mirror of
				https://github.com/RfidResearchGroup/proxmark3.git
				synced 2025-11-04 20:06:21 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			321 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			321 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
//-----------------------------------------------------------------------------
 | 
						||
// Borrowed initially from https://github.com/holiman/loclass
 | 
						||
// Copyright (C) 2014 Martin Holst Swende
 | 
						||
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
 | 
						||
//
 | 
						||
// This program is free software: you can redistribute it and/or modify
 | 
						||
// it under the terms of the GNU General Public License as published by
 | 
						||
// the Free Software Foundation, either version 3 of the License, or
 | 
						||
// (at your option) any later version.
 | 
						||
//
 | 
						||
// This program is distributed in the hope that it will be useful,
 | 
						||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						||
// GNU General Public License for more details.
 | 
						||
//
 | 
						||
// See LICENSE.txt for the text of the license.
 | 
						||
//-----------------------------------------------------------------------------
 | 
						||
// WARNING
 | 
						||
//
 | 
						||
// THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
 | 
						||
//
 | 
						||
// USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
 | 
						||
// PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
 | 
						||
// AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
 | 
						||
//
 | 
						||
// THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
 | 
						||
//-----------------------------------------------------------------------------
 | 
						||
// It is a reconstruction of the cipher engine used in iClass, and RFID techology.
 | 
						||
//
 | 
						||
// The implementation is based on the work performed by
 | 
						||
// Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
 | 
						||
// Milosch Meriac in the paper "Dismantling IClass".
 | 
						||
//-----------------------------------------------------------------------------
 | 
						||
 | 
						||
/**
 | 
						||
From "Dismantling iclass":
 | 
						||
    This section describes in detail the built-in key diversification algorithm of iClass.
 | 
						||
    Besides the obvious purpose of deriving a card key from a master key, this
 | 
						||
    algorithm intends to circumvent weaknesses in the cipher by preventing the
 | 
						||
    usage of certain ‘weak’ keys. In order to compute a diversified key, the iClass
 | 
						||
    reader first encrypts the card identity id with the master key K, using single
 | 
						||
    DES. The resulting ciphertext is then input to a function called hash0 which
 | 
						||
    outputs the diversified key k.
 | 
						||
 | 
						||
    k = hash0(DES enc (id, K))
 | 
						||
 | 
						||
    Here the DES encryption of id with master key K outputs a cryptogram c
 | 
						||
    of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] ∈ F 82 × F 82 × (F 62 ) 8
 | 
						||
    which is used as input to the hash0 function. This function introduces some
 | 
						||
    obfuscation by performing a number of permutations, complement and modulo
 | 
						||
    operations, see Figure 2.5. Besides that, it checks for and removes patterns like
 | 
						||
    similar key bytes, which could produce a strong bias in the cipher. Finally, the
 | 
						||
    output of hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
 | 
						||
 | 
						||
**/
 | 
						||
#include "optimized_ikeys.h"
 | 
						||
 | 
						||
#include <stdint.h>
 | 
						||
#include <stdbool.h>
 | 
						||
#include <inttypes.h>
 | 
						||
#include "mbedtls/des.h"
 | 
						||
#include "optimized_cipherutils.h"
 | 
						||
 | 
						||
static uint8_t pi[35] = {
 | 
						||
    0x0F, 0x17, 0x1B, 0x1D, 0x1E, 0x27, 0x2B, 0x2D,
 | 
						||
    0x2E, 0x33, 0x35, 0x39, 0x36, 0x3A, 0x3C, 0x47,
 | 
						||
    0x4B, 0x4D, 0x4E, 0x53, 0x55, 0x56, 0x59, 0x5A,
 | 
						||
    0x5C, 0x63, 0x65, 0x66, 0x69, 0x6A, 0x6C, 0x71,
 | 
						||
    0x72, 0x74, 0x78
 | 
						||
};
 | 
						||
 | 
						||
static mbedtls_des_context ctx_enc;
 | 
						||
 | 
						||
/**
 | 
						||
 * @brief The key diversification algorithm uses 6-bit bytes.
