proxmark3/client/cmdlf.c
2019-02-24 20:11:05 +01:00

1008 lines
33 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
//-----------------------------------------------------------------------------
#include "cmdlf.h"
bool g_lf_threshold_set = false;
static int CmdHelp(const char *Cmd);
int usage_lf_cmdread(void) {
PrintAndLogEx(NORMAL, "Usage: lf cmdread d <delay period> z <zero period> o <one period> c <cmdbytes>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " d <delay> delay OFF period, (0 for bitbang mode) (decimal)");
PrintAndLogEx(NORMAL, " z <zero> time period ZERO, (decimal)");
PrintAndLogEx(NORMAL, " o <one> time period ONE, (decimal)");
PrintAndLogEx(NORMAL, " c <cmd> Command bytes (in ones and zeros)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " ************* All periods in microseconds (ms)");
PrintAndLogEx(NORMAL, " ************* Use lf config to configure options.");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf cmdread d 80 z 100 o 200 c 11000");
return 0;
}
int usage_lf_read(void){
PrintAndLogEx(NORMAL, "Usage: lf read [h] [s] [d numofsamples]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " s silent run no printout");
PrintAndLogEx(NORMAL, " d #samples # samples to collect (optional)");
PrintAndLogEx(NORMAL, "Use 'lf config' to set parameters.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf read s d 12000 - collects 12000samples silent");
PrintAndLogEx(NORMAL, " lf read s");
return 0;
}
int usage_lf_snoop(void) {
PrintAndLogEx(NORMAL, "Snoop low frequence signal. Use 'lf config' to set parameters.");
PrintAndLogEx(NORMAL, "Usage: lf snoop [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, "This function takes no arguments. ");
PrintAndLogEx(NORMAL, "Use 'lf config' to set parameters.");
return 0;
}
int usage_lf_config(void) {
PrintAndLogEx(NORMAL, "Usage: lf config [h] [H|<divisor>] [b <bps>] [d <decim>] [a 0|1]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " L Low frequency (125 KHz)");
PrintAndLogEx(NORMAL, " H High frequency (134 KHz)");
PrintAndLogEx(NORMAL, " q <divisor> Manually set divisor. 88-> 134KHz, 95-> 125 Hz");
PrintAndLogEx(NORMAL, " b <bps> Sets resolution of bits per sample. Default (max): 8");
PrintAndLogEx(NORMAL, " d <decim> Sets decimation. A value of N saves only 1 in N samples. Default: 1");
PrintAndLogEx(NORMAL, " a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1");
PrintAndLogEx(NORMAL, " t <threshold> Sets trigger threshold. 0 means no threshold (range: 0-128)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf config b 8 L");
PrintAndLogEx(NORMAL, " Samples at 125KHz, 8bps.");
PrintAndLogEx(NORMAL, " lf config H b 4 d 3");
PrintAndLogEx(NORMAL, " Samples at 134KHz, averages three samples into one, stored with ");
PrintAndLogEx(NORMAL, " a resolution of 4 bits per sample.");
PrintAndLogEx(NORMAL, " lf read");
PrintAndLogEx(NORMAL, " Performs a read (active field)");
PrintAndLogEx(NORMAL, " lf snoop");
PrintAndLogEx(NORMAL, " Performs a snoop (no active field)");
return 0;
}
int usage_lf_simfsk(void) {
PrintAndLogEx(NORMAL, "Usage: lf simfsk [h] [c <clock>] [H <fcHigh>] [L <fcLow>] [d <hexdata>]");
PrintAndLogEx(NORMAL, "there are about four FSK modulations to know of.");
PrintAndLogEx(NORMAL, "FSK1 - where fc/8 = high and fc/5 = low");
PrintAndLogEx(NORMAL, "FSK1a - is inverted FSK1, ie: fc/5 = high and fc/8 = low");
PrintAndLogEx(NORMAL, "FSK2 - where fc/10 = high and fc/8 = low");
PrintAndLogEx(NORMAL, "FSK2a - is inverted FSK2, ie: fc/10 = high and fc/8 = low");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " c <clock> Manually set clock - can autodetect if using DemodBuffer");
PrintAndLogEx(NORMAL, " H <fcHigh> Manually set the larger Field Clock");
PrintAndLogEx(NORMAL, " L <fcLow> Manually set the smaller Field Clock");
//PrintAndLogEx(NORMAL, " s TBD- -STT to enable a gap between playback repetitions - default: no gap");
PrintAndLogEx(NORMAL, " d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
PrintAndLogEx(NORMAL, "\n NOTE: if you set one clock manually set them all manually");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf simfsk c 40 H 8 L 5 d 010203 - FSK1 rf/40 data 010203");
