proxmark3/armsrc/iclass.c
iceman1001 4de7b7d6b9 style
2024-07-21 16:19:21 +02:00

2352 lines
82 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Gerhard de Koning Gans - May 2008
// Contribution made during a security research at Radboud University Nijmegen
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Routines to support iClass.
//-----------------------------------------------------------------------------
#include "iclass.h"
#include "proxmark3_arm.h"
#include "cmd.h"
// Needed for CRC in emulation mode;
// same construction as in ISO 14443;
// different initial value (CRC_ICLASS)
#include "crc16.h"
#include "optimized_cipher.h"
#include "appmain.h"
#include "BigBuf.h"
#include "fpgaloader.h"
#include "string.h"
#include "util.h"
#include "dbprint.h"
#include "protocols.h"
#include "ticks.h"
#include "iso15693.h"
#include "iclass_cmd.h" // iclass_card_select_t struct
#include "i2c.h" // i2c defines (SIM module access)
uint8_t get_pagemap(const picopass_hdr_t *hdr) {
return (hdr->conf.fuses & (FUSE_CRYPT0 | FUSE_CRYPT1)) >> 3;
}
#ifndef ICLASS_16KS_SIZE
#define ICLASS_16KS_SIZE 0x100 * 8
#endif
/*
* CARD TO READER
* in ISO15693-2 mode - Manchester
* in ISO 14443b - BPSK coding
*
* Timings:
* ISO 15693-2
* Tout = 330 µs, Tprog 1 = 4 to 15 ms, Tslot = 330 µs + (number of slots x 160 µs)
* ISO 14443a
* Tout = 100 µs, Tprog = 4 to 15 ms, Tslot = 100 µs+ (number of slots x 80 µs)
* ISO 14443b
Tout = 76 µs, Tprog = 4 to 15 ms, Tslot = 119 µs+ (number of slots x 150 µs)
*
*
* So for current implementation in ISO15693, its 330 µs from end of reader, to start of card.
*/
//=============================================================================
// a `sniffer' for iClass communication
// Both sides of communication!
//=============================================================================
void SniffIClass(uint8_t jam_search_len, uint8_t *jam_search_string) {
SniffIso15693(jam_search_len, jam_search_string, true);
}
static void rotateCSN(const uint8_t *original_csn, uint8_t *rotated_csn) {
for (uint8_t i = 0; i < 8; i++) {
rotated_csn[i] = (original_csn[i] >> 3) | (original_csn[(i + 1) % 8] << 5);
}
}
// Encode SOF only
static void CodeIClassTagSOF(void) {
tosend_reset();
tosend_t *ts = get_tosend();
ts->buf[++ts->max] = 0x1D;
ts->max++;
}
/*
* SOF comprises 3 parts;
* * An unmodulated time of 56.64 us
* * 24 pulses of 423.75 kHz (fc/32)
* * A logic 1, which starts with an unmodulated time of 18.88us
* followed by 8 pulses of 423.75kHz (fc/32)
*
*
* EOF comprises 3 parts:
* - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
* time of 18.88us.
* - 24 pulses of fc/32
* - An unmodulated time of 56.64 us
*
*
* A logic 0 starts with 8 pulses of fc/32
* followed by an unmodulated time of 256/fc (~18,88us).
*
* A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
* 8 pulses of fc/32 (also 18.88us)
*
* The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
* works like this.
* - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
* - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
*
* In this mode
* SOF can be written as 00011101 = 0x1D
* EOF can be written as 10111000 = 0xb8
* logic 1 be written as 01 = 0x1
* logic 0 be written as 10 = 0x2
*
*
*/
/**
* @brief SimulateIClass simulates an iClass card.
* @param arg0 type of simulation
* - 0 uses the first 8 bytes in usb data as CSN
* - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
* in the usb data. This mode collects MAC from the reader, in order to do an offline
* attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
* - Other : Uses the default CSN (031fec8af7ff12e0)
* @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
* @param arg2
* @param datain
*/
// turn off afterwards
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
iclass_simulate(arg0, arg1, arg2, datain, NULL, NULL);
}
void iclass_simulate(uint8_t sim_type, uint8_t num_csns, bool send_reply, uint8_t *datain, uint8_t *dataout, uint16_t *dataoutlen) {
LEDsoff();
Iso15693InitTag();
clear_trace();
// only logg if we are called from the client.
set_tracing(send_reply);
//Use the emulator memory for SIM
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t mac_responses[PM3_CMD_DATA_SIZE] = { 0 };
if (sim_type == ICLASS_SIM_MODE_CSN) {
// Use the CSN from commandline
memcpy(emulator, datain, 8);
do_iclass_simulation(ICLASS_SIM_MODE_CSN, NULL);
} else if (sim_type == ICLASS_SIM_MODE_CSN_DEFAULT) {
//Default CSN
uint8_t csn[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0 };
// Use the CSN from commandline
memcpy(emulator, csn, 8);
do_iclass_simulation(ICLASS_SIM_MODE_CSN, NULL);
} else if (sim_type == ICLASS_SIM_MODE_READER_ATTACK) {
Dbprintf("going into attack mode, %d CSNS sent", num_csns);
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
// in order to collect MAC's from the reader. This can later be used in an offlne-attack
// in order to obtain the keys, as in the "dismantling iclass"-paper.
#define EPURSE_MAC_SIZE 16
int i = 0;
for (; i < num_csns && i * EPURSE_MAC_SIZE + 8 < PM3_CMD_DATA_SIZE; i++) {
memcpy(emulator, datain + (i * 8), 8);
if (do_iclass_simulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) {
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE;
// Button pressed
if (send_reply)
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i, 0, mac_responses, i * EPURSE_MAC_SIZE);
goto out;
}
}
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE;
if (send_reply)
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i, 0, mac_responses, i * EPURSE_MAC_SIZE);
} else if (sim_type == ICLASS_SIM_MODE_FULL) {
//This is 'full sim' mode, where we use the emulator storage for data.
//ie: BigBuf_get_EM_addr should be previously filled with data from the "eload" command
picopass_hdr_t *hdr = (picopass_hdr_t *)BigBuf_get_EM_addr();
uint8_t pagemap = get_pagemap(hdr);
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
do_iclass_simulation_nonsec();
} else {
do_iclass_simulation(ICLASS_SIM_MODE_FULL, NULL);
}
} else if (sim_type == ICLASS_SIM_MODE_CONFIG_CARD) {
// config card
do_iclass_simulation(ICLASS_SIM_MODE_FULL, NULL);
// swap bin
} else if (sim_type == ICLASS_SIM_MODE_READER_ATTACK_KEYROLL) {
// This is the KEYROLL version of sim 2.
// the collected data (mac_response) is doubled out since we are trying to collect both keys in the keyroll process.
// Keyroll iceman 9 csns * 8 * 2 = 144
// keyroll CARL55 15csns * 8 * 2 = 15 * 8 * 2 = 240
Dbprintf("going into attack keyroll mode, %d CSNS sent", num_csns);
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
// in order to collect MAC's from the reader. This can later be used in an offlne-attack
// in order to obtain the keys, as in the "dismantling iclass"-paper.
// keyroll mode, reader swaps between old key and new key alternatively when fail a authentication.
// attack below is same as SIM 2, but we run the CSN twice to collected the mac for both keys.
int i = 0;
// The usb data is 512 bytes, fitting 65 8-byte CSNs in there. iceman fork uses 9 CSNS
for (; i < num_csns && i * EPURSE_MAC_SIZE + 8 < PM3_CMD_DATA_SIZE; i++) {
memcpy(emulator, datain + (i * 8), 8);
// keyroll 1
if (do_iclass_simulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) {
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE * 2;
if (send_reply)
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2);
// Button pressed
goto out;
}
// keyroll 2
if (do_iclass_simulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses + (i + num_csns) * EPURSE_MAC_SIZE)) {
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE * 2;
if (send_reply)
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2);
// Button pressed
goto out;
}
}
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE * 2;
// double the amount of collected data.
if (send_reply)
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2);
} else {
// We may want a mode here where we hardcode the csns to use (from proxclone).
// That will speed things up a little, but not required just yet.
DbpString("the mode is not implemented, reserved for future use");
}
out:
if (dataout && dataoutlen)
memcpy(dataout, mac_responses, *dataoutlen);
switch_off();
BigBuf_free_keep_EM();
}
/**
* Simulation assumes a SECURE PAGE simulation with authentication and application areas.
*
*
* @brief Does the actual simulation
* @param csn - csn to use
* @param breakAfterMacReceived if true, returns after reader MAC has been received.
