mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-05 07:36:14 +08:00
469 lines
15 KiB
C
469 lines
15 KiB
C
//-----------------------------------------------------------------------------
|
|
// Copyright (C) 2016 iceman
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Analyse bytes commands
|
|
//-----------------------------------------------------------------------------
|
|
#include "cmdanalyse.h"
|
|
#include "nonce2key/nonce2key.h"
|
|
|
|
static int CmdHelp(const char *Cmd);
|
|
|
|
int usage_analyse_lcr(void) {
|
|
PrintAndLog("Specifying the bytes of a UID with a known LRC will find the last byte value");
|
|
PrintAndLog("needed to generate that LRC with a rolling XOR. All bytes should be specified in HEX.");
|
|
PrintAndLog("");
|
|
PrintAndLog("Usage: analyse lcr [h] <bytes>");
|
|
PrintAndLog("Options:");
|
|
PrintAndLog(" h This help");
|
|
PrintAndLog(" <bytes> bytes to calc missing XOR in a LCR");
|
|
PrintAndLog("");
|
|
PrintAndLog("Samples:");
|
|
PrintAndLog(" analyse lcr 04008064BA");
|
|
PrintAndLog("expected output: Target (BA) requires final LRC XOR byte value: 5A");
|
|
return 0;
|
|
}
|
|
int usage_analyse_checksum(void) {
|
|
PrintAndLog("The bytes will be added with eachother and than limited with the applied mask");
|
|
PrintAndLog("Finally compute ones' complement of the least significant bytes");
|
|
PrintAndLog("");
|
|
PrintAndLog("Usage: analyse chksum [h] b <bytes> m <mask>");
|
|
PrintAndLog("Options:");
|
|
PrintAndLog(" h This help");
|
|
PrintAndLog(" b <bytes> bytes to calc missing XOR in a LCR");
|
|
PrintAndLog(" m <mask> bit mask to limit the outpuyt");
|
|
PrintAndLog("");
|
|
PrintAndLog("Samples:");
|
|
PrintAndLog(" analyse chksum b 137AF00A0A0D m FF");
|
|
PrintAndLog("expected output: 0x61");
|
|
return 0;
|
|
}
|
|
int usage_analyse_crc(void){
|
|
PrintAndLog("A stub method to test different crc implementations inside the PM3 sourcecode. Just because you figured out the poly, doesn't mean you get the desired output");
|
|
PrintAndLog("");
|
|
PrintAndLog("Usage: analyse crc [h] <bytes>");
|
|
PrintAndLog("Options:");
|
|
PrintAndLog(" h This help");
|
|
PrintAndLog(" <bytes> bytes to calc crc");
|
|
PrintAndLog("");
|
|
PrintAndLog("Samples:");
|
|
PrintAndLog(" analyse crc 137AF00A0A0D");
|
|
return 0;
|
|
}
|
|
int usage_analyse_hid(void){
|
|
PrintAndLog("Permute function from 'heart of darkness' paper.");
|
|
PrintAndLog("");
|
|
PrintAndLog("Usage: analyse hid [h] <r|f> <bytes>");
|
|
PrintAndLog("Options:");
|
|
PrintAndLog(" h This help");
|
|
PrintAndLog(" r reverse permuted key");
|
|
PrintAndLog(" f permute key");
|
|
PrintAndLog(" <bytes> input bytes");
|
|
PrintAndLog("");
|
|
PrintAndLog("Samples:");
|
|
PrintAndLog(" analyse hid r 0123456789abcdef");
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t calculateLRC( uint8_t* bytes, uint8_t len) {
|
|
uint8_t LRC = 0;
|
|
for (uint8_t i = 0; i < len; i++)
|
|
LRC ^= bytes[i];
|
|
return LRC;
|
|
}
|
|
|
|
static uint8_t calcSumCrumbAdd( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
|
uint8_t sum = 0;
|
|
for (uint8_t i = 0; i < len; i++) {
|
|
sum += CRUMB(bytes[i], 0);
|
|
sum += CRUMB(bytes[i], 2);
|
|