PrintAndLogEx(NORMAL, " lf simfsk c 40 H 5 L 8 d 010203 - FSK1a rf/40 data 010203");
PrintAndLogEx(NORMAL, " lf simfsk c 64 H 10 L 8 d 010203 - FSK2 rf/64 data 010203");
PrintAndLogEx(NORMAL, " lf simfsk c 64 H 8 L 10 d 010203 - FSK2a rf/64 data 010203");
PrintAndLogEx(NORMAL, "");
return 0;
}
int usage_lf_simask(void) {
PrintAndLogEx(NORMAL, "Usage: lf simask [c <clock>] [i] [b|m|r] [s] [d <raw hex to sim>]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " c <clock> Manually set clock - can autodetect if using DemodBuffer");
PrintAndLogEx(NORMAL, " i invert data");
PrintAndLogEx(NORMAL, " b sim ask/biphase");
PrintAndLogEx(NORMAL, " m sim ask/manchester - Default");
PrintAndLogEx(NORMAL, " r sim ask/raw");
PrintAndLogEx(NORMAL, " s add t55xx Sequence Terminator gap - default: no gaps (only manchester)");
PrintAndLogEx(NORMAL, " d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
return 0;
}
int usage_lf_simpsk(void) {
PrintAndLogEx(NORMAL, "Usage: lf simpsk [1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " c <clock> Manually set clock - can autodetect if using DemodBuffer");
PrintAndLogEx(NORMAL, " i invert data");
PrintAndLogEx(NORMAL, " 1 set PSK1 (default)");
PrintAndLogEx(NORMAL, " 2 set PSK2");
PrintAndLogEx(NORMAL, " 3 set PSK3");
PrintAndLogEx(NORMAL, " r <carrier> 2|4|8 are valid carriers: default = 2");
PrintAndLogEx(NORMAL, " d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
return 0;
}
int usage_lf_find(void){
PrintAndLogEx(NORMAL, "Usage: lf search [h] <0|1> [u]");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " <0|1> Use data from Graphbuffer, if not set, try reading data from tag.");
PrintAndLogEx(NORMAL, " u Search for Unknown tags, if not set, reads only known tags.");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf search = try reading data from tag & search for known tags");
PrintAndLogEx(NORMAL, " lf search 1 = use data from GraphBuffer & search for known tags");
PrintAndLogEx(NORMAL, " lf search u = try reading data from tag & search for known and unknown tags");
PrintAndLogEx(NORMAL, " lf search 1 u = use data from GraphBuffer & search for known and unknown tags");
return 0;
}
/* send a LF command before reading */
int CmdLFCommandRead(const char *Cmd) {
UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K, {0,0,0}};
bool errors = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_lf_cmdread();
case 'c':
param_getstr(Cmd, cmdp+1, (char *)&c.d.asBytes, sizeof(c.d.asBytes));
cmdp += 2;
break;
case 'd':
c.arg[0] = param_get32ex(Cmd, cmdp+1, 0, 10);
cmdp += 2;
break;
case 'z':
c.arg[1] = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF;
cmdp += 2;
break;
case 'o':
c.arg[2] = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF;
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_lf_cmdread();
clearCommandBuffer();
SendCommand(&c);
WaitForResponse(CMD_ACK, NULL);
getSamples(0, true);
return 0;
}
int CmdFlexdemod(const char *Cmd) {
if ( GraphTraceLen < 0 )
return 0;
#ifndef LONG_WAIT
#define LONG_WAIT 100
#endif
int i, j, start, bit, sum, phase = 0;
int data[GraphTraceLen];
memcpy(data, GraphBuffer, GraphTraceLen);
size_t size = GraphTraceLen;
for (i = 0; i < GraphTraceLen; ++i)
data[i] = (data[i] < 0) ? -1 : 1;
for (start = 0; start < size - LONG_WAIT; start++) {
int first = data[start];
for (i = start; i < start + LONG_WAIT; i++) {
if (data[i] != first) {
break;
}
}
if (i == (start + LONG_WAIT))
break;
}
if (start == size - LONG_WAIT) {
PrintAndLogEx(NORMAL, "nothing to wait for");
return 0;
}
data[start] = 4;
data[start+1] = 0;
uint8_t bits[64] = {0x00};
i = start;
for (bit = 0; bit < 64; bit++) {
sum = 0;
for (int j = 0; j < 16; j++) {
sum += data[i++];
}
bits[bit] = (sum > 0) ? 1 : 0;
PrintAndLogEx(NORMAL, "bit %d sum %d", bit, sum);
}
for (bit = 0; bit < 64; bit++) {
sum = 0;
for (j = 0; j < 16; j++)
sum += data[i++];
if (sum > 0 && bits[bit] != 1) PrintAndLogEx(NORMAL, "oops1 at %d", bit);
if (sum < 0 && bits[bit] != 0) PrintAndLogEx(NORMAL, "oops2 at %d", bit);
}
// iceman, use demod buffer? blue line?