*/
int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
uint16_t page_size = 32 * 8;
uint8_t current_page = 0;
// maintain cipher states for both credit and debit key for each page
State_t cipher_state_KD[8];
State_t cipher_state_KC[8];
State_t *cipher_state = &cipher_state_KD[0];
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t *csn = emulator;
// CSN followed by two CRC bytes
uint8_t anticoll_data[10] = { 0 };
uint8_t csn_data[10] = { 0 };
memcpy(csn_data, csn, sizeof(csn_data));
// Construct anticollision-CSN
rotateCSN(csn_data, anticoll_data);
// Compute CRC on both CSNs
AddCrc(anticoll_data, 8);
AddCrc(csn_data, 8);
uint8_t diversified_kd[8] = { 0 };
uint8_t diversified_kc[8] = { 0 };
uint8_t *diversified_key = diversified_kd;
// configuration block
uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
// e-Purse
uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
// AIA
uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(conf_block, emulator + (8 * 1), 8); // blk 1
memcpy(card_challenge_data, emulator + (8 * 2), 8); // e-purse, blk 2
memcpy(diversified_kd, emulator + (8 * 3), 8); // Kd, blk 3
memcpy(diversified_kc, emulator + (8 * 4), 8); // Kc, blk 4
// (iceman) this only works for 2KS / 16KS tags.
// Use application data from block 5
memcpy(aia_data, emulator + (8 * 5), 8);
}
AddCrc(conf_block, 8);
AddCrc(aia_data, 8);
// set epurse of sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
}
if ((conf_block[5] & 0x80) == 0x80) {
page_size = 256 * 8;
}
// From PicoPass DS:
// When the page is in personalization mode this bit is equal to 1.
// Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0:
// the page is then "in application mode".
bool personalization_mode = conf_block[7] & 0x80;
uint8_t block_wr_lock = conf_block[3];
// chip memory may be divided in 8 pages
uint8_t max_page = ((conf_block[4] & 0x10) == 0x10) ? 0 : 7;
// pre-calculate the cipher states, feeding it the CC
cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_kd);
cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_kc);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
for (int i = 1; i < max_page; i++) {
uint8_t *epurse = emulator + (i * page_size) + (8 * 2);
uint8_t *kd = emulator + (i * page_size) + (8 * 3);
uint8_t *kc = emulator + (i * page_size) + (8 * 4);
cipher_state_KD[i] = opt_doTagMAC_1(epurse, kd);
cipher_state_KC[i] = opt_doTagMAC_1(epurse, kc);
}
}
// Anti-collision process:
// Reader 0a
// Tag 0f
// Reader 0c
// Tag anticoll. CSN
// Reader 81 anticoll. CSN
// Tag CSN
uint8_t *modulated_response = NULL;
int modulated_response_size;
uint8_t *trace_data = NULL;
int trace_data_size;
// Respond SOF -- takes 1 bytes
uint8_t *resp_sof = BigBuf_malloc(1);
int resp_sof_len;
// Anticollision CSN (rotated CSN)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_anticoll = BigBuf_malloc(22);
int resp_anticoll_len;
// CSN (block 0)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_csn = BigBuf_malloc(22);
int resp_csn_len;
// configuration (blk 1) PICOPASS 2ks
uint8_t *resp_conf = BigBuf_malloc(22);
int resp_conf_len;
// e-Purse (blk 2)
// 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
uint8_t *resp_cc = BigBuf_malloc(18);
int resp_cc_len;
// Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only
uint8_t *resp_ff = BigBuf_malloc(22);
int resp_ff_len;
uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
AddCrc(ff_data, 8);
// Application Issuer Area (blk 5)
uint8_t *resp_aia = BigBuf_malloc(22);
int resp_aia_len;
// receive command
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
// Prepare card messages
tosend_t *ts = get_tosend();
// First card answer: SOF
CodeIClassTagSOF();
memcpy(resp_sof, ts->buf, ts->max);
resp_sof_len = ts->max;
// Anticollision CSN
CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data));
memcpy(resp_anticoll, ts->buf, ts->max);
resp_anticoll_len = ts->max;
// CSN (block 0)
CodeIso15693AsTag(csn_data, sizeof(csn_data));
memcpy(resp_csn, ts->buf, ts->max);
resp_csn_len = ts->max;
// Configuration (block 1)
CodeIso15693AsTag(conf_block, sizeof(conf_block));
memcpy(resp_conf, ts->buf, ts->max);
resp_conf_len = ts->max;
// e-Purse (block 2)
CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ts->buf, ts->max);
resp_cc_len = ts->max;
// Kd, Kc (blocks 3 and 4)
CodeIso15693AsTag(ff_data, sizeof(ff_data));
memcpy(resp_ff, ts->buf, ts->max);
resp_ff_len = ts->max;
// Application Issuer Area (block 5)
CodeIso15693AsTag(aia_data, sizeof(aia_data));
memcpy(resp_aia, ts->buf, ts->max);
resp_aia_len = ts->max;
//This is used for responding to READ-block commands or other data which is dynamically generated
//First the 'trace'-data, not encoded for FPGA
uint8_t *data_generic_trace = BigBuf_malloc(34); // 32 bytes data + 2byte CRC is max tag answer
//Then storage for the modulated data
//Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
uint8_t *data_response = BigBuf_malloc((34 * 2) + 3);
enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE;
bool button_pressed = false;
uint8_t cmd, options, block;
int len, kc_attempt = 0;
bool exit_loop = false;
bool using_kc = false;
while (exit_loop == false) {
WDT_HIT();
// Now look at the reader command and provide appropriate responses
// default is no response:
modulated_response = NULL;
modulated_response_size = 0;
trace_data = NULL;
trace_data_size = 0;
uint32_t reader_eof_time = 0;
len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time);
if (len < 0) {
button_pressed = true;
exit_loop = true;
continue;
}
// extra response data
cmd = receivedCmd[0] & 0xF;
options = (receivedCmd[0] >> 4) & 0xFF;
block = receivedCmd[1];
if (cmd == ICLASS_CMD_ACTALL && len == 1) { // 0x0A
// Reader in anti collision phase
modulated_response = resp_sof;
modulated_response_size = resp_sof_len;
chip_state = ACTIVATED;
goto send;
} else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // 0x0C
// Reader asks for anti collision CSN
if (chip_state == SELECTED || chip_state == ACTIVATED) {
modulated_response = resp_anticoll;
modulated_response_size = resp_anticoll_len;
trace_data = anticoll_data;
trace_data_size = sizeof(anticoll_data);
}
goto send;
} else if (cmd == ICLASS_CMD_SELECT && len == 9) {
// Reader selects anticollision CSN.
// Tag sends the corresponding real CSN
if (chip_state == ACTIVATED || chip_state == SELECTED) {
if (!memcmp(receivedCmd + 1, anticoll_data, 8)) {
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
chip_state = SELECTED;
} else {
chip_state = IDLE;
}
} else if (chip_state == HALTED || chip_state == IDLE) {
// RESELECT with CSN
if (!memcmp(receivedCmd + 1, csn_data, 8)) {
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
chip_state = SELECTED;
}
}
goto send;
} else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // 0x0C
if (chip_state != SELECTED) {
goto send;
}
if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
// provide defaults for blocks 0 ... 5
// block0,1,2,5 is always readable.
switch (block) {
case 0: { // csn (0c 00)
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
goto send;
}
case 1: { // configuration (0c 01)
modulated_response = resp_conf;
modulated_response_size = resp_conf_len;
trace_data = conf_block;
trace_data_size = sizeof(conf_block);
goto send;
}
case 2: {// e-purse (0c 02)
modulated_response = resp_cc;
modulated_response_size = resp_cc_len;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
// set epurse of sim2,4 attack
if (reader_mac_buf != NULL) {
memcpy(reader_mac_buf, card_challenge_data, 8);
}
goto send;
}
case 3:
case 4: { // Kd, Kc, always respond with 0xff bytes
modulated_response = resp_ff;
modulated_response_size = resp_ff_len;
trace_data = ff_data;
trace_data_size = sizeof(ff_data);
goto send;
}
case 5: { // Application Issuer Area (0c 05)
modulated_response = resp_aia;
modulated_response_size = resp_aia_len;
trace_data = aia_data;
trace_data_size = sizeof(aia_data);
goto send;
}
} // switch
} else if (simulationMode == ICLASS_SIM_MODE_FULL) {
if (block == 3 || block == 4) { // Kd, Kc, always respond with 0xff bytes
modulated_response = resp_ff;
modulated_response_size = resp_ff_len;
trace_data = ff_data;
trace_data_size = sizeof(ff_data);
} else { // use data from emulator memory
memcpy(data_generic_trace, emulator + (current_page * page_size) + (block * 8), 8);
AddCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ts->buf, ts->max);
modulated_response = data_response;
modulated_response_size = ts->max;
}
goto send;
}
} else if (cmd == ICLASS_CMD_READCHECK && block == 0x02 && len == 2) { // 0x88
// Read e-purse KD (88 02) KC (18 02)
if (chip_state != SELECTED) {
goto send;
}
// debit key
if (receivedCmd[0] == 0x88) {
cipher_state = &cipher_state_KD[current_page];
diversified_key = diversified_kd;
using_kc = false;
} else {
cipher_state = &cipher_state_KC[current_page];
diversified_key = diversified_kc;
using_kc = true;
}
modulated_response = resp_cc;
modulated_response_size = resp_cc_len;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
goto send;
} else if (cmd == ICLASS_CMD_CHECK && len == 9) { // 0x05
// Reader random and reader MAC!!!