 | 
						||
 * This implementation uses 64 bit uint to pack seven of them into one
 | 
						||
 * variable. When they are there, they are placed as follows:
 | 
						||
 * XXXX XXXX N0 .... N7, occupying the last 48 bits.
 | 
						||
 *
 | 
						||
 * This function picks out one from such a collection
 | 
						||
 * @param all
 | 
						||
 * @param n bitnumber
 | 
						||
 * @return
 | 
						||
 */
 | 
						||
static uint8_t getSixBitByte(uint64_t c, int n) {
 | 
						||
    return (c >> (42 - 6 * n)) & 0x3F;
 | 
						||
}
 | 
						||
 | 
						||
/**
 | 
						||
 * @brief Puts back a six-bit 'byte' into a uint64_t.
 | 
						||
 * @param c buffer
 | 
						||
 * @param z the value to place there
 | 
						||
 * @param n bitnumber.
 | 
						||
 */
 | 
						||
static void pushbackSixBitByte(uint64_t *c, uint8_t z, int n) {
 | 
						||
    //0x XXXX YYYY ZZZZ ZZZZ ZZZZ
 | 
						||
    //             ^z0         ^z7
 | 
						||
    //z0:  1111 1100 0000 0000
 | 
						||
 | 
						||
    uint64_t masked = z & 0x3F;
 | 
						||
    uint64_t eraser = 0x3F;
 | 
						||
    masked <<= 42 - 6 * n;
 | 
						||
    eraser <<= 42 - 6 * n;
 | 
						||
 | 
						||
    //masked <<= 6*n;
 | 
						||
    //eraser <<= 6*n;
 | 
						||
 | 
						||
    eraser = ~eraser;
 | 
						||
    (*c) &= eraser;
 | 
						||
    (*c) |= masked;
 | 
						||
 | 
						||
}
 | 
						||
/**
 | 
						||
 * @brief Swaps the z-values.
 | 
						||
 * If the input value has format XYZ0Z1...Z7, the output will have the format
 | 
						||
 * XYZ7Z6...Z0 instead
 | 
						||
 * @param c
 | 
						||
 * @return
 | 
						||
 */
 | 
						||
static uint64_t swapZvalues(uint64_t c) {
 | 
						||
    uint64_t newz = 0;
 | 
						||
    pushbackSixBitByte(&newz, getSixBitByte(c, 0), 7);
 | 
						||
    pushbackSixBitByte(&newz, getSixBitByte(c, 1), 6);
 | 
						||
    pushbackSixBitByte(&newz, getSixBitByte(c, 2), 5);
 | 
						||
    pushbackSixBitByte(&newz, getSixBitByte(c, 3), 4);
 | 
						||
    pushbackSixBitByte(&newz, getSixBitByte(c, 4), 3);
 | 
						||
    pushbackSixBitByte(&newz, getSixBitByte(c, 5), 2);
 | 
						||
    pushbackSixBitByte(&newz, getSixBitByte(c, 6), 1);
 | 
						||
    pushbackSixBitByte(&newz, getSixBitByte(c, 7), 0);
 | 
						||
    newz |= (c & 0xFFFF000000000000);
 | 
						||
    return newz;
 | 
						||
}
 | 
						||
 | 
						||
/**
 | 
						||
* @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
 | 
						||
*/
 | 
						||
static uint64_t ck(int i, int j, uint64_t z) {
 | 
						||
    if (i == 1 && j == -1) {
 | 
						||
        // ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
 | 
						||
        return z;
 | 
						||
    } else if (j == -1) {
 | 
						||
        // ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
 | 
						||
        return ck(i - 1, i - 2, z);
 | 
						||
    }
 | 
						||
 | 
						||
    if (getSixBitByte(z, i) == getSixBitByte(z, j)) {
 | 
						||
        //ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] )
 | 
						||
        uint64_t newz = 0;
 | 
						||
        int c;
 | 
						||
        for (c = 0; c < 4; c++) {
 | 
						||
            uint8_t val = getSixBitByte(z, c);
 | 
						||
            if (c == i)
 | 
						||
                pushbackSixBitByte(&newz, j, c);
 | 
						||
            else
 | 
						||
                pushbackSixBitByte(&newz, val, c);
 | 
						||
        }
 | 
						||
        return ck(i, j - 1, newz);
 | 
						||
    } else {
 | 
						||
        return ck(i, j - 1, z);
 | 
						||
    }
 | 
						||
}
 | 
						||
/**
 | 
						||
 | 
						||
    Definition 8.