// HACK writing back to graphbuffer.
GraphTraceLen = 32 * 64;
i = 0;
for (bit = 0; bit < 64; bit++) {
phase = (bits[bit] == 0) ? 0 : 1;
for (j = 0; j < 32; j++) {
GraphBuffer[i++] = phase;
phase = !phase;
}
}
RepaintGraphWindow();
return 0;
}
int CmdLFSetConfig(const char *Cmd) {
uint8_t divisor = 0;//Frequency divisor
uint8_t bps = 0; // Bits per sample
uint8_t decimation = 0; //How many to keep
bool averaging = 1; // Defaults to true
bool errors = false;
int trigger_threshold = -1;//Means no change
uint8_t unsigned_trigg = 0;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)) {
case 'h':
return usage_lf_config();
case 'H':
divisor = 88;
cmdp++;
break;
case 'L':
divisor = 95;
cmdp++;
break;
case 'q':
errors |= param_getdec(Cmd, cmdp+1, &divisor);
cmdp+=2;
break;
case 't':
errors |= param_getdec(Cmd, cmdp+1, &unsigned_trigg);
cmdp+=2;
if(!errors) {
trigger_threshold = unsigned_trigg;
g_lf_threshold_set = (trigger_threshold > 0);
}
break;
case 'b':
errors |= param_getdec(Cmd, cmdp+1, &bps);
cmdp+=2;
break;
case 'd':
errors |= param_getdec(Cmd, cmdp+1, &decimation);
cmdp+=2;
break;
case 'a':
averaging = param_getchar(Cmd, cmdp+1) == '1';
cmdp+=2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = 1;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_lf_config();
//Bps is limited to 8
if (bps >> 4) bps = 8;
sample_config config = { decimation, bps, averaging, divisor, trigger_threshold };
UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG, {0,0,0} };
memcpy(c.d.asBytes, &config, sizeof(sample_config));
clearCommandBuffer();
SendCommand(&c);
return 0;
}
bool lf_read(bool silent, uint32_t samples) {
if ( IsOffline() ) return false;
UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K, {silent, samples, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (g_lf_threshold_set) {
WaitForResponse(CMD_ACK, &resp);
} else {
if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2500) ) {
PrintAndLogEx(WARNING, "command execution time out");
return false;
}
}
// resp.arg[0] is bits read not bytes read.
getSamples(resp.arg[0]/8, silent);
return true;
}
int CmdLFRead(const char *Cmd) {
if ( IsOffline() ) return 0;
bool errors = false;
bool silent = false;
uint32_t samples = 0;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_lf_read();
case 's':
silent = true;
cmdp++;
break;
case 'd':
samples = param_get32ex(Cmd, cmdp, 0, 10);
cmdp +=2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors) return usage_lf_read();
return lf_read(silent, samples);
}
int CmdLFSnoop(const char *Cmd) {
uint8_t cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_lf_snoop();
UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES,{0,0,0}};
clearCommandBuffer();
SendCommand(&c);
WaitForResponse(CMD_ACK, NULL);
getSamples(0, false);
return 0;
}
static void ChkBitstream(const char *str) {
// convert to bitstream if necessary
for (int i = 0; i < (int)(GraphTraceLen / 2); i++){
if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) {
CmdGetBitStream("");
break;
}
}
}
//Attempt to simulate any wave in buffer (one bit per output sample)
// converts GraphBuffer to bitstream (based on zero crossings) if needed.