if (chip_state != SELECTED) {
goto send;
}
if (simulationMode == ICLASS_SIM_MODE_FULL) {
// NR, from reader, is in receivedCmd +1
opt_doTagMAC_2(*cipher_state, receivedCmd + 1, data_generic_trace, diversified_key);
/*
uint8_t _mac[4] = {0};
opt_doReaderMAC_2(*cipher_state, receivedCmd + 1, _mac, diversified_key);
if (_mac[0] != receivedCmd[5] || _mac[1] != receivedCmd[6] || _mac[2] != receivedCmd[7] || _mac[3] != receivedCmd[8]) {
Dbprintf("reader auth " _RED_("failed"));
Dbprintf("hf iclass lookup --csn %02x%02x%02x%02x%02x%02x%02x%02x --epurse %02x%02x%02x%02x%02x%02x%02x%02x --macs %02x%02x%02x%02x%02x%02x%02x%02x f iclass_default_keys.dic",
csn_data[0], csn_data[1], csn_data[2], csn_data[3], csn_data[4], csn_data[5], csn_data[6], csn_data[7],
card_challenge_data[0], card_challenge_data[1], card_challenge_data[2], card_challenge_data[3],
card_challenge_data[4], card_challenge_data[5], card_challenge_data[6], card_challenge_data[7],
receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4],
receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]
);
goto send;
}
*/
trace_data = data_generic_trace;
trace_data_size = 4;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ts->buf, ts->max);
modulated_response = data_response;
modulated_response_size = ts->max;
if (using_kc)
kc_attempt++;
} else {
// Not fullsim, we don't respond
chip_state = HALTED;
if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
if (g_dbglevel == DBG_EXTENDED) {
Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]);
Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", len,
receivedCmd[0], receivedCmd[1], receivedCmd[2],
receivedCmd[3], receivedCmd[4], receivedCmd[5],
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
} else {
Dbprintf("CSN: %02x .... %02x OK", csn[0], csn[7]);
}
if (reader_mac_buf != NULL) {
// save NR and MAC for sim 2,4
memcpy(reader_mac_buf + 8, receivedCmd + 1, 8);
}
exit_loop = true;
}
}
goto send;
} else if (cmd == ICLASS_CMD_HALT && options == 0 && len == 1) {
if (chip_state != SELECTED) {
goto send;
}
// Reader ends the session
modulated_response = resp_sof;
modulated_response_size = resp_sof_len;
chip_state = HALTED;
goto send;
} else if (simulationMode == ICLASS_SIM_MODE_FULL && cmd == ICLASS_CMD_READ4 && len == 4) { // 0x06
if (chip_state != SELECTED) {
goto send;
}
//Read block
memcpy(data_generic_trace, emulator + (current_page * page_size) + (block * 8), 32);
AddCrc(data_generic_trace, 32);
trace_data = data_generic_trace;
trace_data_size = 34;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ts->buf, ts->max);
modulated_response = data_response;
modulated_response_size = ts->max;
goto send;
} else if (cmd == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) {
// We're expected to respond with the data+crc, exactly what's already in the receivedCmd
// receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
if (chip_state != SELECTED) {
goto send;
}
// is chip in ReadOnly (RO)
if ((block_wr_lock & 0x80) == 0) goto send;
if (block == 12 && (block_wr_lock & 0x40) == 0) goto send;
if (block == 11 && (block_wr_lock & 0x20) == 0) goto send;
if (block == 10 && (block_wr_lock & 0x10) == 0) goto send;
if (block == 9 && (block_wr_lock & 0x08) == 0) goto send;
if (block == 8 && (block_wr_lock & 0x04) == 0) goto send;
if (block == 7 && (block_wr_lock & 0x02) == 0) goto send;
if (block == 6 && (block_wr_lock & 0x01) == 0) goto send;
if (block == 2) { // update e-purse
memcpy(card_challenge_data, receivedCmd + 2, 8);
CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ts->buf, ts->max);
resp_cc_len = ts->max;
cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_kd);
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_kc);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + (current_page * page_size) + (8 * 2), card_challenge_data, 8);
}
} else if (block == 3) { // update Kd
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
diversified_kd[i] = receivedCmd[2 + i];
} else {
diversified_kd[i] ^= receivedCmd[2 + i];
}
}
cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_kd);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + (current_page * page_size) + (8 * 3), diversified_kd, 8);
}
} else if (block == 4) { // update Kc
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
diversified_kc[i] = receivedCmd[2 + i];
} else {
diversified_kc[i] ^= receivedCmd[2 + i];
}
}
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_kc);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + (current_page * page_size) + (8 * 4), diversified_kc, 8);
}
} else if (simulationMode == ICLASS_SIM_MODE_FULL) {
// update emulator memory
memcpy(emulator + (current_page * page_size) + (8 * block), receivedCmd + 2, 8);
}
memcpy(data_generic_trace, receivedCmd + 2, 8);
AddCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ts->buf, ts->max);
modulated_response = data_response;
modulated_response_size = ts->max;
goto send;
} else if (cmd == ICLASS_CMD_PAGESEL && len == 4) { // 0x84
// Pagesel,
// - enables to select a page in the selected chip memory and return its configuration block
// Chips with a single page will not answer to this command
// Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
if (chip_state != SELECTED) {
goto send;
}
if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) {
// if on 2k, always ignore 3msb, & 0x1F)
uint8_t page = receivedCmd[1] & 0x1F;
if (page > max_page) {
goto send;
}
current_page = page;
memcpy(data_generic_trace, emulator + (current_page * page_size) + (8 * 1), 8);
memcpy(diversified_kd, emulator + (current_page * page_size) + (8 * 3), 8);
memcpy(diversified_kc, emulator + (current_page * page_size) + (8 * 4), 8);
cipher_state = &cipher_state_KD[current_page];
personalization_mode = data_generic_trace[7] & 0x80;
block_wr_lock = data_generic_trace[3];
AddCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ts->buf, ts->max);
modulated_response = data_response;
modulated_response_size = ts->max;
}
goto send;
} else if (cmd == ICLASS_CMD_DETECT) { // 0x0F
// not supported yet, ignore
// } else if (cmd == 0x26 && len == 5) {
// standard ISO15693 INVENTORY command. Ignore.
} else {
// Never seen this command before
if (g_dbglevel >= DBG_EXTENDED)
print_result("Unhandled command received ", receivedCmd, len);
}
send:
/**
A legit tag has about 330us delay between reader EOT and tag SOF.