sum += CRUMB(bytes[i], 4);
|
|
sum += CRUMB(bytes[i], 6);
|
|
}
|
|
sum &= mask;
|
|
return sum;
|
|
}
|
|
static uint8_t calcSumCrumbAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
|
return ~calcSumCrumbAdd(bytes, len, mask);
|
|
}
|
|
static uint8_t calcSumNibbleAdd( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
|
uint8_t sum = 0;
|
|
for (uint8_t i = 0; i < len; i++) {
|
|
sum += NIBBLE_LOW(bytes[i]);
|
|
sum += NIBBLE_HIGH(bytes[i]);
|
|
}
|
|
sum &= mask;
|
|
return sum;
|
|
}
|
|
static uint8_t calcSumNibbleAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask){
|
|
return ~calcSumNibbleAdd(bytes, len, mask);
|
|
}
|
|
|
|
static uint8_t calcSumByteAdd( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
|
uint8_t sum = 0;
|
|
for (uint8_t i = 0; i < len; i++)
|
|
sum += bytes[i];
|
|
sum &= mask;
|
|
return sum;
|
|
}
|
|
// Ones complement
|
|
static uint8_t calcSumByteAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
|
return ~calcSumByteAdd(bytes, len, mask);
|
|
}
|
|
|
|
static uint8_t calcSumByteSub( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
|
uint8_t sum = 0;
|
|
for (uint8_t i = 0; i < len; i++)
|
|
sum -= bytes[i];
|
|
sum &= mask;
|
|
return sum;
|
|
}
|
|
static uint8_t calcSumByteSubOnes( uint8_t* bytes, uint8_t len, uint32_t mask){
|
|
return ~calcSumByteSub(bytes, len, mask);
|
|
}
|
|
static uint8_t calcSumNibbleSub( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
|
uint8_t sum = 0;
|
|
for (uint8_t i = 0; i < len; i++) {
|
|
sum -= NIBBLE_LOW(bytes[i]);
|
|
sum -= NIBBLE_HIGH(bytes[i]);
|
|
}
|
|
sum &= mask;
|
|
return sum;
|
|
}
|
|
static uint8_t calcSumNibbleSubOnes( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
|
return ~calcSumNibbleSub(bytes, len, mask);
|
|
}
|
|
|
|
// measuring LFSR maximum length
|
|
int CmdAnalyseLfsr(const char *Cmd){
|
|
|
|
uint16_t start_state = 0; /* Any nonzero start state will work. */
|
|
uint16_t lfsr = start_state;
|
|
//uint32_t period = 0;
|
|
|
|
uint8_t iv = param_get8ex(Cmd, 0, 0, 16);
|
|
uint8_t find = param_get8ex(Cmd, 1, 0, 16);
|
|
|
|
printf("LEGIC LFSR IV 0x%02X: \n", iv);
|
|
printf(" bit# | lfsr | ^0x40 | 0x%02X ^ lfsr \n",find);
|
|
|
|
for (uint8_t i = 0x01; i < 0x30; i += 1) {
|
|
//period = 0;
|
|
legic_prng_init(iv);
|
|
legic_prng_forward(i);
|
|
lfsr = legic_prng_get_bits(12);
|
|
|
|
printf(" %02X | %03X | %03X | %03X \n",i, lfsr, 0x40 ^ lfsr, find ^ lfsr);
|
|
}
|
|
return 0;
|
|
}
|
|
int CmdAnalyseLCR(const char *Cmd) {
|
|
uint8_t data[50];
|
|
char cmdp = param_getchar(Cmd, 0);
|
|
if (strlen(Cmd) == 0|| cmdp == 'h' || cmdp == 'H') return usage_analyse_lcr();
|
|
|
|
int len = 0;
|
|
param_gethex_ex(Cmd, 0, data, &len);
|
|
if ( len%2 ) return usage_analyse_lcr();
|
|
len >>= 1;
|
|
uint8_t finalXor = calculateLRC(data, len);
|
|
PrintAndLog("Target [%02X] requires final LRC XOR byte value: 0x%02X",data[len-1] ,finalXor);
|
|
return 0;
|
|
}
|
|
int CmdAnalyseCRC(const char *Cmd) {
|
|
|
|
char cmdp = param_getchar(Cmd, 0);
|
|
if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_analyse_crc();
|
|
|
|
int len = strlen(Cmd);
|
|
if ( len & 1 ) return usage_analyse_crc();
|
|
|
|
// add 1 for null terminator.
