the use of dynamic Huffman codes)
*/
#define COMPRESS_STRATEGY Z_DEFAULT_STRATEGY
// zlib tuning parameters:
#define COMPRESS_GOOD_LENGTH 258
#define COMPRESS_MAX_LAZY 258
#define COMPRESS_MAX_NICE_LENGTH 258
#define COMPRESS_MAX_CHAIN 8192
#define HARDNESTED_TABLE_SIZE (uint32_t)(sizeof(uint32_t) * ((1L<<19)+1))
static void usage(void) {
fprintf(stdout, "Usage: fpga_compress <infile1> <infile2> ... <infile_n> <outfile>\n");
fprintf(stdout, " Combine n FPGA bitstream files and compress them into one.\n\n");
fprintf(stdout, " fpga_compress -v <infile1> <infile2> ... <infile_n> <outfile>\n");
fprintf(stdout, " Extract Version Information from FPGA bitstream files and write it to <outfile>\n\n");
fprintf(stdout, " fpga_compress -d <infile> <outfile>\n");
fprintf(stdout, " Decompress <infile>. Write result to <outfile>\n\n");
fprintf(stdout, " fpga_compress -t <infile> <outfile>\n");
fprintf(stdout, " Compress hardnested table <infile>. Write result to <outfile>\n\n");
}
static voidpf fpga_deflate_malloc(voidpf opaque, uInt items, uInt size) {
return calloc(items * size, sizeof(uint8_t));
}
static void fpga_deflate_free(voidpf opaque, voidpf address) {
free(address);
}
static bool all_feof(FILE *infile[], uint8_t num_infiles) {
for (uint16_t i = 0; i < num_infiles; i++) {
if (!feof(infile[i])) {
return false;
}
}
return true;
}
int zlib_compress(FILE *infile[], uint8_t num_infiles, FILE *outfile, bool hardnested_mode) {
uint8_t *fpga_config;
uint32_t i;
int32_t ret;
uint8_t c;
z_stream compressed_fpga_stream;
if (hardnested_mode) {
fpga_config = calloc(num_infiles * HARDNESTED_TABLE_SIZE, sizeof(uint8_t));
} else {
fpga_config = calloc(num_infiles * FPGA_CONFIG_SIZE, sizeof(uint8_t));
}
// read the input files. Interleave them into fpga_config[]
i = 0;
do {
if (i >= num_infiles * (hardnested_mode ? HARDNESTED_TABLE_SIZE : FPGA_CONFIG_SIZE)) {
if (hardnested_mode) {
fprintf(stderr,
"Input file too big (> %" PRIu32 " bytes). This is probably not a hardnested bitflip state table.\n"
, HARDNESTED_TABLE_SIZE);
} else {
fprintf(stderr,
"Input files too big (total > %li bytes). These are probably not PM3 FPGA config files.\n"
, num_infiles * FPGA_CONFIG_SIZE);
}
for (uint16_t j = 0; j < num_infiles; j++) {
fclose(infile[j]);
}
free(fpga_config);
return (EXIT_FAILURE);
}
for (uint16_t j = 0; j < num_infiles; j++) {
for (uint16_t k = 0; k < FPGA_INTERLEAVE_SIZE; k++) {
c = (uint8_t)fgetc(infile[j]);
if (!feof(infile[j])) {
fpga_config[i++] = c;
} else if (num_infiles > 1) {
fpga_config[i++] = '\0';
}
}
}
} while (!all_feof(infile, num_infiles));
// initialize zlib structures
compressed_fpga_stream.next_in = fpga_config;
compressed_fpga_stream.avail_in = i;
compressed_fpga_stream.zalloc = fpga_deflate_malloc;
compressed_fpga_stream.zfree = fpga_deflate_free;
compressed_fpga_stream.opaque = Z_NULL;
ret = deflateInit2(&compressed_fpga_stream,
COMPRESS_LEVEL,
Z_DEFLATED,
COMPRESS_WINDOW_BITS,
COMPRESS_MEM_LEVEL,
COMPRESS_STRATEGY);
// estimate the size of the compressed output