**/
if (modulated_response_size > 0) {
uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM;
TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
LogTrace_ISO15693(trace_data, trace_data_size, response_time * 32, (response_time * 32) + (modulated_response_size * 32 * 64), NULL, false);
}
if (chip_state == HALTED) {
uint32_t wait_time = GetCountSspClk() + ICLASS_READER_TIMEOUT_ACTALL;
while (GetCountSspClk() < wait_time) {};
}
// CC attack
// wait to trigger the reader bug, then wait 1000ms
if (kc_attempt > 3) {
uint32_t wait_time = GetCountSspClk() + (16000 * 100);
while (GetCountSspClk() < wait_time) {};
kc_attempt = 0;
exit_loop = true;
}
}
LEDsoff();
if (button_pressed)
DbpString("button pressed");
return button_pressed;
}
int do_iclass_simulation_nonsec(void) {
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
uint16_t page_size = 32 * 8;
uint8_t current_page = 0;
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t *csn = emulator;
// CSN followed by two CRC bytes
uint8_t anticoll_data[10] = { 0 };
uint8_t csn_data[10] = { 0 };
memcpy(csn_data, csn, sizeof(csn_data));
// Construct anticollision-CSN
rotateCSN(csn_data, anticoll_data);
// Compute CRC on both CSNs
AddCrc(anticoll_data, 8);
AddCrc(csn_data, 8);
// configuration block
uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
// AIA
uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
memcpy(conf_block, emulator + (8 * 1), 8);
memcpy(aia_data, emulator + (8 * 2), 8);
AddCrc(conf_block, 8);
AddCrc(aia_data, 8);
if ((conf_block[5] & 0x80) == 0x80) {
page_size = 256 * 8;
}
// chip memory may be divided in 8 pages
uint8_t max_page = ((conf_block[4] & 0x10) == 0x10) ? 0 : 7;
// Anti-collision process:
// Reader 0a
// Tag 0f
// Reader 0c
// Tag anticoll. CSN
// Reader 81 anticoll. CSN
// Tag CSN
uint8_t *modulated_response = NULL;
int modulated_response_size = 0;
uint8_t *trace_data = NULL;
int trace_data_size = 0;
// Respond SOF -- takes 1 bytes
uint8_t *resp_sof = BigBuf_malloc(2);
int resp_sof_len;
// Anticollision CSN (rotated CSN)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_anticoll = BigBuf_malloc(28);
int resp_anticoll_len;
// CSN
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_csn = BigBuf_malloc(28);
int resp_csn_len;
// configuration (blk 1) PICOPASS 2ks
uint8_t *resp_conf = BigBuf_malloc(28);
int resp_conf_len;
// Application Issuer Area (blk 5)
uint8_t *resp_aia = BigBuf_malloc(28);
int resp_aia_len;
// receive command
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
// Prepare card messages
tosend_t *ts = get_tosend();
ts->max = 0;
// First card answer: SOF
CodeIClassTagSOF();
memcpy(resp_sof, ts->buf, ts->max);
resp_sof_len = ts->max;
// Anticollision CSN
CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data));
memcpy(resp_anticoll, ts->buf, ts->max);
resp_anticoll_len = ts->max;
// CSN (block 0)
CodeIso15693AsTag(csn_data, sizeof(csn_data));
memcpy(resp_csn, ts->buf, ts->max);
resp_csn_len = ts->max;
// Configuration (block 1)
CodeIso15693AsTag(conf_block, sizeof(conf_block));
memcpy(resp_conf, ts->buf, ts->max);
resp_conf_len = ts->max;
// Application Issuer Area (block 2)
CodeIso15693AsTag(aia_data, sizeof(aia_data));
memcpy(resp_aia, ts->buf, ts->max);
resp_aia_len = ts->max;
//This is used for responding to READ-block commands or other data which is dynamically generated
//First the 'trace'-data, not encoded for FPGA
uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
//Then storage for the modulated data
//Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
uint8_t *data_response = BigBuf_malloc((32 + 2) * 2 + 2);
enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE;
bool button_pressed = false;
uint8_t cmd, options, block;
int len;
bool exit_loop = false;
while (exit_loop == false) {
WDT_HIT();
uint32_t reader_eof_time = 0;
len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time);
if (len < 0) {
button_pressed = true;
exit_loop = true;
continue;
}
// Now look at the reader command and provide appropriate responses
// default is no response:
modulated_response = NULL;
modulated_response_size = 0;
trace_data = NULL;
trace_data_size = 0;
// extra response data
cmd = receivedCmd[0] & 0xF;
options = (receivedCmd[0] >> 4) & 0xFF;
block = receivedCmd[1];
if (cmd == ICLASS_CMD_ACTALL && len == 1) { // 0x0A
// Reader in anti collision phase
if (chip_state != HALTED) {
modulated_response = resp_sof;
modulated_response_size = resp_sof_len;
chip_state = ACTIVATED;
}
goto send;
} else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // 0x0C
// Reader asks for anti collision CSN
if (chip_state == SELECTED || chip_state == ACTIVATED) {
modulated_response = resp_anticoll;
modulated_response_size = resp_anticoll_len;
trace_data = anticoll_data;
trace_data_size = sizeof(anticoll_data);
}
goto send;
} else if (cmd == ICLASS_CMD_SELECT && len == 9) {
// Reader selects anticollision CSN.
// Tag sends the corresponding real CSN
if (chip_state == ACTIVATED || chip_state == SELECTED) {
if (!memcmp(receivedCmd + 1, anticoll_data, 8)) {
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
chip_state = SELECTED;
} else {
chip_state = IDLE;
}
} else if (chip_state == HALTED) {
// RESELECT with CSN
if (!memcmp(receivedCmd + 1, csn_data, 8)) {
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
chip_state = SELECTED;
}
}
goto send;
} else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // 0x0C
if (chip_state != SELECTED) {
goto send;
}
switch (block) {
case 0: { // csn (0c 00)
modulated_response = resp_csn;
modulated_response_size = resp_csn_len;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
goto send;
}
case 1: { // configuration (0c 01)
modulated_response = resp_conf;
modulated_response_size = resp_conf_len;
trace_data = conf_block;
trace_data_size = sizeof(conf_block);
goto send;
}
case 2: { // Application Issuer Area (0c 02)
modulated_response = resp_aia;
modulated_response_size = resp_aia_len;
trace_data = aia_data;
trace_data_size = sizeof(aia_data);
goto send;
}
default : {
memcpy(data_generic_trace, emulator + (block << 3), 8);
AddCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ts->buf, ts->max);
modulated_response = data_response;
modulated_response_size = ts->max;
goto send;
}
} // swith
} else if (cmd == ICLASS_CMD_READCHECK) { // 0x88
goto send;
} else if (cmd == ICLASS_CMD_CHECK && len == 9) { // 0x05
goto send;
} else if (cmd == ICLASS_CMD_HALT && options == 0 && len == 1) {
if (chip_state != SELECTED) {
goto send;
}
// Reader ends the session
modulated_response = resp_sof;
modulated_response_size = resp_sof_len;
chip_state = HALTED;
goto send;
} else if (cmd == ICLASS_CMD_READ4 && len == 4) { // 0x06
if (chip_state != SELECTED) {
goto send;
}
//Read block
memcpy(data_generic_trace, emulator + (current_page * page_size) + (block * 8), 8 * 4);
AddCrc(data_generic_trace, 8 * 4);
trace_data = data_generic_trace;
trace_data_size = 34;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ts->buf, ts->max);
modulated_response = data_response;
modulated_response_size = ts->max;
goto send;
} else if (cmd == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) {
// We're expected to respond with the data+crc, exactly what's already in the receivedCmd
// receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
if (chip_state != SELECTED) {
goto send;
}
// update emulator memory
memcpy(emulator + (current_page * page_size) + (8 * block), receivedCmd + 2, 8);
memcpy(data_generic_trace, receivedCmd + 2, 8);
AddCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ts->buf, ts->max);
modulated_response = data_response;
modulated_response_size = ts->max;
goto send;
} else if (cmd == ICLASS_CMD_PAGESEL && len == 4) { // 0x84
// Pagesel,
// - enables to select a page in the selected chip memory and return its configuration block
// Chips with a single page will not answer to this command
// Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
if (chip_state != SELECTED) {
goto send;
}
if (max_page > 0) {
current_page = receivedCmd[1];
memcpy(data_generic_trace, emulator + (current_page * page_size) + (8 * 1), 8);
AddCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ts->buf, ts->max);
modulated_response = data_response;
modulated_response_size = ts->max;
}
goto send;
// } else if(cmd == ICLASS_CMD_DETECT) { // 0x0F
// } else if (cmd == 0x26 && len == 5) {
// standard ISO15693 INVENTORY command. Ignore.
} else {
// Never seen this command before
if (g_dbglevel >= DBG_EXTENDED)
print_result("Unhandled command received ", receivedCmd, len);
}
send:
/**
A legit tag has about 330us delay between reader EOT and tag SOF.
**/
if (modulated_response_size > 0) {
uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM;
TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
LogTrace_ISO15693(trace_data, trace_data_size, response_time * 32, (response_time * 32) + (modulated_response_size * 32 * 64), NULL, false);
}
}
LEDsoff();
if (button_pressed)
DbpString("button pressed");
return button_pressed;
}
// THE READER CODE
void iclass_send_as_reader(uint8_t *frame, int len, uint32_t *start_time, uint32_t *end_time, bool shallow_mod) {
CodeIso15693AsReader(frame, len);
tosend_t *ts = get_tosend();
TransmitTo15693Tag(ts->buf, ts->max, start_time, shallow_mod);
*end_time = *start_time + (32 * ((8 * ts->max) - 4)); // subtract the 4 padding bits after EOF
LogTrace_ISO15693(frame, len, (*start_time * 4), (*end_time * 4), NULL, true);
}
static bool iclass_send_cmd_with_retries(uint8_t *cmd, size_t cmdsize, uint8_t *resp, size_t max_resp_size,
uint8_t expected_size, uint8_t tries, uint32_t *start_time,
uint16_t timeout, uint32_t *eof_time, bool shallow_mod) {
uint16_t resp_len = 0;
while (tries-- > 0) {
iclass_send_as_reader(cmd, cmdsize, start_time, eof_time, shallow_mod);
if (resp == NULL) {
return true;
}
int res = GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time, false, true, &resp_len);
if (res == PM3_SUCCESS && expected_size == resp_len) {
return true;
}
// Timed out waiting for the tag to reply, but perhaps the tag did hear the command and is attempting to reply
// So wait long enough for the tag to encode it's reply plus required frame delays on each side before retrying
// And then double it, because in practice it seems to make it much more likely to succeed
// Response time calculation from expected_size lifted from GetIso15693AnswerFromTag
*start_time = *eof_time + ((DELAY_ICLASS_VICC_TO_VCD_READER + DELAY_ISO15693_VCD_TO_VICC_READER + (expected_size * 8 * 8 * 16)) * 2);
}
return false;
}
/**
* @brief Talks to an iclass tag, sends the commands to get CSN and CC.