int CmdLFSim(const char *Cmd) {
#define FPGA_LF 1
#define FPGA_HF 2
int gap = 0;
sscanf(Cmd, "%i", &gap);
// convert to bitstream if necessary
ChkBitstream(Cmd);
PrintAndLogEx(DEBUG, "DEBUG: Sending [%d bytes]\n", GraphTraceLen);
//can send only 512 bits at a time (1 byte sent per bit...)
for (uint16_t i = 0; i < GraphTraceLen; i += USB_CMD_DATA_SIZE) {
UsbCommand c = {CMD_UPLOAD_SIM_SAMPLES_125K, {i, FPGA_LF, 0}};
for (uint16_t j = 0; j < USB_CMD_DATA_SIZE; j++)
c.d.asBytes[j] = GraphBuffer[i+j];
clearCommandBuffer();
SendCommand(&c);
WaitForResponse(CMD_ACK, NULL);
printf("."); fflush(stdout);
}
PrintAndLogEx(NORMAL, "Simulating");
UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
// by marshmellow - sim fsk data given clock, fcHigh, fcLow, invert
// - allow pull data from DemodBuffer
int CmdLFfskSim(const char *Cmd) {
//might be able to autodetect FCs and clock from Graphbuffer if using demod buffer
// otherwise will need FChigh, FClow, Clock, and bitstream
uint8_t fcHigh = 0, fcLow = 0, clk = 0;
bool errors = false, separator = false;
char hexData[64] = {0x00}; // store entered hex data
uint8_t data[255] = {0x00};
int dataLen = 0;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)){
case 'h':
return usage_lf_simfsk();
case 'c':
errors |= param_getdec(Cmd, cmdp+1, &clk);
cmdp += 2;
break;
case 'H':
errors |= param_getdec(Cmd, cmdp+1, &fcHigh);
cmdp += 2;
break;
case 'L':
errors |= param_getdec(Cmd, cmdp+1, &fcLow);
cmdp += 2;
break;
case 's':
separator = 1;
cmdp++;
break;
case 'd':
dataLen = param_getstr(Cmd, cmdp+1, hexData, sizeof(hexData));
if (dataLen == 0)
errors = true;
else
dataLen = hextobinarray((char *)data, hexData);
if (dataLen == 0) errors = true;
if (errors) PrintAndLogEx(WARNING, "Error getting hex data");
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
// No args
if (cmdp == 0 && DemodBufferLen == 0) return usage_lf_simfsk();
//Validations
if (errors) return usage_lf_simfsk();
int firstClockEdge = 0;
if (dataLen == 0){ //using DemodBuffer
if (clk == 0 || fcHigh == 0 || fcLow == 0){ //manual settings must set them all
uint8_t ans = fskClocks(&fcHigh, &fcLow, &clk, &firstClockEdge);
if (ans==0){
if (!fcHigh) fcHigh = 10;
if (!fcLow) fcLow = 8;
if (!clk) clk = 50;
}
}
} else {
setDemodBuf(data, dataLen, 0);
}
//default if not found
if (clk == 0) clk = 50;
if (fcHigh == 0) fcHigh = 10;
if (fcLow == 0) fcLow = 8;
uint16_t arg1, arg2;
arg1 = fcHigh << 8 | fcLow;
arg2 = separator << 8 | clk;
size_t size = DemodBufferLen;
if (size > USB_CMD_DATA_SIZE) {
PrintAndLogEx(NORMAL, "DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
size = USB_CMD_DATA_SIZE;
}
UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, size}};
memcpy(c.d.asBytes, DemodBuffer, size);
clearCommandBuffer();
SendCommand(&c);
setClockGrid(clk, 0);
return 0;
}
// by marshmellow - sim ask data given clock, invert, manchester or raw, separator
// - allow pull data from DemodBuffer
int CmdLFaskSim(const char *Cmd) {
// autodetect clock from Graphbuffer if using demod buffer
// needs clock, invert, manchester/raw as m or r, separator as s, and bitstream
uint8_t encoding = 1, separator = 0, clk = 0, invert = 0;
bool errors = false;
char hexData[64] = {0x00};
uint8_t data[255] = {0x00}; // store entered hex data
int dataLen = 0;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h': return usage_lf_simask();
case 'i':
invert = 1;
cmdp++;
break;
case 'c':
errors |= param_getdec(Cmd, cmdp+1, &clk);
cmdp += 2;
break;
case 'b':
encoding = 2; //biphase
cmdp++;
break;
case 'm':
encoding = 1; //manchester
cmdp++;
break;
case 'r':
encoding = 0; //raw
cmdp++;