uint32_t outsize_max = deflateBound(&compressed_fpga_stream, compressed_fpga_stream.avail_in);
uint8_t *outbuf = calloc(outsize_max, sizeof(uint8_t));
compressed_fpga_stream.next_out = outbuf;
compressed_fpga_stream.avail_out = outsize_max;
if (ret == Z_OK) {
ret = deflateTune(&compressed_fpga_stream,
COMPRESS_GOOD_LENGTH,
COMPRESS_MAX_LAZY,
COMPRESS_MAX_NICE_LENGTH,
COMPRESS_MAX_CHAIN);
}
if (ret == Z_OK) {
ret = deflate(&compressed_fpga_stream, Z_FINISH);
}
fprintf(stdout, "compressed %u input bytes to %lu output bytes\n", i, compressed_fpga_stream.total_out);
if (ret != Z_STREAM_END) {
fprintf(stderr, "Error in deflate(): %d %s\n", ret, compressed_fpga_stream.msg);
free(outbuf);
deflateEnd(&compressed_fpga_stream);
for (uint16_t j = 0; j < num_infiles; j++) {
fclose(infile[j]);
}
fclose(outfile);
free(fpga_config);
return (EXIT_FAILURE);
}
for (i = 0; i < compressed_fpga_stream.total_out; i++) {
fputc(outbuf[i], outfile);
}
free(outbuf);
deflateEnd(&compressed_fpga_stream);
for (uint16_t j = 0; j < num_infiles; j++) {
fclose(infile[j]);
}
fclose(outfile);
free(fpga_config);
return (EXIT_SUCCESS);
}
int zlib_decompress(FILE *infile, FILE *outfile) {
#define DECOMPRESS_BUF_SIZE 1024
uint8_t outbuf[DECOMPRESS_BUF_SIZE];
uint8_t inbuf[DECOMPRESS_BUF_SIZE];
int32_t ret;
z_stream compressed_fpga_stream;
// initialize zlib structures
compressed_fpga_stream.next_in = inbuf;
compressed_fpga_stream.avail_in = 0;
compressed_fpga_stream.next_out = outbuf;
compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
compressed_fpga_stream.zalloc = fpga_deflate_malloc;
compressed_fpga_stream.zfree = fpga_deflate_free;
compressed_fpga_stream.opaque = Z_NULL;
ret = inflateInit2(&compressed_fpga_stream, 0);
if (ret < 0)
return (EXIT_FAILURE);
do {
if (compressed_fpga_stream.avail_in == 0) {
compressed_fpga_stream.next_in = inbuf;
uint16_t i = 0;
do {
int32_t c = fgetc(infile);
if (!feof(infile)) {
inbuf[i++] = c & 0xFF;
compressed_fpga_stream.avail_in++;
} else {
break;
}
} while (i < DECOMPRESS_BUF_SIZE);
}
ret = inflate(&compressed_fpga_stream, Z_SYNC_FLUSH);
if (ret != Z_OK && ret != Z_STREAM_END) {
break;
}
if (compressed_fpga_stream.avail_out == 0) {
for (uint16_t i = 0; i < DECOMPRESS_BUF_SIZE; i++) {
fputc(outbuf[i], outfile);
}
compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
compressed_fpga_stream.next_out = outbuf;
}
} while (ret == Z_OK);
if (ret == Z_STREAM_END) { // reached end of input
uint16_t i = 0;
while (compressed_fpga_stream.avail_out < DECOMPRESS_BUF_SIZE) {
fputc(outbuf[i++], outfile);
compressed_fpga_stream.avail_out++;
}
fclose(outfile);
fclose(infile);
return (EXIT_SUCCESS);
} else {
fprintf(stderr, "Error. Inflate() returned error %d, %s", ret, compressed_fpga_stream.msg);
fclose(outfile);
fclose(infile);
return (EXIT_FAILURE);
}
}
/* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence
* 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01
* After that the format is 1 byte section type (ASCII character), 2 byte length
* (big endian), <length> bytes content. Except for section 'e' which has 4 bytes
* length.