* @param card_data where the CSN, CONFIG, CC are stored for return
* 8 bytes csn + 8 bytes config + 8 bytes CC
* @return false = fail
* true = Got all.
*/
static bool select_iclass_tag_ex(picopass_hdr_t *hdr, bool use_credit_key, uint32_t *eof_time, uint8_t *status, bool shallow_mod) {
static uint8_t act_all[] = { ICLASS_CMD_ACTALL };
static uint8_t identify[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x00, 0x73, 0x33 };
static uint8_t read_conf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22 };
uint8_t select[] = { 0x80 | ICLASS_CMD_SELECT, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t read_aia[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
uint8_t read_check_cc[] = { 0x80 | ICLASS_CMD_READCHECK, 0x02 };
uint8_t resp[ICLASS_BUFFER_SIZE] = {0};
// Bit 4: K.If this bit equals to one, the READCHECK will use the Credit Key (Kc); if equals to zero, Debit Key (Kd) will be used
// bit 7: parity.
if (use_credit_key)
read_check_cc[0] = 0x10 | ICLASS_CMD_READCHECK;
// wakeup
uint32_t start_time = GetCountSspClk();
iclass_send_as_reader(act_all, 1, &start_time, eof_time, shallow_mod);
int res;
uint16_t resp_len = 0;
res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time, false, true, &resp_len);
if (res != PM3_SUCCESS)
return false;
// send Identify
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(identify, 1, &start_time, eof_time, shallow_mod);
// expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len);
if (res != PM3_SUCCESS || resp_len != 10)
return false;
// copy the Anti-collision CSN to our select-packet
memcpy(&select[1], resp, 8);
// select the card
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(select, sizeof(select), &start_time, eof_time, shallow_mod);
// expect a 10-byte response here, 8 byte CSN and 2 byte CRC
res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len);
if (res != PM3_SUCCESS || resp_len != 10)
return false;
// save CSN
memcpy(hdr->csn, resp, sizeof(hdr->csn));
// card selected, now read config (block1) (only 8 bytes no CRC)
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(read_conf, sizeof(read_conf), &start_time, eof_time, shallow_mod);
// expect a 8-byte response here
res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len);
if (res != PM3_SUCCESS || resp_len != 10)
return false;
// save CONF
memcpy((uint8_t *)&hdr->conf, resp, sizeof(hdr->conf));
if (status)
*status |= (FLAG_ICLASS_CSN | FLAG_ICLASS_CONF);
uint8_t pagemap = get_pagemap(hdr);
if (pagemap != PICOPASS_NON_SECURE_PAGEMODE) {
// read App Issuer Area block 5
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time, shallow_mod);
// expect a 10-byte response here
res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len);
if (res != PM3_SUCCESS || resp_len != 10)
return false;
if (status) {
*status |= FLAG_ICLASS_AIA;
memcpy(hdr->app_issuer_area, resp, sizeof(hdr->app_issuer_area));
}
// card selected, now read e-purse (cc) (block2) (only 8 bytes no CRC)
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(read_check_cc, sizeof(read_check_cc), &start_time, eof_time, shallow_mod);
// expect a 8-byte response here
res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len);
if (res != PM3_SUCCESS || resp_len != 8)
return false;
memcpy(hdr->epurse, resp, sizeof(hdr->epurse));
if (status)
*status |= FLAG_ICLASS_CC;
} else {
// on NON_SECURE_PAGEMODE cards, AIA is on block2..
// read App Issuer Area block 2
read_aia[1] = 0x02;
read_aia[2] = 0x61;
read_aia[3] = 0x10;
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time, shallow_mod);
// expect a 10-byte response here
res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len);
if (res != PM3_SUCCESS || resp_len != 10)
return false;
if (status) {
*status |= FLAG_ICLASS_AIA;
memcpy(hdr->epurse, resp, sizeof(hdr->epurse));
}
}
return true;
}
bool select_iclass_tag(picopass_hdr_t *hdr, bool use_credit_key, uint32_t *eof_time, bool shallow_mod) {
uint8_t result = 0;
return select_iclass_tag_ex(hdr, use_credit_key, eof_time, &result, shallow_mod);
}
// Reader iClass Anticollission
// turn off afterwards
void ReaderIClass(uint8_t flags) {
// flag to use credit key
bool use_credit_key = ((flags & FLAG_ICLASS_READER_CREDITKEY) == FLAG_ICLASS_READER_CREDITKEY);
bool shallow_mod = (flags & FLAG_ICLASS_READER_SHALLOW_MOD);
if ((flags & FLAG_ICLASS_READER_INIT) == FLAG_ICLASS_READER_INIT) {
Iso15693InitReader();
}
if ((flags & FLAG_ICLASS_READER_CLEARTRACE) == FLAG_ICLASS_READER_CLEARTRACE) {
clear_trace();
}
uint8_t res = 0;
uint32_t eof_time = 0;
picopass_hdr_t hdr = {0};
if (select_iclass_tag_ex(&hdr, use_credit_key, &eof_time, &res, shallow_mod) == false) {
reply_ng(CMD_HF_ICLASS_READER, PM3_ERFTRANS, NULL, 0);
goto out;
}
// Page mapping for secure mode
// 0 : CSN
// 1 : Configuration
// 2 : e-purse
// 3 : kd / debit / aa2 (write-only)
// 4 : kc / credit / aa1 (write-only)
// 5 : AIA, Application issuer area
//
// Page mapping for non secure mode
// 0 : CSN
// 1 : Configuration
// 2 : AIA, Application issuer area
// Return to client, e 6 * 8 bytes of data.
// with 0xFF:s in block 3 and 4.
iclass_card_select_resp_t payload = {
.status = res
};
memcpy(&payload.header.hdr, &hdr, sizeof(picopass_hdr_t));
reply_ng(CMD_HF_ICLASS_READER, PM3_SUCCESS, (uint8_t *)&payload, sizeof(iclass_card_select_resp_t));
out:
switch_off();
}
bool authenticate_iclass_tag(iclass_auth_req_t *payload, picopass_hdr_t *hdr, uint32_t *start_time, uint32_t *eof_time, uint8_t *mac_out) {
uint8_t cmd_check[9] = { ICLASS_CMD_CHECK };
uint8_t mac[4] = {0};
uint8_t resp_auth[4] = {0};
uint8_t ccnr[12] = {0};
uint8_t *pmac = mac;
if (mac_out)
pmac = mac_out;
memcpy(ccnr, hdr->epurse, sizeof(hdr->epurse));
if (payload->use_replay) {
memcpy(pmac, payload->key + 4, 4);
memcpy(cmd_check + 1, payload->key, 8);
} else {
uint8_t div_key[8] = {0};
if (payload->use_raw)
memcpy(div_key, payload->key, 8);
else
iclass_calc_div_key(hdr->csn, payload->key, div_key, payload->use_elite);
if (payload->use_credit_key)
memcpy(hdr->key_c, div_key, sizeof(hdr->key_c));
else
memcpy(hdr->key_d, div_key, sizeof(hdr->key_d));
opt_doReaderMAC(ccnr, div_key, pmac);
// copy MAC to check command (readersignature)
cmd_check[5] = pmac[0];
cmd_check[6] = pmac[1];
cmd_check[7] = pmac[2];
cmd_check[8] = pmac[3];
}
return iclass_send_cmd_with_retries(cmd_check, sizeof(cmd_check), resp_auth, sizeof(resp_auth), 4, 2, start_time, ICLASS_READER_TIMEOUT_OTHERS, eof_time, payload->shallow_mod);
}
/* this function works on the following assumptions.
* - one select first, to get CSN / CC (e-purse)
* - calculate before diversified keys and precalc mac based on CSN/KEY.