|
|
uint8_t *data = malloc(len+1);
|
|
if ( data == NULL ) return 1;
|
|
|
|
if ( param_gethex(Cmd, 0, data, len)) {
|
|
free(data);
|
|
return usage_analyse_crc();
|
|
}
|
|
len >>= 1;
|
|
|
|
//PrintAndLog("\nTests with '%s' hex bytes", sprint_hex(data, len));
|
|
|
|
PrintAndLog("\nTests of reflection. Two current methods in source code");
|
|
PrintAndLog(" reflect(0x3e23L,3) is %04X == 0x3e26", reflect(0x3e23L,3) );
|
|
PrintAndLog(" SwapBits(0x3e23L,3) is %04X == 0x3e26", SwapBits(0x3e23L,3) );
|
|
PrintAndLog(" 0xB400 == %04X", reflect( (1 << 16 | 0xb400),16) );
|
|
|
|
//
|
|
// Test of CRC16, '123456789' string.
|
|
//
|
|
PrintAndLog("\nTests with '123456789' string");
|
|
uint8_t dataStr[] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39 };
|
|
uint8_t legic8 = CRC8Legic(dataStr, sizeof(dataStr));
|
|
|
|
PrintAndLog("LEGIC: CRC16: %X", CRC16Legic(dataStr, sizeof(dataStr), legic8));
|
|
|
|
//these below has been tested OK.
|
|
PrintAndLog("Confirmed CRC Implementations");
|
|
PrintAndLog("LEGIC: CRC8 : %X (0xC6 expected)", legic8);
|
|
PrintAndLog("MAXIM: CRC8 : %X (0xA1 expected)", CRC8Maxim(dataStr, sizeof(dataStr)));
|
|
PrintAndLog("DNP : CRC16: %X (0x82EA expected)", CRC16_DNP(dataStr, sizeof(dataStr)));
|
|
PrintAndLog("CCITT: CRC16: %X (0xE5CC expected)", CRC16_CCITT(dataStr, sizeof(dataStr)));
|
|
|
|
PrintAndLog("ICLASS org: CRC16: %X (0x expected)",iclass_crc16( (char*)dataStr, sizeof(dataStr)));
|
|
PrintAndLog("ICLASS ice: CRC16: %X (0x expected)",CRC16_ICLASS(dataStr, sizeof(dataStr)));
|
|
|
|
|
|
|
|
uint8_t dataStr1234[] = { 0x1,0x2,0x3,0x4};
|
|
PrintAndLog("ISO15693 org: : CRC16: %X (0xF0B8 expected)", Iso15693Crc(dataStr1234, sizeof(dataStr1234)));
|
|
PrintAndLog("ISO15693 ice: : CRC16: %X (0xF0B8 expected)", CRC16_Iso15693(dataStr1234, sizeof(dataStr1234)));
|
|
|
|
free(data);
|
|
return 0;
|
|
}
|
|
int CmdAnalyseCHKSUM(const char *Cmd){
|
|
|
|
uint8_t data[50];
|
|
uint8_t cmdp = 0;
|
|
uint32_t mask = 0xFF;
|
|
bool errors = false;
|
|
int len = 0;
|
|
memset(data, 0x0, sizeof(data));
|
|
|
|
while(param_getchar(Cmd, cmdp) != 0x00) {
|
|
switch(param_getchar(Cmd, cmdp)) {
|
|
case 'b':
|
|
case 'B':
|
|
param_gethex_ex(Cmd, cmdp+1, data, &len);
|
|
if ( len%2 ) errors = true;
|
|
len >>= 1;
|
|
cmdp += 2;
|
|
break;
|
|
case 'm':
|
|
case 'M':
|
|
mask = param_get32ex(Cmd, cmdp+1, 0, 16);
|
|
cmdp += 2;
|
|
break;
|
|
case 'h':