*/
static int bitparse_find_section(FILE *infile, char section_name, unsigned int *section_length) {
int result = 0;
#define MAX_FPGA_BIT_STREAM_HEADER_SEARCH 100 // maximum number of bytes to search for the requested section
uint16_t numbytes = 0;
while (numbytes < MAX_FPGA_BIT_STREAM_HEADER_SEARCH) {
char current_name = (char)fgetc(infile);
numbytes++;
if (current_name < 'a' || current_name > 'e') {
/* Strange section name, abort */
break;
}
unsigned int current_length = 0;
switch (current_name) {
case 'e':
/* Four byte length field */
current_length += fgetc(infile) << 24;
current_length += fgetc(infile) << 16;
numbytes += 2;
default: /* Fall through, two byte length field */
current_length += fgetc(infile) << 8;
current_length += fgetc(infile) << 0;
numbytes += 2;
}
if (current_name != 'e' && current_length > 255) {
/* Maybe a parse error */
break;
}
if (current_name == section_name) {
/* Found it */
*section_length = current_length;
result = 1;
break;
}
for (uint16_t i = 0; i < current_length && numbytes < MAX_FPGA_BIT_STREAM_HEADER_SEARCH; i++) {
(void)fgetc(infile);
numbytes++;
}
}
return result;
}
static int FpgaGatherVersion(FILE *infile, char *infile_name, char *dst, int len) {
unsigned int fpga_info_len;
char tempstr[40] = {0x00};
dst[0] = '\0';
for (uint16_t i = 0; i < FPGA_BITSTREAM_FIXED_HEADER_SIZE; i++) {
if (fgetc(infile) != bitparse_fixed_header[i]) {
fprintf(stderr, "Invalid FPGA file. Aborting...\n\n");
return (EXIT_FAILURE);
}
}
if (!memcmp("fpga_lf", basename(infile_name), 7))
strncat(dst, "LF", len - strlen(dst) - 1);
else if (!memcmp("fpga_hf", basename(infile_name), 7))
strncat(dst, "HF", len - strlen(dst) - 1);
strncat(dst, " image built", len - strlen(dst) - 1);
if (bitparse_find_section(infile, 'b', &fpga_info_len)) {
strncat(dst, " for ", len - strlen(dst) - 1);
for (uint16_t i = 0; i < fpga_info_len; i++) {
char c = (char)fgetc(infile);
if (i < sizeof(tempstr)) {
tempstr[i] = c;
}
}
strncat(dst, tempstr, len - strlen(dst) - 1);
}
if (bitparse_find_section(infile, 'c', &fpga_info_len)) {
strncat(dst, " on ", len - strlen(dst) - 1);
for (uint16_t i = 0; i < fpga_info_len; i++) {
char c = (char)fgetc(infile);
if (i < sizeof(tempstr)) {
tempstr[i] = c;
}
}
strncat(dst, tempstr, len - strlen(dst) - 1);
}
if (bitparse_find_section(infile, 'd', &fpga_info_len)) {
strncat(dst, " at ", len - strlen(dst) - 1);
for (uint16_t i = 0; i < fpga_info_len; i++) {
char c = (char)fgetc(infile);
if (i < sizeof(tempstr)) {
tempstr[i] = c;
}
}
strncat(dst, tempstr, len - strlen(dst) - 1);
}
return 0;
}
static void print_version_info_preamble(FILE *outfile, int num_infiles) {
fprintf(outfile, "//-----------------------------------------------------------------------------\n");
fprintf(outfile, "// piwi, 2018\n");
fprintf(outfile, "//\n");
fprintf(outfile, "// This code is licensed to you under the terms of the GNU GPL, version 2 or,\n");
fprintf(outfile, "// at your option, any later version. See the LICENSE.txt file for the text of\n");
fprintf(outfile, "// the license.\n");
fprintf(outfile, "//-----------------------------------------------------------------------------\n");