* - data in contains of diversified keys, mac
* - key loop only test one type of authtication key. Ie two calls needed
* to cover debit and credit key. (AA1/AA2)
*/
void iClass_Authentication_fast(iclass_chk_t *p) {
// sanitation
if (p == NULL) {
reply_ng(CMD_HF_ICLASS_CHKKEYS, PM3_ESOFT, NULL, 0);
return;
}
bool shallow_mod = p->shallow_mod;
uint8_t check[9] = { ICLASS_CMD_CHECK };
uint8_t resp[ICLASS_BUFFER_SIZE] = {0};
uint8_t readcheck_cc[] = { 0x80 | ICLASS_CMD_READCHECK, 0x02 };
if (p->use_credit_key)
readcheck_cc[0] = 0x10 | ICLASS_CMD_READCHECK;
// select card / e-purse
picopass_hdr_t hdr = {0};
iclass_premac_t *keys = p->items;
LED_A_ON();
// fresh start
switch_off();
SpinDelay(20);
Iso15693InitReader();
bool isOK = false;
uint32_t start_time = 0, eof_time = 0;
if (select_iclass_tag(&hdr, p->use_credit_key, &eof_time, shallow_mod) == false)
goto out;
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// since select_iclass_tag call sends s readcheck, we start with sending first response.
uint16_t checked = 0;
// Keychunk loop
uint8_t i = 0;
for (i = 0; i < p->count; i++) {
// Allow button press / usb cmd to interrupt device
if (checked == 1000) {
if (BUTTON_PRESS() || data_available()) goto out;
checked = 0;
}
++checked;
WDT_HIT();
LED_B_ON();
// copy MAC to check command (readersignature)
check[5] = keys[i].mac[0];
check[6] = keys[i].mac[1];
check[7] = keys[i].mac[2];
check[8] = keys[i].mac[3];
// expect 4bytes, 3 retries times..
isOK = iclass_send_cmd_with_retries(check, sizeof(check), resp, sizeof(resp), 4, 2, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod);
if (isOK)
goto out;
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// Auth Sequence MUST begin with reading e-purse. (block2)
// Card selected, now read e-purse (cc) (block2) (only 8 bytes no CRC)
iclass_send_as_reader(readcheck_cc, sizeof(readcheck_cc), &start_time, &eof_time, shallow_mod);
LED_B_OFF();
}
out:
// send keyindex.
reply_ng(CMD_HF_ICLASS_CHKKEYS, (isOK) ? PM3_SUCCESS : PM3_ESOFT, (uint8_t *)&i, sizeof(i));
switch_off();
}
// Tries to read block.
// retries 3times.
// reply 8 bytes block
bool iclass_read_block(uint16_t blockno, uint8_t *data, uint32_t *start_time, uint32_t *eof_time, bool shallow_mod) {
uint8_t resp[10];
uint8_t c[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockno, 0x00, 0x00};
AddCrc(c + 1, 1);
bool isOK = iclass_send_cmd_with_retries(c, sizeof(c), resp, sizeof(resp), 10, 2, start_time, ICLASS_READER_TIMEOUT_OTHERS, eof_time, shallow_mod);
if (isOK)
memcpy(data, resp, 8);
return isOK;
}
// turn off afterwards
// send in authentication needed data, if to use auth.
// reply 8 bytes block if send_reply (for client)
void iClass_ReadBlock(uint8_t *msg) {
iclass_auth_req_t *payload = (iclass_auth_req_t *)msg;
bool shallow_mod = payload->shallow_mod;
iclass_readblock_resp_t response = { .isOK = true };
memset(response.data, 0, sizeof(response.data));
uint8_t cmd_read[] = {ICLASS_CMD_READ_OR_IDENTIFY, payload->blockno, 0x00, 0x00};
AddCrc(cmd_read + 1, 1);
Iso15693InitReader();
// select tag.
uint32_t eof_time = 0;
picopass_hdr_t hdr = {0};
bool res = select_iclass_tag(&hdr, payload->use_credit_key, &eof_time, shallow_mod);
if (res == false) {
if (payload->send_reply) {
response.isOK = res;
reply_ng(CMD_HF_ICLASS_READBL, PM3_ETIMEOUT, (uint8_t *)&response, sizeof(response));
}
goto out;
}
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// authenticate
if (payload->do_auth) {
res = authenticate_iclass_tag(payload, &hdr, &start_time, &eof_time, NULL);
if (res == false) {
if (payload->send_reply) {
response.isOK = res;
reply_ng(CMD_HF_ICLASS_READBL, PM3_ETIMEOUT, (uint8_t *)&response, sizeof(response));
}
goto out;
}
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// read data
uint8_t resp[10];
res = iclass_send_cmd_with_retries(cmd_read, sizeof(cmd_read), resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod);
if (res) {
memcpy(response.data, resp, sizeof(response.data));
if (payload->send_reply) {
reply_ng(CMD_HF_ICLASS_READBL, PM3_SUCCESS, (uint8_t *)&response, sizeof(response));
}
} else {
if (payload->send_reply) {
response.isOK = res;
reply_ng(CMD_HF_ICLASS_READBL, PM3_ETIMEOUT, (uint8_t *)&response, sizeof(response));
}
}
out:
switch_off();
}
// Dump command seems to dump a block related portion of card memory.
// I suppose it will need to do an authentatication to AA1, read its blocks by calling this.
// then authenticate AA2, and read those blocks by calling this.
// By the looks at it only 2K cards is supported, or first page dumps on larger cards.
// turn off afterwards
void iClass_Dump(uint8_t *msg) {
BigBuf_free();
iclass_dump_req_t *cmd = (iclass_dump_req_t *)msg;
iclass_auth_req_t *req = &cmd->req;
bool shallow_mod = req->shallow_mod;
uint8_t *dataout = BigBuf_malloc(ICLASS_16KS_SIZE);
if (dataout == NULL) {
DbpString("fail to allocate memory");
if (req->send_reply) {
reply_ng(CMD_HF_ICLASS_DUMP, PM3_EMALLOC, NULL, 0);
}
switch_off();
return;
}
memset(dataout, 0xFF, ICLASS_16KS_SIZE);
Iso15693InitReader();
// select tag.
uint32_t eof_time = 0;
picopass_hdr_t hdr = {0};
memset(&hdr, 0xff, sizeof(picopass_hdr_t));
bool res = select_iclass_tag(&hdr, req->use_credit_key, &eof_time, shallow_mod);
if (res == false) {
if (req->send_reply) {
reply_ng(CMD_HF_ICLASS_DUMP, PM3_ETIMEOUT, NULL, 0);
}
switch_off();
return;
}
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// authenticate
if (req->do_auth) {
res = authenticate_iclass_tag(req, &hdr, &start_time, &eof_time, NULL);
if (res == false) {
if (req->send_reply) {
reply_ng(CMD_HF_ICLASS_DUMP, PM3_ETIMEOUT, NULL, 0);
}
switch_off();
return;
}
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
bool dumpsuccess = true;
// main read loop
uint16_t i;
for (i = cmd->start_block; i <= cmd->end_block; i++) {
uint8_t resp[10];
uint8_t c[] = {ICLASS_CMD_READ_OR_IDENTIFY, i, 0x00, 0x00};
AddCrc(c + 1, 1);
res = iclass_send_cmd_with_retries(c, sizeof(c), resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod);
if (res) {
memcpy(dataout + (8 * i), resp, 8);
} else {
Dbprintf("failed to read block %u ( 0x%02x)", i, i);
dumpsuccess = false;
}
}
switch_off();
// copy diversified key back.
if (req->do_auth) {
if (req->use_credit_key)
memcpy(dataout + (8 * 4), hdr.key_c, 8);
else
memcpy(dataout + (8 * 3), hdr.key_d, 8);
}
if (req->send_reply) {
struct p {
bool isOK;
uint16_t block_cnt;
uint32_t bb_offset;
} PACKED response;
response.isOK = dumpsuccess;
response.block_cnt = i - cmd->start_block;
response.bb_offset = dataout - BigBuf_get_addr();
reply_ng(CMD_HF_ICLASS_DUMP, PM3_SUCCESS, (uint8_t *)&response, sizeof(response));
}
BigBuf_free();
}
static bool iclass_writeblock_ext(uint8_t blockno, uint8_t *data, uint8_t *mac, bool use_mac, bool shallow_mod) {
// write command: cmd, 1 blockno, 8 data, 4 mac
uint8_t write[14] = { 0x80 | ICLASS_CMD_UPDATE, blockno };
uint8_t write_len = 14;
memcpy(write + 2, data, 8);
if (use_mac) {
memcpy(write + 10, mac, 4);
} else {
AddCrc(write + 1, 9);
write_len -= 2;
}
uint8_t resp[10] = {0};
uint32_t eof_time = 0, start_time = 0;
bool isOK = iclass_send_cmd_with_retries(write, write_len, resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_UPDATE, &eof_time, shallow_mod);
if (isOK == false) {
return false;
}
if (blockno == 2) {
// check response. e-purse update swaps first and second half
if (memcmp(data + 4, resp, 4) || memcmp(data, resp + 4, 4)) {
return false;
}
} else if (blockno == 3 || blockno == 4) {
// check response. Key updates always return 0xffffffffffffffff
uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
if (memcmp(all_ff, resp, 8)) {
return false;
}
} else {
// check response. All other updates return unchanged data
if (memcmp(data, resp, 8)) {
return false;
}
}
return true;
}
// turn off afterwards
void iClass_WriteBlock(uint8_t *msg) {
LED_A_ON();
iclass_writeblock_req_t *payload = (iclass_writeblock_req_t *)msg;
bool shallow_mod = payload->req.shallow_mod;
uint8_t write[14] = { 0x80 | ICLASS_CMD_UPDATE, payload->req.blockno };
uint8_t write_len = 14;
Iso15693InitReader();
// select tag.