|
|
case 'H':
|
|
return usage_analyse_checksum();
|
|
default:
|
|
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
|
|
errors = true;
|
|
break;
|
|
}
|
|
if(errors) break;
|
|
}
|
|
//Validations
|
|
if(errors) return usage_analyse_checksum();
|
|
|
|
PrintAndLog("\nByte Add | 0x%X", calcSumByteAdd(data, len, mask));
|
|
PrintAndLog("Nibble Add | 0x%X", calcSumNibbleAdd(data, len, mask));
|
|
PrintAndLog("Crumb Add | 0x%X", calcSumCrumbAdd(data, len, mask));
|
|
|
|
PrintAndLog("\nByte Subtract | 0x%X", calcSumByteSub(data, len, mask));
|
|
PrintAndLog("Nibble Subtract | 0x%X", calcSumNibbleSub(data, len, mask));
|
|
|
|
PrintAndLog("\nCHECKSUM - One's complement");
|
|
PrintAndLog("Byte Add | 0x%X", calcSumByteAddOnes(data, len, mask));
|
|
PrintAndLog("Nibble Add | 0x%X", calcSumNibbleAddOnes(data, len, mask));
|
|
PrintAndLog("Crumb Add | 0x%X", calcSumCrumbAddOnes(data, len, mask));
|
|
|
|
PrintAndLog("Byte Subtract | 0x%X", calcSumByteSubOnes(data, len, mask));
|
|
PrintAndLog("Nibble Subtract | 0x%X", calcSumNibbleSubOnes(data, len, mask));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int CmdAnalyseDates(const char *Cmd){
|
|
// look for datestamps in a given array of bytes
|
|
PrintAndLog("To be implemented. Feel free to contribute!");
|
|
return 0;
|
|
}
|
|
int CmdAnalyseTEASelfTest(const char *Cmd){
|
|
|
|
uint8_t v[8], v_le[8];
|
|
memset(v, 0x00, sizeof(v));
|
|
memset(v_le, 0x00, sizeof(v_le));
|
|
uint8_t* v_ptr = v_le;
|
|
|
|
uint8_t cmdlen = strlen(Cmd);
|
|
cmdlen = ( sizeof(v)<<2 < cmdlen ) ? sizeof(v)<<2 : cmdlen;
|
|
|
|
if ( param_gethex(Cmd, 0, v, cmdlen) > 0 ){
|
|
PrintAndLog("can't read hex chars, uneven? :: %u", cmdlen);
|
|
return 1;
|
|
}
|
|
|
|
SwapEndian64ex(v , 8, 4, v_ptr);
|
|
|
|
// ENCRYPTION KEY:
|
|
uint8_t key[16] = {0x55,0xFE,0xF6,0x30,0x62,0xBF,0x0B,0xC1,0xC9,0xB3,0x7C,0x34,0x97,0x3E,0x29,0xFB };
|
|
uint8_t keyle[16];
|
|
uint8_t* key_ptr = keyle;
|
|
SwapEndian64ex(key , sizeof(key), 4, key_ptr);
|
|
|
|
PrintAndLog("TEST LE enc| %s", sprint_hex(v_ptr, 8));
|
|
|
|
tea_decrypt(v_ptr, key_ptr);
|
|
PrintAndLog("TEST LE dec | %s", sprint_hex_ascii(v_ptr, 8));
|
|
|
|
tea_encrypt(v_ptr, key_ptr);
|
|
tea_encrypt(v_ptr, key_ptr);
|
|
PrintAndLog("TEST enc2 | %s", sprint_hex_ascii(v_ptr, 8));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int CmdAnalyseA(const char *Cmd){
|
|
/*
|
|
piwi
|
|
