proxmark3/client/mifarehost.c
iceman1001 b882b54314 FIX: introduced a bug in a loop by uint8_t inside crapto1.c
CHG: textual helptext change in "hf mf nested"
CHG: loop inside "nested". Still not fast enough. I wonder if qsort can be exchanged for radixsort or bucket sort?
2016-02-16 23:46:34 +01:00

685 lines
18 KiB
C

// Merlok, 2011, 2012
// people from mifare@nethemba.com, 2010
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// mifare commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include "mifarehost.h"
#include "proxmark3.h"
//#include "radixsort.h"
// MIFARE
int compar_int(const void * a, const void * b) {
// didn't work: (the result is truncated to 32 bits)
//return (*(uint64_t*)b - *(uint64_t*)a);
// better:
/*if (*(uint64_t*)b < *(uint64_t*)a) return -1;
if (*(uint64_t*)b > *(uint64_t*)a) return 1;
return 0;
*/
return (*(uint64_t*)b > *(uint64_t*)a) - (*(uint64_t*)b < *(uint64_t*)a);
}
// Compare 16 Bits out of cryptostate
int Compare16Bits(const void * a, const void * b) {
/*
if ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000)) return -1;
if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
return 0;
*/
return
((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000))
-
((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000))
;
}
typedef
struct {
union {
struct Crypto1State *slhead;
uint64_t *keyhead;
} head;
union {
struct Crypto1State *sltail;
uint64_t *keytail;
} tail;
uint32_t len;
uint32_t uid;
uint32_t blockNo;
uint32_t keyType;
uint32_t nt;
uint32_t ks1;
} StateList_t;
// wrapper function for multi-threaded lfsr_recovery32
void* nested_worker_thread(void *arg)
{
struct Crypto1State *p1;
StateList_t *statelist = arg;
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
statelist->len = p1 - statelist->head.slhead;
statelist->tail.sltail = --p1;
qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
return statelist->head.slhead;
}
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
{
uint16_t i;
uint32_t uid;
UsbCommand resp;
StateList_t statelists[2];
struct Crypto1State *p1, *p2, *p3, *p4;
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
memcpy(c.d.asBytes, key, 6);
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
// error during nested
if (resp.arg[0]) return resp.arg[0];
memcpy(&uid, resp.d.asBytes, 4);
for (i = 0; i < 2; i++) {
statelists[i].blockNo = resp.arg[2] & 0xff;
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
statelists[i].uid = uid;
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
}
// calc keys
pthread_t thread_id[2];
// create and run worker threads
for (i = 0; i < 2; i++)
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
// wait for threads to terminate:
for (i = 0; i < 2; i++)
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
// the first 16 Bits of the cryptostate already contain part of our key.
// Create the intersection of the two lists based on these 16 Bits and
// roll back the cryptostate
p1 = p3 = statelists[0].head.slhead;
p2 = p4 = statelists[1].head.slhead;
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
if (Compare16Bits(p1, p2) == 0) {
struct Crypto1State savestate, *savep = &savestate;
savestate = *p1;
while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
*p3 = *p1;
lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
p3++;
p1++;
}
savestate = *p2;
while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
*p4 = *p2;
lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
p4++;
p2++;
}
}
else {
while (Compare16Bits(p1, p2) == -1) p1++;
while (Compare16Bits(p1, p2) == 1) p2++;
}
}
p3->even = 0; p3->odd = 0;
p4->even = 0; p4->odd = 0;
statelists[0].len = p3 - statelists[0].head.slhead;
statelists[1].len = p4 - statelists[1].head.slhead;
statelists[0].tail.sltail=--p3;
statelists[1].tail.sltail=--p4;
// the statelists now contain possible keys. The key we are searching for must be in the
// intersection of both lists. Create the intersection:
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
uint64_t *p5, *p6, *p7;
p5 = p7 = statelists[0].head.keyhead;
p6 = statelists[1].head.keyhead;
while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
if (compar_int(p5, p6) == 0) {
*p7++ = *p5++;
p6++;
}
else {
while (compar_int(p5, p6) == -1) p5++;
while (compar_int(p5, p6) == 1) p6++;
}
}
statelists[0].len = p7 - statelists[0].head.keyhead;
statelists[0].tail.keytail = --p7;
memset(resultKey, 0, 6);
uint64_t key64 = 0;
// The list may still contain several key candidates. Test each of them with mfCheckKeys
// uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
uint32_t numOfCandidates = statelists[0].len;
if ( numOfCandidates > 0 ) {
uint8_t keyBlock[USB_CMD_DATA_SIZE] = {0x00};
for (i = 0; i < numOfCandidates; ++i){
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
num_to_bytes(key64, 6, keyBlock + i * 6);
}
if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, numOfCandidates, keyBlock, &key64)) {
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
num_to_bytes(key64, 6, resultKey);
PrintAndLog("UID: %08x target block:%3u key type: %c -- Found key [%012"llx"]",
uid,
(uint16_t)resp.arg[2] & 0xff,
(resp.arg[2] >> 8) ? 'B' : 'A',
key64
);
return -5;
}
}
PrintAndLog("UID: %08x target block:%3u key type: %c",
uid,
(uint16_t)resp.arg[2] & 0xff,
(resp.arg[2] >> 8) ? 'B' : 'A'
);