uint32_t eof_time = 0;
picopass_hdr_t hdr = {0};
bool res = select_iclass_tag(&hdr, payload->req.use_credit_key, &eof_time, shallow_mod);
if (res == false) {
goto out;
}
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
uint8_t mac[4] = {0};
// authenticate
if (payload->req.do_auth) {
res = authenticate_iclass_tag(&payload->req, &hdr, &start_time, &eof_time, mac);
if (res == false) {
goto out;
}
}
// new block data
memcpy(write + 2, payload->data, 8);
uint8_t pagemap = get_pagemap(&hdr);
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
// Unsecured tags uses CRC16, but don't include the UPDATE operation code
// byte0 = update op
// byte1 = block no
// byte2..9 = new block data
AddCrc(write + 1, 9);
write_len -= 2;
} else {
if (payload->req.use_replay) {
memcpy(write + 10, payload->mac, sizeof(payload->mac));
} else {
// Secure tags uses MAC
uint8_t wb[9];
wb[0] = payload->req.blockno;
memcpy(wb + 1, payload->data, 8);
if (payload->req.use_credit_key)
doMAC_N(wb, sizeof(wb), hdr.key_c, mac);
else
doMAC_N(wb, sizeof(wb), hdr.key_d, mac);
memcpy(write + 10, mac, sizeof(mac));
}
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
uint8_t resp[10] = {0};
uint8_t tries = 3;
while (tries-- > 0) {
iclass_send_as_reader(write, write_len, &start_time, &eof_time, shallow_mod);
if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred
res = false;
switch_off();
if (payload->req.send_reply) {
reply_ng(CMD_HF_ICLASS_WRITEBL, PM3_ETEAROFF, (uint8_t *)&res, sizeof(bool));
}
return;
} else {
uint16_t resp_len = 0;
int res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_UPDATE, &eof_time, false, true, &resp_len);
if (res2 == PM3_SUCCESS && resp_len == 10) {
res = true;
break;
}
}
}
if (tries == 0) {
res = false;
goto out;
}
// verify write
if ((pagemap != PICOPASS_NON_SECURE_PAGEMODE) && (payload->req.blockno == 2)) {
// check response. e-purse update swaps first and second half
if (memcmp(payload->data + 4, resp, 4) || memcmp(payload->data, resp + 4, 4)) {
res = false;
goto out;
}
} else if ((pagemap != PICOPASS_NON_SECURE_PAGEMODE) && (payload->req.blockno == 3 || payload->req.blockno == 4)) {
// check response. Key updates always return 0xffffffffffffffff
uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
if (memcmp(all_ff, resp, sizeof(all_ff))) {
res = false;
goto out;
}
} else {
// check response. All other updates return unchanged data
if (memcmp(payload->data, resp, 8)) {
res = false;
goto out;
}
}
out:
switch_off();
if (payload->req.send_reply) {
reply_ng(CMD_HF_ICLASS_WRITEBL, PM3_SUCCESS, (uint8_t *)&res, sizeof(bool));
}
}
void iclass_credit_epurse(iclass_credit_epurse_t *payload) {
LED_A_ON();
bool shallow_mod = payload->req.shallow_mod;
Iso15693InitReader();
// select tag.
uint32_t eof_time = 0;
picopass_hdr_t hdr = {0};
uint8_t res = select_iclass_tag(&hdr, payload->req.use_credit_key, &eof_time, shallow_mod);
if (res == false) {
goto out;
}
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
uint8_t mac[4] = {0};
// authenticate
if (payload->req.do_auth) {
res = authenticate_iclass_tag(&payload->req, &hdr, &start_time, &eof_time, mac);
if (res == false) {
goto out;
}
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
uint8_t cmd_read[] = {ICLASS_CMD_READ_OR_IDENTIFY, payload->req.blockno, 0x00, 0x00};
AddCrc(cmd_read + 1, 1);
uint8_t epurse[10];
res = iclass_send_cmd_with_retries(cmd_read, sizeof(cmd_read), epurse, sizeof(epurse), 10, 3, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod);
if (!res) {
switch_off();
if (payload->req.send_reply) {
reply_ng(CMD_HF_ICLASS_CREDIT_EPURSE, PM3_ETIMEOUT, (uint8_t *)&res, sizeof(uint8_t));
}
return;
}
uint8_t write[14] = { 0x80 | ICLASS_CMD_UPDATE, payload->req.blockno };
uint8_t write_len = 14;
uint8_t epurse_offset = 0;
const uint8_t empty_epurse[] = {0xff, 0xff, 0xff, 0xff};
if (memcmp(epurse, empty_epurse, 4) == 0) {
// epurse data in stage 2
epurse_offset = 4;
}
memcpy(epurse + epurse_offset, payload->epurse, 4);
// blank out debiting value as per the first step of the crediting procedure
epurse[epurse_offset + 0] = 0xFF;
epurse[epurse_offset + 1] = 0xFF;
// initial epurse write for credit
memcpy(write + 2, epurse, 8);
doMAC_N(write + 1, 9, payload->req.use_credit_key ? hdr.key_c : hdr.key_d, mac);
memcpy(write + 10, mac, sizeof(mac));
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
uint8_t resp[10] = {0};
uint8_t tries = 3;
while (tries-- > 0) {
iclass_send_as_reader(write, write_len, &start_time, &eof_time, shallow_mod);
if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred
res = false;
switch_off();
if (payload->req.send_reply)
reply_ng(CMD_HF_ICLASS_CREDIT_EPURSE, PM3_ETEAROFF, (uint8_t *)&res, sizeof(uint8_t));
return;
} else {
uint16_t resp_len = 0;
int res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_UPDATE, &eof_time, false, true, &resp_len);
if (res2 == PM3_SUCCESS && resp_len == 10) {
res = true;
break;
}
}
}
if (tries == 0) {
res = false;
goto out;
}
// check response. e-purse update swaps first and second half
if (memcmp(write + 2 + 4, resp, 4) || memcmp(write + 2, resp + 4, 4)) {
res = false;
goto out;
}
// new epurse write
// epurse offset is now flipped after the first write
epurse_offset ^= 4;
memcpy(resp + epurse_offset, payload->epurse, 4);
memcpy(write + 2, resp, 8);
doMAC_N(write + 1, 9, payload->req.use_credit_key ? hdr.key_c : hdr.key_d, mac);
memcpy(write + 10, mac, sizeof(mac));
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
tries = 3;
while (tries-- > 0) {
iclass_send_as_reader(write, write_len, &start_time, &eof_time, shallow_mod);
if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred
res = false;
switch_off();
if (payload->req.send_reply)
reply_ng(CMD_HF_ICLASS_CREDIT_EPURSE, PM3_ETEAROFF, (uint8_t *)&res, sizeof(uint8_t));
return;
} else {
uint16_t resp_len = 0;
int res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_UPDATE, &eof_time, false, true, &resp_len);
if (res2 == PM3_SUCCESS && resp_len == 10) {
res = true;
break;
}
}
}
if (tries == 0) {
res = false;
goto out;
}
// check response. e-purse update swaps first and second half
if (memcmp(write + 2 + 4, resp, 4) || memcmp(write + 2, resp + 4, 4)) {
res = false;
goto out;
}
out:
switch_off();
if (payload->req.send_reply)
reply_ng(CMD_HF_ICLASS_CREDIT_EPURSE, PM3_SUCCESS, (uint8_t *)&res, sizeof(uint8_t));
}
void iClass_Restore(iclass_restore_req_t *msg) {
// sanitation
if (msg == NULL) {
reply_ng(CMD_HF_ICLASS_RESTORE, PM3_ESOFT, NULL, 0);
return;
}
if (msg->item_cnt == 0) {
if (msg->req.send_reply) {
reply_ng(CMD_HF_ICLASS_RESTORE, PM3_ESOFT, NULL, 0);
}
return;
}
bool shallow_mod = msg->req.shallow_mod;
LED_A_ON();
Iso15693InitReader();
uint16_t written = 0;
uint32_t eof_time = 0;
picopass_hdr_t hdr = {0};
// select
bool res = select_iclass_tag(&hdr, msg->req.use_credit_key, &eof_time, shallow_mod);
if (res == false) {
goto out;
}
// authenticate
uint8_t mac[4] = {0};
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// authenticate
if (msg->req.do_auth) {
res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac);
if (res == false) {
goto out;
}
}
// main loop
bool use_mac;
for (uint8_t i = 0; i < msg->item_cnt; i++) {
iclass_restore_item_t item = msg->blocks[i];
uint8_t pagemap = get_pagemap(&hdr);
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
// Unsecured tags uses CRC16
use_mac = false;
} else {