// uid(2e086b1a) nt(230736f6) ks(0b0008000804000e) nr(000000000)
|
|
// uid(2e086b1a) nt(230736f6) ks(0e0b0e0b090c0d02) nr(000000001)
|
|
// uid(2e086b1a) nt(230736f6) ks(0e05060e01080b08) nr(000000002)
|
|
uint64_t d1[] = {0x2e086b1a, 0x230736f6, 0x0000001, 0x0e0b0e0b090c0d02};
|
|
uint64_t d2[] = {0x2e086b1a, 0x230736f6, 0x0000002, 0x0e05060e01080b08};
|
|
|
|
// uid(17758822) nt(c0c69e59) ks(080105020705040e) nr(00000001)
|
|
// uid(17758822) nt(c0c69e59) ks(01070a05050c0705) nr(00000002)
|
|
uint64_t d1[] = {0x17758822, 0xc0c69e59, 0x0000001, 0x080105020705040e};
|
|
uint64_t d2[] = {0x17758822, 0xc0c69e59, 0x0000002, 0x01070a05050c0705};
|
|
|
|
// uid(6e442129) nt(8f699195) ks(090d0b0305020f02) nr(00000001)
|
|
// uid(6e442129) nt(8f699195) ks(03030508030b0c0e) nr(00000002)
|
|
// uid(6e442129) nt(8f699195) ks(02010f030c0d050d) nr(00000003)
|
|
// uid(6e442129) nt(8f699195) ks(00040f0f0305030e) nr(00000004)
|
|
uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0x090d0b0305020f02};
|
|
uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0x00040f0f0305030e};
|
|
|
|
uid(3e172b29) nt(039b7bd2) ks(0c0e0f0505080800) nr(00000001)
|
|
uid(3e172b29) nt(039b7bd2) ks(0e06090d03000b0f) nr(00000002)
|
|
*/
|
|
uint64_t key = 0;
|
|
uint64_t d1[] = {0x3e172b29, 0x039b7bd2, 0x0000001, 0x0c0e0f0505080800};
|
|
uint64_t d2[] = {0x3e172b29, 0x039b7bd2, 0x0000002, 0x0e06090d03000b0f};
|
|
|
|
nonce2key_ex(0, 0 , d1[0], d1[1], d1[2], d1[3], &key);
|
|
nonce2key_ex(0, 0 , d2[0], d2[1], d2[2], d2[3], &key);
|
|
return 0;
|
|
}
|
|
|
|
static void permute(uint8_t *data, uint8_t len, uint8_t *output){
|
|
#define KEY_SIZE 8
|
|
|
|
if ( len > KEY_SIZE ) {
|
|
for(uint8_t m = 0; m < len; m += KEY_SIZE){
|
|
permute(data+m, KEY_SIZE, output+m);
|
|
}
|
|
return;
|
|
}
|
|
if ( len != KEY_SIZE ) {
|
|
printf("wrong key size\n");
|
|
return;
|
|
}
|
|
uint8_t i,j,p, mask;
|
|
for( i=0; i < KEY_SIZE; ++i){
|
|
p = 0;
|
|
mask = 0x80 >> i;
|
|
for( j=0; j < KEY_SIZE; ++j){
|
|
p >>= 1;
|
|
if (data[j] & mask)
|
|
p |= 0x80;
|
|
}
|
|
output[i] = p;
|
|
}
|
|
}
|
|
static void permute_rev(uint8_t *data, uint8_t len, uint8_t *output){
|
|
permute(data, len, output);
|
|
permute(output, len, data);
|
|
permute(data, len, output);
|
|
}
|
|
static void simple_crc(uint8_t *data, uint8_t len, uint8_t *output){
|
|
uint8_t crc = 0;
|
|
for( uint8_t i=0; i < len; ++i){
|
|
// seventh byte contains the crc.