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
return -4;
}
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
*key = 0;
UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType<<8)), clear_trace, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp, 3000)) return 1;
if ((resp.arg[0] & 0xff) != 0x01) return 2;
*key = bytes_to_num(resp.d.asBytes, 6);
return 0;
}
// EMULATOR
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
memcpy(data, resp.d.asBytes, blocksCount * 16);
return 0;
}
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
}
int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}};
memcpy(c.d.asBytes, data, blocksCount * blockBtWidth);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
// "MAGIC" CARD
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
uint8_t params = MAGIC_SINGLE;
uint8_t block0[16];
memset(block0, 0x00, sizeof(block0));
int old = mfCGetBlock(0, block0, params);
if (old == 0)
PrintAndLog("old block 0: %s", sprint_hex(block0, sizeof(block0)));
else
PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
// fill in the new values
// UID
memcpy(block0, uid, 4);
// Mifare UID BCC
block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
// mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
if ( sak != NULL )
block0[5]=sak[0];
if ( atqa != NULL ) {
block0[6]=atqa[1];
block0[7]=atqa[0];
}
PrintAndLog("new block 0: %s", sprint_hex(block0,16));
if ( wipecard ) params |= MAGIC_WIPE;
if ( oldUID == NULL) params |= MAGIC_UID;
return mfCSetBlock(0, block0, oldUID, params);
}
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}};
memcpy(c.d.asBytes, data, 16);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
isOK = resp.arg[0] & 0xff;
if (uid != NULL)
memcpy(uid, resp.d.asBytes, 4);
if (!isOK)
return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
}
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
memcpy(data, resp.d.asBytes, 16);
if (!isOK) return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
}
// SNIFFER
// constants
static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
// variables
char logHexFileName[FILE_PATH_SIZE] = {0x00};
static uint8_t traceCard[4096] = {0x00};
static char traceFileName[FILE_PATH_SIZE] = {0x00};
static int traceState = TRACE_IDLE;
static uint8_t traceCurBlock = 0;
static uint8_t traceCurKey = 0;
struct Crypto1State *traceCrypto1 = NULL;
struct Crypto1State *revstate = NULL;
uint64_t key = 0;
uint32_t ks2 = 0;
uint32_t ks3 = 0;
uint32_t uid = 0; // serial number
uint32_t nt =0; // tag challenge
uint32_t nr_enc =0; // encrypted reader challenge
uint32_t ar_enc =0; // encrypted reader response
uint32_t at_enc =0; // encrypted tag response
int isTraceCardEmpty(void) {
return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
}
int isBlockEmpty(int blockN) {
for (int i = 0; i < 16; i++)
if (traceCard[blockN * 16 + i] != 0) return 0;
return 1;
}
int isBlockTrailer(int blockN) {
return ((blockN & 0x03) == 0x03);
}
int loadTraceCard(uint8_t *tuid) {
FILE * f;
char buf[64] = {0x00};
uint8_t buf8[64] = {0x00};
int i, blockNum;
if (!isTraceCardEmpty())
saveTraceCard();
memset(traceCard, 0x00, 4096);
memcpy(traceCard, tuid + 3, 4);
FillFileNameByUID(traceFileName, tuid, ".eml", 7);
f = fopen(traceFileName, "r");
if (!f) return 1;
blockNum = 0;
while(!feof(f)){
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
PrintAndLog("File reading error.");
fclose(f);
return 2;
}
if (strlen(buf) < 32){
if (feof(f)) break;
PrintAndLog("File content error. Block data must include 32 HEX symbols");
fclose(f);
return 2;
}
for (i = 0; i < 32; i += 2)
sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
memcpy(traceCard + blockNum * 16, buf8, 16);
blockNum++;
}
fclose(f);
return 0;
}
int saveTraceCard(void) {
FILE * f;
if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
f = fopen(traceFileName, "w+");
if ( !f ) return 1;
for (int i = 0; i < 64; i++) { // blocks
for (int j = 0; j < 16; j++) // bytes
fprintf(f, "%02x", *(traceCard + i * 16 + j));
fprintf(f,"\n");
}
fclose(f);
return 0;
}
int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
if (traceCrypto1)
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
if (wantSaveToEmlFile)
loadTraceCard(tuid);
traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
traceCard[5] = sak;
memcpy(&traceCard[6], atqa, 2);
traceCurBlock = 0;
uid = bytes_to_num(tuid + 3, 4);
traceState = TRACE_IDLE;
return 0;
}
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
uint8_t bt = 0;
int i;
if (len != 1) {
for (i = 0; i < len; i++)
data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
} else {
bt = 0;
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 0)) << 0;
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 1)) << 1;
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 2)) << 2;
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 3)) << 3;
data[0] = bt;
}
return;
}
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
uint8_t data[64];
if (traceState == TRACE_ERROR) return 1;
if (len > 64) {
traceState = TRACE_ERROR;
return 1;
}
memcpy(data, data_src, len);
if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
mf_crypto1_decrypt(traceCrypto1, data, len, 0);
PrintAndLog("dec> %s", sprint_hex(data, len));
AddLogHex(logHexFileName, "dec> ", data, len);
}
switch (traceState) {
case TRACE_IDLE:
// check packet crc16!