// Secure tags uses MAC
use_mac = true;
uint8_t wb[9] = {0};
wb[0] = item.blockno;
memcpy(wb + 1, item.data, 8);
if (msg->req.use_credit_key)
doMAC_N(wb, sizeof(wb), hdr.key_c, mac);
else
doMAC_N(wb, sizeof(wb), hdr.key_d, mac);
}
// data + mac
if (iclass_writeblock_ext(item.blockno, item.data, mac, use_mac, shallow_mod)) {
Dbprintf("Write block [%3d/0x%02X] " _GREEN_("successful"), item.blockno, item.blockno);
written++;
} else {
Dbprintf("Write block [%3d/0x%02X] " _RED_("failed"), item.blockno, item.blockno);
}
}
out:
switch_off();
if (msg->req.send_reply) {
int isOK = (written == msg->item_cnt) ? PM3_SUCCESS : PM3_ESOFT;
reply_ng(CMD_HF_ICLASS_RESTORE, isOK, NULL, 0);
}
}
void generate_single_key_block_inverted(const uint8_t *startingKey, uint32_t index, uint8_t *keyBlock) {
uint32_t carry = index;
memcpy(keyBlock, startingKey, PICOPASS_BLOCK_SIZE);
for (int j = PICOPASS_BLOCK_SIZE - 1; j >= 0; j--) {
uint8_t increment_value = carry & 0x07; // Use only the last 3 bits of carry
keyBlock[j] = increment_value; // Set the last 3 bits, assuming first 5 bits are always 0
carry >>= 3; // Shift right by 3 bits for the next byte
if (carry == 0) {
// If no more carry, break early to avoid unnecessary loops
break;
}
}
}
void iClass_Recover(iclass_recover_req_t *msg) {
bool shallow_mod = false;
LED_A_ON();
Dbprintf(_RED_("Interrupting this process will render the card unusable!"));
Iso15693InitReader();
//Authenticate with AA2 with the standard key to get the AA2 mac
//Step0 Card Select Routine
uint32_t eof_time = 0;
picopass_hdr_t hdr = {0};
bool res = select_iclass_tag(&hdr, true, &eof_time, shallow_mod);
if (res == false) {
goto out;
}
//Step1 Authenticate with AA2 using K2
uint8_t mac2[4] = {0};
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
res = authenticate_iclass_tag(&msg->req2, &hdr, &start_time, &eof_time, mac2);
if (res == false) {
goto out;
}
uint8_t div_key2[8] = {0};
memcpy(div_key2, hdr.key_c, 8);
//cycle reader to reset cypher state and be able to authenticate with k1 trace
switch_off();
Iso15693InitReader();
//Step0 Card Select Routine
eof_time = 0;
//hdr = {0};
res = select_iclass_tag(&hdr, false, &eof_time, shallow_mod);
if (res == false) {
goto out;
}
//Step1 Authenticate with AA1 using trace
uint8_t mac1[4] = {0};
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac1);
if (res == false) {
goto out;
}
//Step2 Privilege Escalation: attempt to read AA2 with credentials for AA1
uint8_t blockno = 24;
uint8_t cmd_read[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockno, 0x00, 0x00};
AddCrc(cmd_read + 1, 1);
uint8_t resp[10];
res = iclass_send_cmd_with_retries(cmd_read, sizeof(cmd_read), resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod);
static uint8_t iclass_mac_table[8][8] = { //Reference weak macs table
{ 0x00, 0x00, 0x00, 0x00, 0xBF, 0x5D, 0x67, 0x7F }, //Expected mac when last 3 bits of each byte are: 000
{ 0x00, 0x00, 0x00, 0x00, 0x10, 0xED, 0x6F, 0x11 }, //Expected mac when last 3 bits of each byte are: 001
{ 0x00, 0x00, 0x00, 0x00, 0x53, 0x35, 0x42, 0x0F }, //Expected mac when last 3 bits of each byte are: 010
{ 0x00, 0x00, 0x00, 0x00, 0xAB, 0x47, 0x4D, 0xA0 }, //Expected mac when last 3 bits of each byte are: 011
{ 0x00, 0x00, 0x00, 0x00, 0xF6, 0xCF, 0x43, 0x36 }, //Expected mac when last 3 bits of each byte are: 100
{ 0x00, 0x00, 0x00, 0x00, 0x59, 0x7F, 0x4B, 0x58 }, //Expected mac when last 3 bits of each byte are: 101
{ 0x00, 0x00, 0x00, 0x00, 0x1A, 0xA7, 0x66, 0x46 }, //Expected mac when last 3 bits of each byte are: 110
{ 0x00, 0x00, 0x00, 0x00, 0xE2, 0xD5, 0x69, 0xE9 } //Expected mac when last 3 bits of each byte are: 111
};
//Viewing the weak macs table card 24 bits (3x8) in the form of a 24 bit decimal number
static uint32_t iclass_mac_table_bit_values[8] = {0, 2396745, 4793490, 7190235, 9586980, 11983725, 14380470, 16777215};
/* iclass_mac_table is a series of weak macs, those weak macs correspond to the different combinations of the last 3 bits of each key byte.
If we concatenate the last three bits of each key byte, we have a 24 bits long binary string.
If we convert that string to decimal we obtain the decimal numbers in iclass_mac_table_bit_values
Xorring the index of iterations against those decimal numbers allows us to retrieve the what was the corresponding sequence of bits of the original key in decimal format. */
uint8_t zero_key[PICOPASS_BLOCK_SIZE] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint32_t index = 1;
int bits_found = -1;
//START LOOP
while (bits_found == -1) {
//Step3 Calculate New Key
uint8_t genkeyblock[PICOPASS_BLOCK_SIZE];
uint8_t genkeyblock_old[PICOPASS_BLOCK_SIZE];
uint8_t xorkeyblock[PICOPASS_BLOCK_SIZE];
generate_single_key_block_inverted(zero_key, index, genkeyblock);
//NOTE BEFORE UPDATING THE KEY WE NEED TO KEEP IN MIND KEYS ARE XORRED
//xor the new key against the previously generated key so that we only update the difference
if (index != 0) {
generate_single_key_block_inverted(zero_key, index - 1, genkeyblock_old);
for (int i = 0; i < 8 ; i++) {
xorkeyblock[i] = genkeyblock[i] ^ genkeyblock_old[i];
}
} else {
memcpy(xorkeyblock, genkeyblock, PICOPASS_BLOCK_SIZE);
}
//Step4 Calculate New Mac
bool use_mac = true;
uint8_t wb[9] = {0};
blockno = 3;
wb[0] = blockno;
memcpy(wb + 1, xorkeyblock, 8);
doMAC_N(wb, sizeof(wb), div_key2, mac2);
//Step5 Perform Write
DbpString("Generated XOR Key: ");
Dbhexdump(8, xorkeyblock, false);
if (iclass_writeblock_ext(blockno, xorkeyblock, mac2, use_mac, shallow_mod)) {
Dbprintf("Write block [%3d/0x%02X] " _GREEN_("successful"), blockno, blockno);
} else {
Dbprintf("Write block [%3d/0x%02X] " _RED_("failed"), blockno, blockno);
if (index > 1) {
Dbprintf(_RED_("Card is likely to be unusable!"));
}
goto out;
}
//Step6 Perform 8 authentication attempts
for (int i = 0; i < 8 ; ++i) {
//need to craft the authentication payload accordingly
memcpy(msg->req.key, iclass_mac_table[i], 8);
res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac1); //mac1 here shouldn't matter
if (res == true) {
bits_found = iclass_mac_table_bit_values[i] ^ index;
Dbprintf("Found Card Bits Index: " _GREEN_("[%3d]"), index);
Dbprintf("Mac Table Bit Values: " _GREEN_("[%3d]"), iclass_mac_table_bit_values[i]);
Dbprintf("Decimal Value of Partial Key: " _GREEN_("[%3d]"), bits_found);
goto restore;
}
}
index++;
}//end while
restore:
;//empty statement for compilation
uint8_t partialkey[PICOPASS_BLOCK_SIZE];
convertToHexArray(bits_found, partialkey);
uint8_t resetkey[PICOPASS_BLOCK_SIZE];
convertToHexArray(index, resetkey);
//Calculate reset Mac
bool use_mac = true;
uint8_t wb[9] = {0};
blockno = 3;
wb[0] = blockno;
memcpy(wb + 1, resetkey, 8);
doMAC_N(wb, sizeof(wb), div_key2, mac2);
//Write back the card to the original key
DbpString(_YELLOW_("Restoring Card to the original key using Reset Key: "));
Dbhexdump(8, resetkey, false);
if (iclass_writeblock_ext(blockno, resetkey, mac2, use_mac, shallow_mod)) {
Dbprintf("Restore of Original Key "_GREEN_("successful. Card is usable again."));
} else {
Dbprintf("Restore of Original Key " _RED_("failed. Card is likely unusable."));
}
//Print the 24 bits found from k1
DbpString(_YELLOW_("Raw Key Partial Bytes: "));
Dbhexdump(8, partialkey, false);
switch_off();
reply_ng(CMD_HF_ICLASS_RECOVER, PM3_SUCCESS, NULL, 0);
out:
switch_off();
reply_ng(CMD_HF_ICLASS_RECOVER, PM3_ESOFT, NULL, 0);
}