|
|
if ( (i & 0x7) == 0x7 ) {
|
|
output[i] = crc ^ 0xFF;
|
|
crc = 0;
|
|
} else {
|
|
output[i] = data[i];
|
|
crc ^= data[i];
|
|
}
|
|
}
|
|
}
|
|
// DES doesn't use the MSB.
|
|
static void shave(uint8_t *data, uint8_t len){
|
|
for (uint8_t i=0; i<len; ++i)
|
|
data[i] &= 0xFE;
|
|
}
|
|
static void generate_rev(uint8_t *data, uint8_t len) {
|
|
uint8_t *key = calloc(len,1);
|
|
printf("input permuted key | %s \n", sprint_hex(data, len));
|
|
permute_rev(data, len, key);
|
|
printf(" unpermuted key | %s \n", sprint_hex(key, len));
|
|
shave(key, len);
|
|
printf(" key | %s \n", sprint_hex(key, len));
|
|
free(key);
|
|
}
|
|
static void generate(uint8_t *data, uint8_t len) {
|
|
uint8_t *key = calloc(len,1);
|
|
uint8_t *pkey = calloc(len,1);
|
|
printf(" input key | %s \n", sprint_hex(data, len));
|
|
permute(data, len, pkey);
|
|
printf(" permuted key | %s \n", sprint_hex(pkey, len));
|
|
simple_crc(pkey, len, key );
|
|
printf(" CRC'ed key | %s \n", sprint_hex(key, len));
|
|
free(key);
|
|
free(pkey);
|
|
}
|
|
int CmdAnalyseHid(const char *Cmd){
|
|
|
|
uint8_t data[16] = {0};
|
|
bool isReverse = FALSE;
|
|
int len = 0;
|
|
char cmdp = param_getchar(Cmd, 0);
|
|
if (strlen(Cmd) == 0|| cmdp == 'h' || cmdp == 'H') return usage_analyse_hid();
|
|
|
|
if ( cmdp == 'r' || cmdp == 'R' )
|
|
isReverse = TRUE;
|
|
|
|
param_gethex_ex(Cmd, 1, data, &len);
|
|
if ( len%2 ) return usage_analyse_hid();
|
|
|
|
len >>= 1;
|
|
|
|
if ( isReverse )
|
|
generate_rev(data, len);
|
|
else
|
|
generate(data, len);
|
|
return 0;
|
|
}
|
|
|
|
static command_t CommandTable[] = {
|
|
{"help", CmdHelp, 1, "This help"},
|
|
{"lcr", CmdAnalyseLCR, 1, "Generate final byte for XOR LRC"},
|
|
{"crc", CmdAnalyseCRC, 1, "Stub method for CRC evaluations"},
|
|
{"chksum", CmdAnalyseCHKSUM, 1, "Checksum with adding, masking and one's complement"},
|
|
{"dates", CmdAnalyseDates, 1, "Look for datestamps in a given array of bytes"},
|
|
{"tea", CmdAnalyseTEASelfTest, 1, "Crypto TEA test"},
|
|
{"lfsr", CmdAnalyseLfsr, 1, "LFSR tests"},
|
|
{"a", CmdAnalyseA, 1, "num bits test"},
|
|
{"hid", CmdAnalyseHid, 1, "Permute function from 'heart of darkness' paper"},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
|
|
int CmdAnalyse(const char *Cmd) {
|
|
clearCommandBuffer();
|
|
CmdsParse(CommandTable, Cmd);
|
|
return 0;
|
|
}
|
|
|
|
int CmdHelp(const char *Cmd) {
|
|
CmdsHelp(CommandTable);
|
|
return 0;
|
|
}
|