fprintf(outfile, "// Version information on fpga images\n");
fprintf(outfile, "//\n");
fprintf(outfile, "// This file is generated by fpga_compress. Don't edit!\n");
fprintf(outfile, "//-----------------------------------------------------------------------------\n");
fprintf(outfile, "\n");
fprintf(outfile, "\n");
fprintf(outfile, "const int fpga_bitstream_num = %d;\n", num_infiles);
fprintf(outfile, "const char* const fpga_version_information[%d] = {\n", num_infiles);
}
static int generate_fpga_version_info(FILE *infile[], char *infile_names[], int num_infiles, FILE *outfile) {
char version_string[80] = "";
print_version_info_preamble(outfile, num_infiles);
for (int i = 0; i < num_infiles; i++) {
FpgaGatherVersion(infile[i], infile_names[i], version_string, sizeof(version_string));
fprintf(outfile, "\t\" %s\"", version_string);
if (i != num_infiles - 1) {
fprintf(outfile, ",");
}
fprintf(outfile, "\n");
}
fprintf(outfile, "};\n");
return 0;
}
int main(int argc, char **argv) {
FILE **infiles;
char **infile_names;
FILE *outfile;
if (argc == 1 || argc == 2) {
usage();
return (EXIT_FAILURE);
}
if (!strcmp(argv[1], "-d")) { // Decompress
infiles = calloc(1, sizeof(FILE *));
if (argc != 4) {
usage();
free(infiles);
return (EXIT_FAILURE);
}
infiles[0] = fopen(argv[2], "rb");
if (infiles[0] == NULL) {
fprintf(stderr, "Error. Cannot open input file %s\n\n", argv[2]);
free(infiles);
return (EXIT_FAILURE);
}
outfile = fopen(argv[3], "wb");
if (outfile == NULL) {
fprintf(stderr, "Error. Cannot open output file %s\n\n", argv[3]);
free(infiles);
return (EXIT_FAILURE);
}
int ret = zlib_decompress(infiles[0], outfile);
free(infiles);
return (ret);
} else { // Compress or generate version info
bool hardnested_mode = false;
bool generate_version_file = false;
int num_input_files = 0;
if (!strcmp(argv[1], "-t")) { // compress one hardnested table
if (argc != 4) {
usage();
return (EXIT_FAILURE);
}
hardnested_mode = true;
num_input_files = 1;
} else if (!strcmp(argv[1], "-v")) { // generate version info
generate_version_file = true;
num_input_files = argc - 3;
} else { // compress 1..n fpga files
num_input_files = argc - 2;
}
infiles = calloc(num_input_files, sizeof(FILE *));
infile_names = calloc(num_input_files, sizeof(char *));
for (uint16_t i = 0; i < num_input_files; i++) {
infile_names[i] = argv[i + ((hardnested_mode || generate_version_file) ? 2 : 1)];
infiles[i] = fopen(infile_names[i], "rb");
if (infiles[i] == NULL) {
fprintf(stderr, "Error. Cannot open input file %s\n\n", infile_names[i]);
free(infile_names);
free(infiles);
return (EXIT_FAILURE);
}
}
outfile = fopen(argv[argc - 1], "wb");
if (outfile == NULL) {
fprintf(stderr, "Error. Cannot open output file %s\n\n", argv[argc - 1]);
free(infile_names);
free(infiles);
return (EXIT_FAILURE);
}
if (generate_version_file) {
if (generate_fpga_version_info(infiles, infile_names, num_input_files, outfile)) {
free(infile_names);
free(infiles);
return (EXIT_FAILURE);
}
} else {
int ret = zlib_compress(infiles, num_input_files, outfile, hardnested_mode);
free(infile_names);
free(infiles);
return (ret);
}
}
}