break;
case 's':
separator = 1;
cmdp++;
break;
case 'd':
dataLen = param_getstr(Cmd, cmdp+1, hexData, sizeof(hexData));
if (dataLen == 0)
errors = true;
else
dataLen = hextobinarray((char *)data, hexData);
if (dataLen == 0) errors = true;
if (errors) PrintAndLogEx(WARNING, "Error getting hex data, datalen: %d", dataLen);
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
// No args
if (cmdp == 0 && DemodBufferLen == 0) return usage_lf_simask();
//Validations
if (errors) return usage_lf_simask();
if (dataLen == 0){ //using DemodBuffer
if (clk == 0)
clk = GetAskClock("0", false);
} else {
setDemodBuf(data, dataLen, 0);
}
if (clk == 0) clk = 64;
if (encoding == 0) clk /= 2; //askraw needs to double the clock speed
size_t size = DemodBufferLen;
if (size > USB_CMD_DATA_SIZE) {
PrintAndLogEx(NORMAL, "DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
size = USB_CMD_DATA_SIZE;
}
PrintAndLogEx(NORMAL, "preparing to sim ask data: %d bits", size);
uint16_t arg1, arg2;
arg1 = clk << 8 | encoding;
arg2 = invert << 8 | separator;
UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}};
memcpy(c.d.asBytes, DemodBuffer, size);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
// by marshmellow - sim psk data given carrier, clock, invert
// - allow pull data from DemodBuffer or parameters
int CmdLFpskSim(const char *Cmd) {
//might be able to autodetect FC and clock from Graphbuffer if using demod buffer
//will need carrier, Clock, and bitstream
uint8_t carrier=0, clk=0;
uint8_t invert=0;
bool errors = false;
char hexData[64] = {0x00}; // store entered hex data
uint8_t data[255] = {0x00};
int dataLen = 0;
uint8_t cmdp = 0;
uint8_t pskType = 1;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_lf_simpsk();
case 'i':
invert = 1;
cmdp++;
break;
case 'c':
errors |= param_getdec(Cmd,cmdp+1,&clk);
cmdp +=2;
break;
case 'r':
errors |= param_getdec(Cmd,cmdp+1,&carrier);
cmdp += 2;
break;
case '1':
pskType = 1;
cmdp++;
break;
case '2':
pskType = 2;
cmdp++;
break;
case '3':
pskType = 3;
cmdp++;
break;
case 'd':
dataLen = param_getstr(Cmd, cmdp+1, hexData, sizeof(hexData));
if (dataLen == 0)
errors = true;
else
dataLen = hextobinarray((char *)data, hexData);
if (dataLen == 0) errors = true;
if (errors) PrintAndLogEx(WARNING, "Error getting hex data");
cmdp+=2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
// No args
if (cmdp == 0 && DemodBufferLen == 0)
errors = true;
//Validations
if (errors) return usage_lf_simpsk();
if (dataLen == 0){ //using DemodBuffer
PrintAndLogEx(NORMAL, "Getting Clocks");
if (clk==0) clk = GetPskClock("", false);
PrintAndLogEx(NORMAL, "clk: %d",clk);
if (!carrier) carrier = GetPskCarrier("", false);
PrintAndLogEx(NORMAL, "carrier: %d", carrier);
} else {
setDemodBuf(data, dataLen, 0);
}
if (clk <= 0) clk = 32;
if (carrier != 2 && carrier != 4 && carrier != 8 )
carrier = 2;
if (pskType != 1){
if (pskType == 2){
//need to convert psk2 to psk1 data before sim
psk2TOpsk1(DemodBuffer, DemodBufferLen);
} else {
PrintAndLogEx(NORMAL, "Sorry, PSK3 not yet available");
}
}
uint16_t arg1, arg2;
arg1 = clk << 8 | carrier;
arg2 = invert;
size_t size = DemodBufferLen;
if (size > USB_CMD_DATA_SIZE) {
PrintAndLogEx(NORMAL, "DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
size = USB_CMD_DATA_SIZE;
}
UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}};
PrintAndLogEx(DEBUG, "DEBUG: Sending DemodBuffer Length: %d", size);
memcpy(c.d.asBytes, DemodBuffer, size);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdLFSimBidir(const char *Cmd) {
// Set ADC to twice the carrier for a slight supersampling
// HACK: not implemented in ARMSRC.