 | 
						||
    Let the function check : (F 62 ) 8 → (F 62 ) 8 be defined as
 | 
						||
    check(z [0] . . . z [7] ) = ck(3, 2, z [0] . . . z [3] ) · ck(3, 2, z [4] . . . z [7] )
 | 
						||
 | 
						||
    where ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
 | 
						||
 | 
						||
        ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
 | 
						||
        ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
 | 
						||
        ck(i, j, z [0] . . . z [3] ) =
 | 
						||
        ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] ),  if z [i] = z [j] ;
 | 
						||
        ck(i, j − 1, z [0] . . . z [3] ), otherwise
 | 
						||
 | 
						||
    otherwise.
 | 
						||
**/
 | 
						||
 | 
						||
static uint64_t check(uint64_t z) {
 | 
						||
    //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
 | 
						||
 | 
						||
    // ck(3, 2, z [0] . . . z [3] )
 | 
						||
    uint64_t ck1 = ck(3, 2, z);
 | 
						||
 | 
						||
    // ck(3, 2, z [4] . . . z [7] )
 | 
						||
    uint64_t ck2 = ck(3, 2, z << 24);
 | 
						||
 | 
						||
    //The ck function will place the values
 | 
						||
    // in the middle of z.
 | 
						||
    ck1 &= 0x00000000FFFFFF000000;
 | 
						||
    ck2 &= 0x00000000FFFFFF000000;
 | 
						||
 | 
						||
    return ck1 | ck2 >> 24;
 | 
						||
}
 | 
						||
 | 
						||
static void permute(BitstreamIn_t *p_in, uint64_t z, int l, int r, BitstreamOut_t *out) {
 | 
						||
    if (bitsLeft(p_in) == 0)
 | 
						||
        return;
 | 
						||
 | 
						||
    bool pn = tailBit(p_in);
 | 
						||
    if (pn) { // pn = 1
 | 
						||
        uint8_t zl = getSixBitByte(z, l);
 | 
						||
 | 
						||
        push6bits(out, zl + 1);
 | 
						||
        permute(p_in, z, l + 1, r, out);
 | 
						||
    } else { // otherwise
 | 
						||
        uint8_t zr = getSixBitByte(z, r);
 | 
						||
 | 
						||
        push6bits(out, zr);
 | 
						||
        permute(p_in, z, l, r + 1, out);
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/**
 | 
						||
 * @brief
 | 
						||
 *Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
 | 
						||
 *  hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
 | 
						||
 * z'[i] = (z[i] mod (63-i)) + i      i =  0...3
 | 
						||
 * z'[i+4] = (z[i+4] mod (64-i)) + i  i =  0...3
 | 
						||
 * ẑ = check(z');
 | 
						||
 * @param c
 | 
						||
 * @param k this is where the diversified key is put (should be 8 bytes)
 | 
						||
 * @return
 | 
						||
 */
 | 
						||
void hash0(uint64_t c, uint8_t k[8]) {
 | 
						||
    c = swapZvalues(c);
 | 
						||
 | 
						||
    //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
 | 
						||
    // x = 8 bits
 | 
						||
    // y = 8 bits
 | 
						||
    // z0-z7 6 bits each : 48 bits
 | 
						||
    uint8_t x = (c & 0xFF00000000000000) >> 56;
 | 
						||
    uint8_t y = (c & 0x00FF000000000000) >> 48;
 | 
						||
    uint64_t zP = 0;
 | 
						||
 | 
						||
    for (int n = 0;  n < 4 ; n++) {
 | 
						||
        uint8_t zn = getSixBitByte(c, n);
 | 
						||
        uint8_t zn4 = getSixBitByte(c, n + 4);
 | 
						||
        uint8_t _zn = (zn % (63 - n)) + n;
 | 
						||
        uint8_t _zn4 = (zn4 % (64 - n)) + n;
 | 