if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
PrintAndLog("dec> CRC ERROR!!!");
AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
traceState = TRACE_ERROR; // do not decrypt the next commands
return 1;
}
// AUTHENTICATION
if ((len == 4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
traceState = TRACE_AUTH1;
traceCurBlock = data[1];
traceCurKey = data[0] == 60 ? 1:0;
return 0;
}
// READ
if ((len ==4) && ((data[0] == 0x30))) {
traceState = TRACE_READ_DATA;
traceCurBlock = data[1];
return 0;
}
// WRITE
if ((len ==4) && ((data[0] == 0xA0))) {
traceState = TRACE_WRITE_OK;
traceCurBlock = data[1];
return 0;
}
// HALT
if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
traceState = TRACE_ERROR; // do not decrypt the next commands
return 0;
}
return 0;
break;
case TRACE_READ_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
if (isBlockTrailer(traceCurBlock)) {
memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
} else {
memcpy(traceCard + traceCurBlock * 16, data, 16);
}
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_OK:
if ((len == 1) && (data[0] == 0x0a)) {
traceState = TRACE_WRITE_DATA;
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
memcpy(traceCard + traceCurBlock * 16, data, 16);
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH1:
if (len == 4) {
traceState = TRACE_AUTH2;
nt = bytes_to_num(data, 4);
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH2:
if (len == 8) {
traceState = TRACE_AUTH_OK;
nr_enc = bytes_to_num(data, 4);
ar_enc = bytes_to_num(data + 4, 4);
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH_OK:
if (len ==4) {
traceState = TRACE_IDLE;
at_enc = bytes_to_num(data, 4);
// decode key here)
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
printf("Key: %012"llx"\n",key);
AddLogUint64(logHexFileName, "key: ", key);
int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
if (traceCurKey) {
num_to_bytes(key, 6, traceCard + blockShift + 10);
} else {
num_to_bytes(key, 6, traceCard + blockShift);
}
if (wantSaveToEmlFile) saveTraceCard();
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
}
// set cryptosystem state
traceCrypto1 = lfsr_recovery64(ks2, ks3);
// nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
/* traceCrypto1 = crypto1_create(key); // key in lfsr
crypto1_word(traceCrypto1, nt ^ uid, 0);
crypto1_word(traceCrypto1, ar, 1);
crypto1_word(traceCrypto1, 0, 0);
crypto1_word(traceCrypto1, 0, 0);*/
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
default:
traceState = TRACE_ERROR;
return 1;
}
return 0;
}
int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
/*
uint32_t nt; // tag challenge
uint32_t nr_enc; // encrypted reader challenge
uint32_t ar_enc; // encrypted reader response
uint32_t at_enc; // encrypted tag response
*/
struct Crypto1State *pcs = NULL;
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
PrintAndLog("Decrypting data with:");
PrintAndLog(" nt: %08x",nt);
PrintAndLog(" ar_enc: %08x",ar_enc);
PrintAndLog(" at_enc: %08x",at_enc);
PrintAndLog("\nEncrypted data: [%s]", sprint_hex(data,len) );
pcs = lfsr_recovery64(ks2, ks3);
mf_crypto1_decrypt(pcs, data, len, FALSE);
PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
crypto1_destroy(pcs);
return 0;
}