PrintAndLogEx(INFO, "Not implemented yet.");
UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}};
SendCommand(&c);
return 0;
}
// ICEMAN, todo, swap from Graphbuffer.
int CmdVchDemod(const char *Cmd) {
// Is this the entire sync pattern, or does this also include some
// data bits that happen to be the same everywhere? That would be
// lovely to know.
static const int SyncPattern[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
// So first, we correlate for the sync pattern, and mark that.
int bestCorrel = 0, bestPos = 0;
int i, j, sum = 0;
// It does us no good to find the sync pattern, with fewer than 2048 samples after it.
for (i = 0; i < (GraphTraceLen - 2048); i++) {
for (j = 0; j < ARRAYLEN(SyncPattern); j++) {
sum += GraphBuffer[i+j] * SyncPattern[j];
}
if (sum > bestCorrel) {
bestCorrel = sum;
bestPos = i;
}
}
PrintAndLogEx(NORMAL, "best sync at %d [metric %d]", bestPos, bestCorrel);
char bits[257];
bits[256] = '\0';
int worst = INT_MAX, worstPos = 0;
for (i = 0; i < 2048; i += 8) {
sum = 0;
for (j = 0; j < 8; j++)
sum += GraphBuffer[bestPos+i+j];
if (sum < 0)
bits[i/8] = '.';
else
bits[i/8] = '1';
if(abs(sum) < worst) {
worst = abs(sum);
worstPos = i;
}
}
PrintAndLogEx(NORMAL, "bits:");
PrintAndLogEx(NORMAL, "%s", bits);
PrintAndLogEx(NORMAL, "worst metric: %d at pos %d", worst, worstPos);
// clone
if (strcmp(Cmd, "clone")==0) {
GraphTraceLen = 0;
char *s;
for(s = bits; *s; s++) {
for(j = 0; j < 16; j++) {
GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0;
}
}
RepaintGraphWindow();
}
return 0;
}
//by marshmellow
int CheckChipType(bool getDeviceData) {
if (!getDeviceData) return 0;
save_restoreDB(GRAPH_SAVE);
//check for em4x05/em4x69 chips first
uint32_t word = 0;
if (EM4x05IsBlock0(&word)) {
PrintAndLogEx(SUCCESS, "\nValid EM4x05/EM4x69 Chip Found");
PrintAndLogEx(SUCCESS, "Try " _YELLOW_(`lf em 4x05`) " commands");
save_restoreGB(GRAPH_RESTORE);
return 1;
}
//check for t55xx chip...
if (tryDetectP1(true)) {
PrintAndLogEx(SUCCESS, "\nValid T55xx Chip Found");
PrintAndLogEx(SUCCESS, "Try " _YELLOW_(`lf t55xx`)" commands");
save_restoreGB(GRAPH_RESTORE);
return 1;
}
save_restoreDB(GRAPH_RESTORE);
return 0;
}
//by marshmellow
int CmdLFfind(const char *Cmd) {
int ans = 0;
size_t minLength = 2000;
char cmdp = tolower(param_getchar(Cmd, 0));
char testRaw = param_getchar(Cmd, 1);
if (strlen(Cmd) > 3 || cmdp == 'h') return usage_lf_find();
if (cmdp == 'u') testRaw = 'u';
bool isOnline = (!IsOffline() && (cmdp != '1') );
if (isOnline)
lf_read(true, 30000);
if (GraphTraceLen < minLength) {
PrintAndLogEx(FAILED, "Data in Graphbuffer was too small.");
return 0;
}
PrintAndLogEx(INFO, "NOTE: some demods output possible binary");
PrintAndLogEx(INFO, "if it finds something that looks like a tag");
PrintAndLogEx(INFO, "False Positives " _YELLOW_(ARE) "possible\n");
PrintAndLogEx(INFO, "\nChecking for known tags:\n");
// only run these tests if device is online
if (isOnline) {
// only run if graphbuffer is just noise as it should be for hitag
// The improved noise detection will find Cotag.