						||
        pushbackSixBitByte(&zP, _zn, n);
 | 
						||
        pushbackSixBitByte(&zP, _zn4, n + 4);
 | 
						||
    }
 | 
						||
 | 
						||
    uint64_t zCaret = check(zP);
 | 
						||
    uint8_t p = pi[x % 35];
 | 
						||
 | 
						||
    if (x & 1) //Check if x7 is 1
 | 
						||
        p = ~p;
 | 
						||
 | 
						||
    BitstreamIn_t p_in = { &p, 8, 0 };
 | 
						||
    uint8_t outbuffer[] = {0, 0, 0, 0, 0, 0, 0, 0};
 | 
						||
    BitstreamOut_t out = {outbuffer, 0, 0};
 | 
						||
    permute(&p_in, zCaret, 0, 4, &out); //returns 48 bits? or 6 8-bytes
 | 
						||
 | 
						||
    //Out is now a buffer containing six-bit bytes, should be 48 bits
 | 
						||
    // if all went well
 | 
						||
    //Shift z-values down onto the lower segment
 | 
						||
 | 
						||
    uint64_t zTilde = x_bytes_to_num(outbuffer, sizeof(outbuffer));
 | 
						||
 | 
						||
    zTilde >>= 16;
 | 
						||
 | 
						||
    for (int i = 0; i < 8; i++) {
 | 
						||
        // the key on index i is first a bit from y
 | 
						||
        // then six bits from z,
 | 
						||
        // then a bit from p
 | 
						||
 | 
						||
        // Init with zeroes
 | 
						||
        k[i] = 0;
 | 
						||
        // First, place yi leftmost in k
 | 
						||
        //k[i] |= (y  << i) & 0x80 ;
 | 
						||
 | 
						||
        // First, place y(7-i) leftmost in k
 | 
						||
        k[i] |= (y  << (7 - i)) & 0x80 ;
 | 
						||
 | 
						||
        uint8_t zTilde_i = getSixBitByte(zTilde, i);
 | 
						||
        // zTildeI is now on the form 00XXXXXX
 | 
						||
        // with one leftshift, it'll be
 | 
						||
        // 0XXXXXX0
 | 
						||
        // So after leftshift, we can OR it into k
 | 
						||
        // However, when doing complement, we need to
 | 
						||
        // again MASK 0XXXXXX0 (0x7E)
 | 
						||
        zTilde_i <<= 1;
 | 
						||
 | 
						||
        //Finally, add bit from p or p-mod
 | 
						||
        //Shift bit i into rightmost location (mask only after complement)
 | 
						||
        uint8_t p_i = p >> i & 0x1;
 | 
						||
 | 
						||
        if (k[i]) { // yi = 1
 | 
						||
            k[i] |= ~zTilde_i & 0x7E;
 | 
						||
            k[i] |= p_i & 1;
 | 
						||
            k[i] += 1;
 | 
						||
 | 
						||
        } else { // otherwise
 | 
						||
            k[i] |= zTilde_i & 0x7E;
 | 
						||
            k[i] |= (~p_i) & 1;
 | 
						||
        }
 | 
						||
    }
 | 
						||
}
 | 
						||
/**
 | 
						||
 * @brief Performs Elite-class key diversification
 | 
						||
 * @param csn
 | 
						||
 * @param key
 | 
						||
 * @param div_key
 | 
						||
 */
 | 
						||
void diversifyKey(uint8_t *csn, uint8_t *key, uint8_t *div_key) {
 | 
						||
    // Prepare the DES key
 | 
						||
    mbedtls_des_setkey_enc(&ctx_enc, key);
 | 
						||
 | 
						||
    uint8_t crypted_csn[8] = {0};
 | 
						||
 | 
						||
    // Calculate DES(CSN, KEY)
 | 
						||
    mbedtls_des_crypt_ecb(&ctx_enc, csn, crypted_csn);
 | 
						||
 | 
						||
    //Calculate HASH0(DES))
 | 
						||
    uint64_t c_csn = x_bytes_to_num(crypted_csn, sizeof(crypted_csn));
 | 
						||
 | 
						||
    hash0(c_csn, div_key);
 | 
						||
}
 | 
						||
 |