signal_t *sp = getSignalProperties();
if (sp->isnoise) {
PrintAndLogEx(INFO, "Signal looks just like noise. Looking for Hitag signal now.");
// 26 === RHT2F_UID_ONLY
if (CmdLFHitagReader("26") == 0) { PrintAndLogEx(SUCCESS, "\nValid Hitag Found!"); return 1;}
if (CmdCOTAGRead("") > 0) { PrintAndLogEx(SUCCESS, "\nValid COTAG ID Found!"); return 1;}
PrintAndLogEx(FAILED, "\nNo Data Found! - maybe not an LF tag?");
return 0;
}
}
if (EM4x50Read("", false)) { PrintAndLogEx(SUCCESS, "\nValid EM4x50 ID Found!"); return 1;}
if (CmdAWIDDemod("")) { PrintAndLogEx(SUCCESS, "\nValid AWID ID Found!"); goto out;}
if (CmdEM410xDemod("")) { PrintAndLogEx(SUCCESS, "\nValid EM410x ID Found!"); goto out;}
if (CmdFdxDemod("")) { PrintAndLogEx(SUCCESS, "\nValid FDX-B ID Found!"); goto out;}
if (CmdGuardDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Guardall G-Prox II ID Found!"); goto out; }
if (CmdHIDDemod("")) { PrintAndLogEx(SUCCESS, "\nValid HID Prox ID Found!"); goto out;}
if (CmdPSKIdteck("")) { PrintAndLogEx(SUCCESS, "\nValid Idteck ID Found!"); goto out;}
if (CmdIndalaDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Indala ID Found!"); goto out;}
if (CmdIOProxDemod("")) { PrintAndLogEx(SUCCESS, "\nValid IO Prox ID Found!"); goto out;}
if (CmdJablotronDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Jablotron ID Found!"); goto out;}
if (CmdLFNedapDemod("")) { PrintAndLogEx(SUCCESS, "\nValid NEDAP ID Found!"); goto out;}
if (CmdNexWatchDemod("")) { PrintAndLogEx(SUCCESS, "\nValid NexWatch ID Found!"); goto out;}
if (CmdNoralsyDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Noralsy ID Found!"); goto out;}
if (CmdKeriDemod("")) { PrintAndLogEx(SUCCESS, "\nValid KERI ID Found!"); goto out;}
if (CmdPacDemod("")) { PrintAndLogEx(SUCCESS, "\nValid PAC/Stanley ID Found!"); goto out;}
if (CmdParadoxDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Paradox ID Found!"); goto out;}
if (CmdPrescoDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Presco ID Found!"); goto out;}
if (CmdPyramidDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Pyramid ID Found!"); goto out;}
if (CmdSecurakeyDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Securakey ID Found!"); goto out;}
if (CmdVikingDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Viking ID Found!"); goto out;}
if (CmdVisa2kDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Visa2000 ID Found!"); goto out;}
//if (CmdFermaxDemod("")) { PrintAndLogEx(SUCCESS, "\nValid Fermax ID Found!"); goto out;}
// TIdemod? flexdemod?
PrintAndLogEx(FAILED, "\nNo known 125/134 KHz tags Found!\n");
if (testRaw == 'u'){
//test unknown tag formats (raw mode)
PrintAndLogEx(INFO, "\nChecking for Unknown tags:\n");
ans = AutoCorrelate(GraphBuffer, GraphBuffer, GraphTraceLen, 4000, false, false);
if (ans > 0) {
PrintAndLogEx(INFO, "Possible Auto Correlation of %d repeating samples",ans);
if ( ans % 8 == 0)
PrintAndLogEx(INFO, "Possible %d bytes", (ans / 8));
}
//fsk
if ( GetFskClock("", false) ) {
if ( FSKrawDemod("", true) ) {
PrintAndLogEx(NORMAL, "\nUnknown FSK Modulated Tag Found!"); goto out;
}
}
bool st = true;
if ( ASKDemod_ext("0 0 0", true, false, 1, &st) ) {
PrintAndLogEx(NORMAL, "\nUnknown ASK Modulated and Manchester encoded Tag Found!");
PrintAndLogEx(NORMAL, "\nif it does not look right it could instead be ASK/Biphase - try 'data rawdemod ab'");
goto out;
}
if ( CmdPSK1rawDemod("") ) {
PrintAndLogEx(NORMAL, "Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data rawdemod p2'");
PrintAndLogEx(NORMAL, "\nCould also be PSK3 - [currently not supported]");
PrintAndLogEx(NORMAL, "\nCould also be NRZ - try 'data nrzrawdemod");
goto out;
}
PrintAndLogEx(FAILED, "\nNo Data Found!\n");
}
out:
// identify chipset
CheckChipType(isOnline);
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"awid", CmdLFAWID, 1, "{ AWID RFIDs... }"},
{"cotag", CmdLFCOTAG, 1, "{ COTAG CHIPs... }"},
{"em", CmdLFEM4X, 1, "{ EM4X CHIPs & RFIDs... }"},
{"fdx", CmdLFFdx, 1, "{ FDX-B RFIDs... }"},
{"gproxii", CmdLFGuard, 1, "{ Guardall Prox II RFIDs... }"},
{"hid", CmdLFHID, 1, "{ HID RFIDs... }"},
{"hitag", CmdLFHitag, 1, "{ Hitag CHIPs... }"},
{"indala", CmdLFINDALA, 1, "{ Indala RFIDs... }"},
{"io", CmdLFIO, 1, "{ ioProx RFIDs... }"},
{"jablotron", CmdLFJablotron, 1, "{ Jablotron RFIDs... }"},
{"keri", CmdLFKeri, 1, "{ KERI RFIDs... }"},
{"nedap", CmdLFNedap, 1, "{ Nedap RFIDs... }"},
{"nexwatch", CmdLFNEXWATCH, 1, "{ NexWatch RFIDs... }"},
{"noralsy", CmdLFNoralsy, 1, "{ Noralsy RFIDs... }"},
{"pac", CmdLFPac, 1, "{ PAC/Stanley RFIDs... }"},
{"paradox", CmdLFParadox, 1, "{ Paradox RFIDs... }"},
{"pcf7931", CmdLFPCF7931, 1, "{ PCF7931 CHIPs... }"},
{"presco", CmdLFPresco, 1, "{ Presco RFIDs... }"},
{"pyramid", CmdLFPyramid, 1, "{ Farpointe/Pyramid RFIDs... }"},
{"securakey", CmdLFSecurakey, 1, "{ Securakey RFIDs... }"},
{"ti", CmdLFTI, 1, "{ TI CHIPs... }"},
{"t55xx", CmdLFT55XX, 1, "{ T55xx CHIPs... }"},
{"viking", CmdLFViking, 1, "{ Viking RFIDs... }"},
{"visa2000", CmdLFVisa2k, 1, "{ Visa2000 RFIDs... }"},
{"config", CmdLFSetConfig, 0, "Set config for LF sampling, bit/sample, decimation, frequency"},
{"cmdread", CmdLFCommandRead, 0, "<off period> <'0' period> <'1' period> <command> ['h' 134] \n\t\t-- Modulate LF reader field to send command before read (all periods in microseconds)"},
{"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"},
{"read", CmdLFRead, 0, "['s' silent] Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"},
{"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) \n\t\t-- 'u' to search for unknown tags"},
{"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
{"simask", CmdLFaskSim, 0, "[clock] [invert <1|0>] [biphase/manchester/raw <'b'|'m'|'r'>] [msg separator 's'] [d <hexdata>] \n\t\t-- Simulate LF ASK tag from demodbuffer or input"},
{"simfsk", CmdLFfskSim, 0, "[c <clock>] [i] [H <fcHigh>] [L <fcLow>] [d <hexdata>] \n\t\t-- Simulate LF FSK tag from demodbuffer or input"},
{"simpsk", CmdLFpskSim, 0, "[1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>] \n\t\t-- Simulate LF PSK tag from demodbuffer or input"},
{"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
{"snoop", CmdLFSnoop, 0, "Snoop LF"},
{"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"},
{NULL, NULL, 0, NULL}
};
int CmdLF(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}